Sparse recovery using expanders via hard thresholding algorithm
Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it tu...
Saved in:
| Published in | Signal processing Vol. 227; p. 109715 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-1684 |
| DOI | 10.1016/j.sigpro.2024.109715 |
Cover
| Abstract | Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an s-sparse signal if the measurement matrix A∈{0,1}m×n satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers.
•Propose the expander normalized heavy ball hard thresholding algorithm.•Convergence rate and accuracy of proposed algorithm are provided.•Our method achieves good numerical performance, especially in the presence of outliers. |
|---|---|
| AbstractList | Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard thresholding algorithm (ENHB-HT) based on expander iterative hard thresholding (E-IHT) algorithm. We provide convergence analysis of ENHB-HT, and it turns out that ENHB-HT can recover an s-sparse signal if the measurement matrix A∈{0,1}m×n satisfies some mild conditions. Numerical experiments are simulated to support our two main theorems which describe the convergence rate and the accuracy of the proposed algorithm. Simulations are also performed to compare the performance of ENHB-HT and several existing algorithms under different types of noise, the empirical results demonstrate that our algorithm outperform a few existing ones in the presence of outliers.
•Propose the expander normalized heavy ball hard thresholding algorithm.•Convergence rate and accuracy of proposed algorithm are provided.•Our method achieves good numerical performance, especially in the presence of outliers. |
| ArticleNumber | 109715 |
| Author | Wen, Kun-Kai He, Jia-Xin Li, Peng |
| Author_xml | – sequence: 1 givenname: Kun-Kai surname: Wen fullname: Wen, Kun-Kai email: 220220934951@lzu.edu.cn – sequence: 2 givenname: Jia-Xin surname: He fullname: He, Jia-Xin email: 220220934541@lzu.edu.cn – sequence: 3 givenname: Peng orcidid: 0000-0003-0249-7180 surname: Li fullname: Li, Peng email: lp@lzu.edu.cn |
| BookMark | eNp9j81OwzAQhH0oEm3hDTjkBVJs58--gFAFFKkSB-BsbexN46qNo3Wo6NuTKpw5jTSjGc23YLMudMjYneArwUV5v19Fv-sprCSX-WjpShQzNh-jIhWlyq_ZIsY951xkJZ-zx48eKGJCaMMJ6Zx8R9_tEvzpoXNIMTl5SFoglwwtYWzDwV1yOOwC-aE93rCrBg4Rb_90yb5enj_Xm3T7_vq2ftqmVhbFkEoNVSZyXVd1Y6WEDHQFWuVacFkqVRcgnFSFtsrVDiyoqsxANhqwEqC5zZYsn3YthRgJG9OTPwKdjeDmAm72ZgI3F3AzgY-1h6mG47eTRzLReuwsOj8SD8YF___AL0jGaC8 |
| Cites_doi | 10.1002/cpa.20124 10.1016/j.acha.2024.101697 10.1016/j.cam.2023.115264 10.1109/TSP.2018.2806359 10.1109/TIT.2006.885507 10.1215/00127094-1384809 10.1109/JPROC.2010.2045092 10.1109/TIT.2006.871582 10.1109/JSTSP.2010.2042411 10.1137/090777761 10.1145/1538902.1538904 10.1016/j.acha.2016.03.002 10.1137/100806278 10.1109/TIT.2010.2040894 10.1364/OE.18.004876 10.1090/S0273-0979-06-01126-8 10.1109/TSP.2017.2757915 10.1137/09076934X 10.1016/j.acha.2009.04.002 10.1007/s10107-020-01529-7 10.1088/0266-5611/24/3/035020 10.1007/978-0-8176-4948-7_1 10.1007/s00041-022-09984-w 10.1016/j.acha.2017.03.001 10.1109/TSP.2020.2990154 10.1016/j.jmva.2013.04.001 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2024.109715 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_sigpro_2024_109715 S0165168424003359 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c255t-29a73149b7bfc22a3a97a9849102688b5a1d2859c8dbdaca8763a2f9ae71a90c3 |
| IEDL.DBID | .~1 |
| ISSN | 0165-1684 |
| IngestDate | Wed Oct 01 02:46:51 EDT 2025 Sun Apr 06 06:54:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 94A15 Heavy ball method Hard thresholding 90C26 Lossless expanders Sparse signal recovery 94A12 Combinatorial compressed sensing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-29a73149b7bfc22a3a97a9849102688b5a1d2859c8dbdaca8763a2f9ae71a90c3 |
| ORCID | 0000-0003-0249-7180 |
| ParticipantIDs | crossref_primary_10_1016_j_sigpro_2024_109715 elsevier_sciencedirect_doi_10_1016_j_sigpro_2024_109715 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Foucart (b26) 2011; 49 Baraniuk, Cevher, Duarte, Hegde (b13) 2010; 56 Candès, Romberg, Tao (b1) 2006; 59 Lotfi, Vidyasagar (b18) 2020; 68 Wang (b30) 2013; 120 Chartrand, Staneva (b21) 2008; 24 Sheehan (b8) 2018 Donoho (b19) 2006; 52 Blumensath, Davies (b22) 2009; 27 Bourquard, Aguet, Unser (b15) 2010; 18 Hoory, Linial, Wigderson (b10) 2006; 43 Li, Liu, Shen (b25) 2023; 29 Berinde, Gilbert, Indyk, Karloff, Strauss (b2) 2008 Bah, Kurtz, Schaudt (b12) 2021; 190 Guruswami, Umans, Vadhan (b9) 2009; 56 Gilbert, Indyk (b5) 2010; 98 Bah, Baldassarre, Cevher (b11) 2014 Yang, Zhang (b29) 2011; 33 Bourgain, Dilworth, Ford, Konyagin, Kutzarova (b6) 2011; 159 Blumensath, Davies (b23) 2010; 4 Lu, Dai, Xia (b17) 2018; 66 Foucart, Rauhut (b4) 2013 Sun, Zhou, Zhao, Meng (b24) 2023; 430 Mendoza Smith, Tanner, Wechsung (b3) 2018; 66 Abdalla (b16) 2024; 73 Shen, Li (b28) 2018; 18 Mixon (b7) 2015 Mendoza Smith, Tanner (b14) 2018; 45 Candès, Tao (b20) 2006; 52 Bouchot, Foucart, Hitczenko (b27) 2016; 41 Esser, Zhang, Chan (b31) 2010; 3 Foucart (10.1016/j.sigpro.2024.109715_b4) 2013 Hoory (10.1016/j.sigpro.2024.109715_b10) 2006; 43 Sheehan (10.1016/j.sigpro.2024.109715_b8) 2018 Sun (10.1016/j.sigpro.2024.109715_b24) 2023; 430 Blumensath (10.1016/j.sigpro.2024.109715_b22) 2009; 27 Candès (10.1016/j.sigpro.2024.109715_b20) 2006; 52 Candès (10.1016/j.sigpro.2024.109715_b1) 2006; 59 Wang (10.1016/j.sigpro.2024.109715_b30) 2013; 120 Chartrand (10.1016/j.sigpro.2024.109715_b21) 2008; 24 Berinde (10.1016/j.sigpro.2024.109715_b2) 2008 Bouchot (10.1016/j.sigpro.2024.109715_b27) 2016; 41 Abdalla (10.1016/j.sigpro.2024.109715_b16) 2024; 73 Li (10.1016/j.sigpro.2024.109715_b25) 2023; 29 Bourgain (10.1016/j.sigpro.2024.109715_b6) 2011; 159 Bourquard (10.1016/j.sigpro.2024.109715_b15) 2010; 18 Lu (10.1016/j.sigpro.2024.109715_b17) 2018; 66 Guruswami (10.1016/j.sigpro.2024.109715_b9) 2009; 56 Shen (10.1016/j.sigpro.2024.109715_b28) 2018; 18 Bah (10.1016/j.sigpro.2024.109715_b11) 2014 Foucart (10.1016/j.sigpro.2024.109715_b26) 2011; 49 Gilbert (10.1016/j.sigpro.2024.109715_b5) 2010; 98 Lotfi (10.1016/j.sigpro.2024.109715_b18) 2020; 68 Mendoza Smith (10.1016/j.sigpro.2024.109715_b3) 2018; 66 Baraniuk (10.1016/j.sigpro.2024.109715_b13) 2010; 56 Mixon (10.1016/j.sigpro.2024.109715_b7) 2015 Esser (10.1016/j.sigpro.2024.109715_b31) 2010; 3 Donoho (10.1016/j.sigpro.2024.109715_b19) 2006; 52 Bah (10.1016/j.sigpro.2024.109715_b12) 2021; 190 Blumensath (10.1016/j.sigpro.2024.109715_b23) 2010; 4 Mendoza Smith (10.1016/j.sigpro.2024.109715_b14) 2018; 45 Yang (10.1016/j.sigpro.2024.109715_b29) 2011; 33 |
| References_xml | – volume: 66 start-page: 2167 year: 2018 end-page: 2177 ident: b3 article-title: A robust parallel algorithm for combinatorial compressed sensing publication-title: IEEE Trans. Signal Process. – volume: 33 start-page: 250 year: 2011 end-page: 278 ident: b29 article-title: Alternating direction algorithms for publication-title: SIAM J. Sci. Comput. – volume: 3 start-page: 1015 year: 2010 end-page: 1046 ident: b31 article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science publication-title: SIAM J. Imaging Sci. – volume: 59 start-page: 1207 year: 2006 end-page: 1223 ident: b1 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Comm. Pure Appl. Math. – volume: 24 year: 2008 ident: b21 article-title: Restricted isometry properties and nonconvex compressive sensing publication-title: Inverse Problems – start-page: 798 year: 2008 end-page: 805 ident: b2 article-title: Combining geometry and combinatorics: A unified approach to sparse signal recovery publication-title: 2008 46th Annual Allerton Conference on Communication, Control, and Computing – volume: 56 start-page: 1 year: 2009 end-page: 34 ident: b9 article-title: Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes publication-title: J. ACM – volume: 41 start-page: 412 year: 2016 end-page: 435 ident: b27 article-title: Hard thresholding pursuit algorithms: Number of iterations publication-title: Appl. Comput. Harmon. Anal. – start-page: 1529 year: 2014 end-page: 1543 ident: b11 article-title: Model-based sketching and recovery with expanders publication-title: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms – volume: 27 start-page: 265 year: 2009 end-page: 274 ident: b22 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. – volume: 159 start-page: 145 year: 2011 end-page: 185 ident: b6 article-title: Explicit constructions of RIP matrices and related problems publication-title: Duke Math. J. – volume: 52 start-page: 5406 year: 2006 end-page: 5425 ident: b20 article-title: Near-optimal signal recovery from random projections: Universal encoding strategies? publication-title: IEEE Trans. Inform. Theory – volume: 430 year: 2023 ident: b24 article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery publication-title: J. Comput. Appl. Math. – volume: 4 start-page: 298 year: 2010 end-page: 309 ident: b23 article-title: Normalized iterative hard thresholding: Guaranteed stability and performance publication-title: IEEE J. Sel. Top. Sign. Proces. – volume: 66 start-page: 77 year: 2018 end-page: 85 ident: b17 article-title: Binary matrices for compressed sensing publication-title: IEEE Trans. Signal Process. – volume: 49 start-page: 2543 year: 2011 end-page: 2563 ident: b26 article-title: Hard thresholding pursuit: An algorithm for compressive sensing publication-title: SIAM J. Numer. Anal. – volume: 45 start-page: 642 year: 2018 end-page: 667 ident: b14 article-title: Expander publication-title: Appl. Comput. Harmon. Anal. – start-page: 389 year: 2015 end-page: 417 ident: b7 article-title: Explicit matrices with the restricted isometry property: Breaking the square-root bottleneck publication-title: Compressed Sensing and Its Applications: MATHEON Workshop 2013 – volume: 18 start-page: 4876 year: 2010 end-page: 4888 ident: b15 article-title: Optical imaging using binary sensors publication-title: Opt. Express – volume: 73 start-page: 101697 year: 2024 ident: b16 article-title: Robust sparse recovery with sparse Bernoulli matrices via expanders publication-title: Appl. Comput. Harmon. Anal. – volume: 68 start-page: 3008 year: 2020 end-page: 3021 ident: b18 article-title: Compressed sensing using binary matrices of nearly optimal dimensions publication-title: IEEE Trans. Signal Process. – year: 2018 ident: b8 article-title: Compressed Sensing and the Quadratic Bottleneck Problem: A Combinatorics Approach – start-page: XVIII, 625 year: 2013 ident: b4 article-title: A mathematical introduction to compressive sensing publication-title: Applied and Numerical Harmonic Analysis – volume: 98 start-page: 937 year: 2010 end-page: 947 ident: b5 article-title: Sparse recovery using sparse matrices publication-title: Proc. IEEE – volume: 18 start-page: 1 year: 2018 end-page: 42 ident: b28 article-title: A tight bound of hard thresholding publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 5 year: 2023 ident: b25 article-title: Adaptive iterative hard thresholding for least absolute deviation problems with sparsity constraints publication-title: J. Fourier Anal. Appl – volume: 120 start-page: 135 year: 2013 end-page: 151 ident: b30 article-title: The publication-title: J. Multivariate Anal. – volume: 43 start-page: 439 year: 2006 end-page: 561 ident: b10 article-title: Expander graphs and their applications publication-title: Bull. Amer. Math. Soc. – volume: 190 start-page: 171 year: 2021 end-page: 220 ident: b12 article-title: Discrete optimization methods for group model selection in compressed sensing publication-title: Math. Program. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: b19 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory – volume: 56 start-page: 1982 year: 2010 end-page: 2001 ident: b13 article-title: Model-based compressive sensing publication-title: IEEE Trans. Inform. Theory – volume: 59 start-page: 1207 issue: 8 year: 2006 ident: 10.1016/j.sigpro.2024.109715_b1 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20124 – volume: 73 start-page: 101697 year: 2024 ident: 10.1016/j.sigpro.2024.109715_b16 article-title: Robust sparse recovery with sparse Bernoulli matrices via expanders publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2024.101697 – volume: 430 year: 2023 ident: 10.1016/j.sigpro.2024.109715_b24 article-title: Heavy-ball-based hard thresholding algorithms for sparse signal recovery publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2023.115264 – volume: 66 start-page: 2167 issue: 8 year: 2018 ident: 10.1016/j.sigpro.2024.109715_b3 article-title: A robust parallel algorithm for combinatorial compressed sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2806359 – volume: 52 start-page: 5406 issue: 12 year: 2006 ident: 10.1016/j.sigpro.2024.109715_b20 article-title: Near-optimal signal recovery from random projections: Universal encoding strategies? publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2006.885507 – volume: 159 start-page: 145 issue: 1 year: 2011 ident: 10.1016/j.sigpro.2024.109715_b6 article-title: Explicit constructions of RIP matrices and related problems publication-title: Duke Math. J. doi: 10.1215/00127094-1384809 – volume: 98 start-page: 937 issue: 6 year: 2010 ident: 10.1016/j.sigpro.2024.109715_b5 article-title: Sparse recovery using sparse matrices publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2045092 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.sigpro.2024.109715_b19 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2006.871582 – volume: 4 start-page: 298 issue: 2 year: 2010 ident: 10.1016/j.sigpro.2024.109715_b23 article-title: Normalized iterative hard thresholding: Guaranteed stability and performance publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2010.2042411 – volume: 33 start-page: 250 issue: 1 year: 2011 ident: 10.1016/j.sigpro.2024.109715_b29 article-title: Alternating direction algorithms for ℓ1 problems in compressive sensing publication-title: SIAM J. Sci. Comput. doi: 10.1137/090777761 – volume: 56 start-page: 1 issue: 4 year: 2009 ident: 10.1016/j.sigpro.2024.109715_b9 article-title: Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes publication-title: J. ACM doi: 10.1145/1538902.1538904 – volume: 41 start-page: 412 issue: 2 year: 2016 ident: 10.1016/j.sigpro.2024.109715_b27 article-title: Hard thresholding pursuit algorithms: Number of iterations publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.03.002 – start-page: 389 year: 2015 ident: 10.1016/j.sigpro.2024.109715_b7 article-title: Explicit matrices with the restricted isometry property: Breaking the square-root bottleneck – volume: 49 start-page: 2543 issue: 6 year: 2011 ident: 10.1016/j.sigpro.2024.109715_b26 article-title: Hard thresholding pursuit: An algorithm for compressive sensing publication-title: SIAM J. Numer. Anal. doi: 10.1137/100806278 – volume: 56 start-page: 1982 issue: 4 year: 2010 ident: 10.1016/j.sigpro.2024.109715_b13 article-title: Model-based compressive sensing publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2010.2040894 – volume: 18 start-page: 4876 issue: 5 year: 2010 ident: 10.1016/j.sigpro.2024.109715_b15 article-title: Optical imaging using binary sensors publication-title: Opt. Express doi: 10.1364/OE.18.004876 – volume: 43 start-page: 439 issue: 4 year: 2006 ident: 10.1016/j.sigpro.2024.109715_b10 article-title: Expander graphs and their applications publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0273-0979-06-01126-8 – volume: 66 start-page: 77 issue: 1 year: 2018 ident: 10.1016/j.sigpro.2024.109715_b17 article-title: Binary matrices for compressed sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2757915 – volume: 3 start-page: 1015 issue: 4 year: 2010 ident: 10.1016/j.sigpro.2024.109715_b31 article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science publication-title: SIAM J. Imaging Sci. doi: 10.1137/09076934X – start-page: 798 year: 2008 ident: 10.1016/j.sigpro.2024.109715_b2 article-title: Combining geometry and combinatorics: A unified approach to sparse signal recovery – volume: 27 start-page: 265 issue: 3 year: 2009 ident: 10.1016/j.sigpro.2024.109715_b22 article-title: Iterative hard thresholding for compressed sensing publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2009.04.002 – volume: 18 start-page: 1 issue: 208 year: 2018 ident: 10.1016/j.sigpro.2024.109715_b28 article-title: A tight bound of hard thresholding publication-title: J. Mach. Learn. Res. – start-page: 1529 year: 2014 ident: 10.1016/j.sigpro.2024.109715_b11 article-title: Model-based sketching and recovery with expanders – year: 2018 ident: 10.1016/j.sigpro.2024.109715_b8 – volume: 190 start-page: 171 issue: 1 year: 2021 ident: 10.1016/j.sigpro.2024.109715_b12 article-title: Discrete optimization methods for group model selection in compressed sensing publication-title: Math. Program. doi: 10.1007/s10107-020-01529-7 – volume: 24 issue: 3 year: 2008 ident: 10.1016/j.sigpro.2024.109715_b21 article-title: Restricted isometry properties and nonconvex compressive sensing publication-title: Inverse Problems doi: 10.1088/0266-5611/24/3/035020 – start-page: XVIII, 625 year: 2013 ident: 10.1016/j.sigpro.2024.109715_b4 article-title: A mathematical introduction to compressive sensing doi: 10.1007/978-0-8176-4948-7_1 – volume: 29 start-page: 5 issue: 1 year: 2023 ident: 10.1016/j.sigpro.2024.109715_b25 article-title: Adaptive iterative hard thresholding for least absolute deviation problems with sparsity constraints publication-title: J. Fourier Anal. Appl doi: 10.1007/s00041-022-09984-w – volume: 45 start-page: 642 issue: 3 year: 2018 ident: 10.1016/j.sigpro.2024.109715_b14 article-title: Expander ℓ0-decoding publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2017.03.001 – volume: 68 start-page: 3008 year: 2020 ident: 10.1016/j.sigpro.2024.109715_b18 article-title: Compressed sensing using binary matrices of nearly optimal dimensions publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2990154 – volume: 120 start-page: 135 year: 2013 ident: 10.1016/j.sigpro.2024.109715_b30 article-title: The ℓ1 penalized LAD estimator for high dimensional linear regression publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2013.04.001 |
| SSID | ssj0001360 |
| Score | 2.4523308 |
| Snippet | Expanders play an important role in combinatorial compressed sensing. Via expanders measurements, we propose the expander normalized heavy ball hard... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109715 |
| SubjectTerms | Combinatorial compressed sensing Hard thresholding Heavy ball method Lossless expanders Sparse signal recovery |
| Title | Sparse recovery using expanders via hard thresholding algorithm |
| URI | https://dx.doi.org/10.1016/j.sigpro.2024.109715 |
| Volume | 227 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0165-1684 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0165-1684 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0165-1684 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0165-1684 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0165-1684 databaseCode: AKRWK dateStart: 19930101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BQtUHlgDU0cJ3bGqqIqILpApW7RObFLELRRGxAs_HZ8-RBFQgyskR1Fz875Tn7vHSEXQSCN0tr-36EJHS4Tg5a30jFKauNrkUKIAue7STie8ptZMGuRYaOFQVplHfurmF5G6_pJv0azn2dZ_x6FOB5eI3FsSBagiI9zgV0MLj-_aR6eXyqFcbCDoxv5XMnxWmdzG6dslch46eWIzXF_O542jpzRHtmtc0U6qD5nn7T04oDsbDgIHtpcO7eVqaZY19pN-UGRxz6n-j2vVCv0LQOKwipa2EVb13dNFJ7ny1VWPL4ckeno6mE4duqeCE5ik__CYREI31Y1SiiTMAY-RAIiye2pz0IpVQBeip50iUxVCgmg4RwwE4EWHkRu4h-T9mK50CeEqtCWOp4JU-DAU8Yi7TM30vZFrhCu1h3iNFDEeWV9ETecsKe4gi5G6OIKug4RDV7xjyWMbXT-c2b33zNPyTbDhrwljfqMtIvVqz63WUKheuU26JGtwfXtePIFVQW9CA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwfW0MRx4nhEFVWBtgut1M2yE7sEQRu1AcHCb8eXD1EkxMAa2VH07Jzv5PfeIXQZBJFRWtv_OzShQ6PYgOVt5BgVaeNrlsgQBM6DYdgb07tJMGmgTq2FAVplFfvLmF5E6-pJu0KznaVp-wGEOB5cI1FoSBbwNbROA8KgArv6_OZ5eH4hFYbRDgyv9XMFyWuZTm2gsmUioYWZI3TH_e18Wjlzujtou0oW8XX5PbuooWd7aGvFQnDfJtuZLU01hsLW7soPDET2KdbvWSlbwW-pxKCswrldtWV12YTl83S-SPPHlwM07t6MOj2naorgxDb7zx3CJfNtWaOYMjEh0pecSR5Re-yTMIpUIL0ETOniKFGJjCU4zkliuNTMk9yN_UPUnM1n-ghhFdpaxzNhIqmkCSFc-8Tl2r7IZczVuoWcGgqRld4XoiaFPYkSOgHQiRK6FmI1XuLHGgobnv-cefzvmRdoozca9EX_dnh_gjYJdOctONWnqJkvXvWZTRlydV5siS_7Ub6d |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+recovery+using+expanders+via+hard+thresholding+algorithm&rft.jtitle=Signal+processing&rft.au=Wen%2C+Kun-Kai&rft.au=He%2C+Jia-Xin&rft.au=Li%2C+Peng&rft.date=2025-02-01&rft.issn=0165-1684&rft.volume=227&rft.spage=109715&rft_id=info:doi/10.1016%2Fj.sigpro.2024.109715&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2024_109715 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |