Sparse recovery using expanders via hard thresholding algorithm

Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it tu...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 227; p. 109715
Main Authors Wen, Kun-Kai, He, Jia-Xin, Li, Peng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN0165-1684
DOI10.1016/j.sigpro.2024.109715

Cover

Abstract Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an s-sparse signal if the measurement matrix A∈{0,1}m×n satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers. •Propose the expander normalized heavy ball hard thresholding algorithm.•Convergence rate and accuracy of proposed algorithm are provided.•Our method achieves good numerical performance, especially in the presence of outliers.
AbstractList Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an s-sparse signal if the measurement matrix A∈{0,1}m×n satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers. •Propose the expander normalized heavy ball hard thresholding algorithm.•Convergence rate and accuracy of proposed algorithm are provided.•Our method achieves good numerical performance, especially in the presence of outliers.
ArticleNumber 109715
Author Wen, Kun-Kai
He, Jia-Xin
Li, Peng
Author_xml – sequence: 1
  givenname: Kun-Kai
  surname: Wen
  fullname: Wen, Kun-Kai
  email: 220220934951@lzu.edu.cn
– sequence: 2
  givenname: Jia-Xin
  surname: He
  fullname: He, Jia-Xin
  email: 220220934541@lzu.edu.cn
– sequence: 3
  givenname: Peng
  orcidid: 0000-0003-0249-7180
  surname: Li
  fullname: Li, Peng
  email: lp@lzu.edu.cn
BookMark eNp9j81OwzAQhH0oEm3hDTjkBVJs58--gFAFFKkSB-BsbexN46qNo3Wo6NuTKpw5jTSjGc23YLMudMjYneArwUV5v19Fv-sprCSX-WjpShQzNh-jIhWlyq_ZIsY951xkJZ-zx48eKGJCaMMJ6Zx8R9_tEvzpoXNIMTl5SFoglwwtYWzDwV1yOOwC-aE93rCrBg4Rb_90yb5enj_Xm3T7_vq2ftqmVhbFkEoNVSZyXVd1Y6WEDHQFWuVacFkqVRcgnFSFtsrVDiyoqsxANhqwEqC5zZYsn3YthRgJG9OTPwKdjeDmAm72ZgI3F3AzgY-1h6mG47eTRzLReuwsOj8SD8YF___AL0jGaC8
Cites_doi 10.1002/cpa.20124
10.1016/j.acha.2024.101697
10.1016/j.cam.2023.115264
10.1109/TSP.2018.2806359
10.1109/TIT.2006.885507
10.1215/00127094-1384809
10.1109/JPROC.2010.2045092
10.1109/TIT.2006.871582
10.1109/JSTSP.2010.2042411
10.1137/090777761
10.1145/1538902.1538904
10.1016/j.acha.2016.03.002
10.1137/100806278
10.1109/TIT.2010.2040894
10.1364/OE.18.004876
10.1090/S0273-0979-06-01126-8
10.1109/TSP.2017.2757915
10.1137/09076934X
10.1016/j.acha.2009.04.002
10.1007/s10107-020-01529-7
10.1088/0266-5611/24/3/035020
10.1007/978-0-8176-4948-7_1
10.1007/s00041-022-09984-w
10.1016/j.acha.2017.03.001
10.1109/TSP.2020.2990154
10.1016/j.jmva.2013.04.001
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2024.109715
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2024_109715
S0165168424003359
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c255t-29a73149b7bfc22a3a97a9849102688b5a1d2859c8dbdaca8763a2f9ae71a90c3
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Wed Oct 01 02:46:51 EDT 2025
Sun Apr 06 06:54:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords 94A15
Heavy ball method
Hard thresholding
90C26
Lossless expanders
Sparse signal recovery
94A12
Combinatorial compressed sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-29a73149b7bfc22a3a97a9849102688b5a1d2859c8dbdaca8763a2f9ae71a90c3
ORCID 0000-0003-0249-7180
ParticipantIDs crossref_primary_10_1016_j_sigpro_2024_109715
elsevier_sciencedirect_doi_10_1016_j_sigpro_2024_109715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Foucart (b26) 2011; 49
Baraniuk, Cevher, Duarte, Hegde (b13) 2010; 56
Candès, Romberg, Tao (b1) 2006; 59
Lotfi, Vidyasagar (b18) 2020; 68
Wang (b30) 2013; 120
Chartrand, Staneva (b21) 2008; 24
Sheehan (b8) 2018
Donoho (b19) 2006; 52
Blumensath, Davies (b22) 2009; 27
Bourquard, Aguet, Unser (b15) 2010; 18
Hoory, Linial, Wigderson (b10) 2006; 43
Li, Liu, Shen (b25) 2023; 29
Berinde, Gilbert, Indyk, Karloff, Strauss (b2) 2008
Bah, Kurtz, Schaudt (b12) 2021; 190
Guruswami, Umans, Vadhan (b9) 2009; 56
Gilbert, Indyk (b5) 2010; 98
Bah, Baldassarre, Cevher (b11) 2014
Yang, Zhang (b29) 2011; 33
Bourgain, Dilworth, Ford, Konyagin, Kutzarova (b6) 2011; 159
Blumensath, Davies (b23) 2010; 4
Lu, Dai, Xia (b17) 2018; 66
Foucart, Rauhut (b4) 2013
Sun, Zhou, Zhao, Meng (b24) 2023; 430
Mendoza Smith, Tanner, Wechsung (b3) 2018; 66
Abdalla (b16) 2024; 73
Shen, Li (b28) 2018; 18
Mixon (b7) 2015
Mendoza Smith, Tanner (b14) 2018; 45
Candès, Tao (b20) 2006; 52
Bouchot, Foucart, Hitczenko (b27) 2016; 41
Esser, Zhang, Chan (b31) 2010; 3
Foucart (10.1016/j.sigpro.2024.109715_b4) 2013
Hoory (10.1016/j.sigpro.2024.109715_b10) 2006; 43
Sheehan (10.1016/j.sigpro.2024.109715_b8) 2018
Sun (10.1016/j.sigpro.2024.109715_b24) 2023; 430
Blumensath (10.1016/j.sigpro.2024.109715_b22) 2009; 27
Candès (10.1016/j.sigpro.2024.109715_b20) 2006; 52
Candès (10.1016/j.sigpro.2024.109715_b1) 2006; 59
Wang (10.1016/j.sigpro.2024.109715_b30) 2013; 120
Chartrand (10.1016/j.sigpro.2024.109715_b21) 2008; 24
Berinde (10.1016/j.sigpro.2024.109715_b2) 2008
Bouchot (10.1016/j.sigpro.2024.109715_b27) 2016; 41
Abdalla (10.1016/j.sigpro.2024.109715_b16) 2024; 73
Li (10.1016/j.sigpro.2024.109715_b25) 2023; 29
Bourgain (10.1016/j.sigpro.2024.109715_b6) 2011; 159
Bourquard (10.1016/j.sigpro.2024.109715_b15) 2010; 18
Lu (10.1016/j.sigpro.2024.109715_b17) 2018; 66
Guruswami (10.1016/j.sigpro.2024.109715_b9) 2009; 56
Shen (10.1016/j.sigpro.2024.109715_b28) 2018; 18
Bah (10.1016/j.sigpro.2024.109715_b11) 2014
Foucart (10.1016/j.sigpro.2024.109715_b26) 2011; 49
Gilbert (10.1016/j.sigpro.2024.109715_b5) 2010; 98
Lotfi (10.1016/j.sigpro.2024.109715_b18) 2020; 68
Mendoza Smith (10.1016/j.sigpro.2024.109715_b3) 2018; 66
Baraniuk (10.1016/j.sigpro.2024.109715_b13) 2010; 56
Mixon (10.1016/j.sigpro.2024.109715_b7) 2015
Esser (10.1016/j.sigpro.2024.109715_b31) 2010; 3
Donoho (10.1016/j.sigpro.2024.109715_b19) 2006; 52
Bah (10.1016/j.sigpro.2024.109715_b12) 2021; 190
Blumensath (10.1016/j.sigpro.2024.109715_b23) 2010; 4
Mendoza Smith (10.1016/j.sigpro.2024.109715_b14) 2018; 45
Yang (10.1016/j.sigpro.2024.109715_b29) 2011; 33
References_xml – volume: 66
  start-page: 2167
  year: 2018
  end-page: 2177
  ident: b3
  article-title: A robust parallel algorithm for combinatorial compressed sensing
  publication-title: IEEE Trans. Signal Process.
– volume: 33
  start-page: 250
  year: 2011
  end-page: 278
  ident: b29
  article-title: Alternating direction algorithms for
  publication-title: SIAM J. Sci. Comput.
– volume: 3
  start-page: 1015
  year: 2010
  end-page: 1046
  ident: b31
  article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science
  publication-title: SIAM J. Imaging Sci.
– volume: 59
  start-page: 1207
  year: 2006
  end-page: 1223
  ident: b1
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Comm. Pure Appl. Math.
– volume: 24
  year: 2008
  ident: b21
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Problems
– start-page: 798
  year: 2008
  end-page: 805
  ident: b2
  article-title: Combining geometry and combinatorics: A unified approach to sparse signal recovery
  publication-title: 2008 46th Annual Allerton Conference on Communication, Control, and Computing
– volume: 56
  start-page: 1
  year: 2009
  end-page: 34
  ident: b9
  article-title: Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes
  publication-title: J. ACM
– volume: 41
  start-page: 412
  year: 2016
  end-page: 435
  ident: b27
  article-title: Hard thresholding pursuit algorithms: Number of iterations
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 1529
  year: 2014
  end-page: 1543
  ident: b11
  article-title: Model-based sketching and recovery with expanders
  publication-title: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 27
  start-page: 265
  year: 2009
  end-page: 274
  ident: b22
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 159
  start-page: 145
  year: 2011
  end-page: 185
  ident: b6
  article-title: Explicit constructions of RIP matrices and related problems
  publication-title: Duke Math. J.
– volume: 52
  start-page: 5406
  year: 2006
  end-page: 5425
  ident: b20
  article-title: Near-optimal signal recovery from random projections: Universal encoding strategies?
  publication-title: IEEE Trans. Inform. Theory
– volume: 430
  year: 2023
  ident: b24
  article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery
  publication-title: J. Comput. Appl. Math.
– volume: 4
  start-page: 298
  year: 2010
  end-page: 309
  ident: b23
  article-title: Normalized iterative hard thresholding: Guaranteed stability and performance
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 66
  start-page: 77
  year: 2018
  end-page: 85
  ident: b17
  article-title: Binary matrices for compressed sensing
  publication-title: IEEE Trans. Signal Process.
– volume: 49
  start-page: 2543
  year: 2011
  end-page: 2563
  ident: b26
  article-title: Hard thresholding pursuit: An algorithm for compressive sensing
  publication-title: SIAM J. Numer. Anal.
– volume: 45
  start-page: 642
  year: 2018
  end-page: 667
  ident: b14
  article-title: Expander
  publication-title: Appl. Comput. Harmon. Anal.
– start-page: 389
  year: 2015
  end-page: 417
  ident: b7
  article-title: Explicit matrices with the restricted isometry property: Breaking the square-root bottleneck
  publication-title: Compressed Sensing and Its Applications: MATHEON Workshop 2013
– volume: 18
  start-page: 4876
  year: 2010
  end-page: 4888
  ident: b15
  article-title: Optical imaging using binary sensors
  publication-title: Opt. Express
– volume: 73
  start-page: 101697
  year: 2024
  ident: b16
  article-title: Robust sparse recovery with sparse Bernoulli matrices via expanders
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 68
  start-page: 3008
  year: 2020
  end-page: 3021
  ident: b18
  article-title: Compressed sensing using binary matrices of nearly optimal dimensions
  publication-title: IEEE Trans. Signal Process.
– year: 2018
  ident: b8
  article-title: Compressed Sensing and the Quadratic Bottleneck Problem: A Combinatorics Approach
– start-page: XVIII, 625
  year: 2013
  ident: b4
  article-title: A mathematical introduction to compressive sensing
  publication-title: Applied and Numerical Harmonic Analysis
– volume: 98
  start-page: 937
  year: 2010
  end-page: 947
  ident: b5
  article-title: Sparse recovery using sparse matrices
  publication-title: Proc. IEEE
– volume: 18
  start-page: 1
  year: 2018
  end-page: 42
  ident: b28
  article-title: A tight bound of hard thresholding
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 5
  year: 2023
  ident: b25
  article-title: Adaptive iterative hard thresholding for least absolute deviation problems with sparsity constraints
  publication-title: J. Fourier Anal. Appl
– volume: 120
  start-page: 135
  year: 2013
  end-page: 151
  ident: b30
  article-title: The
  publication-title: J. Multivariate Anal.
– volume: 43
  start-page: 439
  year: 2006
  end-page: 561
  ident: b10
  article-title: Expander graphs and their applications
  publication-title: Bull. Amer. Math. Soc.
– volume: 190
  start-page: 171
  year: 2021
  end-page: 220
  ident: b12
  article-title: Discrete optimization methods for group model selection in compressed sensing
  publication-title: Math. Program.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b19
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
– volume: 56
  start-page: 1982
  year: 2010
  end-page: 2001
  ident: b13
  article-title: Model-based compressive sensing
  publication-title: IEEE Trans. Inform. Theory
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  ident: 10.1016/j.sigpro.2024.109715_b1
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 73
  start-page: 101697
  year: 2024
  ident: 10.1016/j.sigpro.2024.109715_b16
  article-title: Robust sparse recovery with sparse Bernoulli matrices via expanders
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2024.101697
– volume: 430
  year: 2023
  ident: 10.1016/j.sigpro.2024.109715_b24
  article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2023.115264
– volume: 66
  start-page: 2167
  issue: 8
  year: 2018
  ident: 10.1016/j.sigpro.2024.109715_b3
  article-title: A robust parallel algorithm for combinatorial compressed sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2806359
– volume: 52
  start-page: 5406
  issue: 12
  year: 2006
  ident: 10.1016/j.sigpro.2024.109715_b20
  article-title: Near-optimal signal recovery from random projections: Universal encoding strategies?
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2006.885507
– volume: 159
  start-page: 145
  issue: 1
  year: 2011
  ident: 10.1016/j.sigpro.2024.109715_b6
  article-title: Explicit constructions of RIP matrices and related problems
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-1384809
– volume: 98
  start-page: 937
  issue: 6
  year: 2010
  ident: 10.1016/j.sigpro.2024.109715_b5
  article-title: Sparse recovery using sparse matrices
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2045092
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.sigpro.2024.109715_b19
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 4
  start-page: 298
  issue: 2
  year: 2010
  ident: 10.1016/j.sigpro.2024.109715_b23
  article-title: Normalized iterative hard thresholding: Guaranteed stability and performance
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2010.2042411
– volume: 33
  start-page: 250
  issue: 1
  year: 2011
  ident: 10.1016/j.sigpro.2024.109715_b29
  article-title: Alternating direction algorithms for ℓ1 problems in compressive sensing
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090777761
– volume: 56
  start-page: 1
  issue: 4
  year: 2009
  ident: 10.1016/j.sigpro.2024.109715_b9
  article-title: Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes
  publication-title: J. ACM
  doi: 10.1145/1538902.1538904
– volume: 41
  start-page: 412
  issue: 2
  year: 2016
  ident: 10.1016/j.sigpro.2024.109715_b27
  article-title: Hard thresholding pursuit algorithms: Number of iterations
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.03.002
– start-page: 389
  year: 2015
  ident: 10.1016/j.sigpro.2024.109715_b7
  article-title: Explicit matrices with the restricted isometry property: Breaking the square-root bottleneck
– volume: 49
  start-page: 2543
  issue: 6
  year: 2011
  ident: 10.1016/j.sigpro.2024.109715_b26
  article-title: Hard thresholding pursuit: An algorithm for compressive sensing
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100806278
– volume: 56
  start-page: 1982
  issue: 4
  year: 2010
  ident: 10.1016/j.sigpro.2024.109715_b13
  article-title: Model-based compressive sensing
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2010.2040894
– volume: 18
  start-page: 4876
  issue: 5
  year: 2010
  ident: 10.1016/j.sigpro.2024.109715_b15
  article-title: Optical imaging using binary sensors
  publication-title: Opt. Express
  doi: 10.1364/OE.18.004876
– volume: 43
  start-page: 439
  issue: 4
  year: 2006
  ident: 10.1016/j.sigpro.2024.109715_b10
  article-title: Expander graphs and their applications
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0273-0979-06-01126-8
– volume: 66
  start-page: 77
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2024.109715_b17
  article-title: Binary matrices for compressed sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2757915
– volume: 3
  start-page: 1015
  issue: 4
  year: 2010
  ident: 10.1016/j.sigpro.2024.109715_b31
  article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/09076934X
– start-page: 798
  year: 2008
  ident: 10.1016/j.sigpro.2024.109715_b2
  article-title: Combining geometry and combinatorics: A unified approach to sparse signal recovery
– volume: 27
  start-page: 265
  issue: 3
  year: 2009
  ident: 10.1016/j.sigpro.2024.109715_b22
  article-title: Iterative hard thresholding for compressed sensing
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2009.04.002
– volume: 18
  start-page: 1
  issue: 208
  year: 2018
  ident: 10.1016/j.sigpro.2024.109715_b28
  article-title: A tight bound of hard thresholding
  publication-title: J. Mach. Learn. Res.
– start-page: 1529
  year: 2014
  ident: 10.1016/j.sigpro.2024.109715_b11
  article-title: Model-based sketching and recovery with expanders
– year: 2018
  ident: 10.1016/j.sigpro.2024.109715_b8
– volume: 190
  start-page: 171
  issue: 1
  year: 2021
  ident: 10.1016/j.sigpro.2024.109715_b12
  article-title: Discrete optimization methods for group model selection in compressed sensing
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01529-7
– volume: 24
  issue: 3
  year: 2008
  ident: 10.1016/j.sigpro.2024.109715_b21
  article-title: Restricted isometry properties and nonconvex compressive sensing
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/24/3/035020
– start-page: XVIII, 625
  year: 2013
  ident: 10.1016/j.sigpro.2024.109715_b4
  article-title: A mathematical introduction to compressive sensing
  doi: 10.1007/978-0-8176-4948-7_1
– volume: 29
  start-page: 5
  issue: 1
  year: 2023
  ident: 10.1016/j.sigpro.2024.109715_b25
  article-title: Adaptive iterative hard thresholding for least absolute deviation problems with sparsity constraints
  publication-title: J. Fourier Anal. Appl
  doi: 10.1007/s00041-022-09984-w
– volume: 45
  start-page: 642
  issue: 3
  year: 2018
  ident: 10.1016/j.sigpro.2024.109715_b14
  article-title: Expander ℓ0-decoding
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2017.03.001
– volume: 68
  start-page: 3008
  year: 2020
  ident: 10.1016/j.sigpro.2024.109715_b18
  article-title: Compressed sensing using binary matrices of nearly optimal dimensions
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2990154
– volume: 120
  start-page: 135
  year: 2013
  ident: 10.1016/j.sigpro.2024.109715_b30
  article-title: The ℓ1 penalized LAD estimator for high dimensional linear regression
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.04.001
SSID ssj0001360
Score 2.4523308
Snippet Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109715
SubjectTerms Combinatorial compressed sensing
Hard thresholding
Heavy ball method
Lossless expanders
Sparse signal recovery
Title Sparse recovery using expanders via hard thresholding algorithm
URI https://dx.doi.org/10.1016/j.sigpro.2024.109715
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0165-1684
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0165-1684
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0165-1684
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0165-1684
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0165-1684
  databaseCode: AKRWK
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BQtUHlgDU0cJ3bGqqIqILpApW7RObFLELRRGxAs_HZ8-RBFQgyskR1Fz875Tn7vHSEXQSCN0tr-36EJHS4Tg5a30jFKauNrkUKIAue7STie8ptZMGuRYaOFQVplHfurmF5G6_pJv0azn2dZ_x6FOB5eI3FsSBagiI9zgV0MLj-_aR6eXyqFcbCDoxv5XMnxWmdzG6dslch46eWIzXF_O542jpzRHtmtc0U6qD5nn7T04oDsbDgIHtpcO7eVqaZY19pN-UGRxz6n-j2vVCv0LQOKwipa2EVb13dNFJ7ny1VWPL4ckeno6mE4duqeCE5ik__CYREI31Y1SiiTMAY-RAIiye2pz0IpVQBeip50iUxVCgmg4RwwE4EWHkRu4h-T9mK50CeEqtCWOp4JU-DAU8Yi7TM30vZFrhCu1h3iNFDEeWV9ETecsKe4gi5G6OIKug4RDV7xjyWMbXT-c2b33zNPyTbDhrwljfqMtIvVqz63WUKheuU26JGtwfXtePIFVQW9CA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwfW0MRx4nhEFVWBtgut1M2yE7sEQRu1AcHCb8eXD1EkxMAa2VH07Jzv5PfeIXQZBJFRWtv_OzShQ6PYgOVt5BgVaeNrlsgQBM6DYdgb07tJMGmgTq2FAVplFfvLmF5E6-pJu0KznaVp-wGEOB5cI1FoSBbwNbROA8KgArv6_OZ5eH4hFYbRDgyv9XMFyWuZTm2gsmUioYWZI3TH_e18Wjlzujtou0oW8XX5PbuooWd7aGvFQnDfJtuZLU01hsLW7soPDET2KdbvWSlbwW-pxKCswrldtWV12YTl83S-SPPHlwM07t6MOj2naorgxDb7zx3CJfNtWaOYMjEh0pecSR5Re-yTMIpUIL0ETOniKFGJjCU4zkliuNTMk9yN_UPUnM1n-ghhFdpaxzNhIqmkCSFc-8Tl2r7IZczVuoWcGgqRld4XoiaFPYkSOgHQiRK6FmI1XuLHGgobnv-cefzvmRdoozca9EX_dnh_gjYJdOctONWnqJkvXvWZTRlydV5siS_7Ub6d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+recovery+using+expanders+via+hard+thresholding+algorithm&rft.jtitle=Signal+processing&rft.au=Wen%2C+Kun-Kai&rft.au=He%2C+Jia-Xin&rft.au=Li%2C+Peng&rft.date=2025-02-01&rft.issn=0165-1684&rft.volume=227&rft.spage=109715&rft_id=info:doi/10.1016%2Fj.sigpro.2024.109715&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2024_109715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon