Label completion based concept factorization for incomplete multi-view clustering
Incomplete multi-view clustering (IMVC) has attracted much attention due to its superior performance in handling incomplete multi-view data. However, existing IMVC methods pay little attention to the semantic associations between incomplete data and concepts. On the other hand, the acquisition of cl...
Saved in:
| Published in | Knowledge-based systems Vol. 310; p. 112953 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 |
| DOI | 10.1016/j.knosys.2025.112953 |
Cover
| Abstract | Incomplete multi-view clustering (IMVC) has attracted much attention due to its superior performance in handling incomplete multi-view data. However, existing IMVC methods pay little attention to the semantic associations between incomplete data and concepts. On the other hand, the acquisition of cluster labels also needs to be achieved by clustering algorithms, which splits concept factorization and label learning into two steps. To address these limitations, we design a new IMVC model called label completion based concept factorization (LCCF). Specifically, we first integrate the concept factorization and label learning into the IMVC framework, which can explore the semantic associations between incomplete data and concepts and simultaneously reduce the cost of the completion process. Meanwhile, the weighted spectral rotation is employed to adaptively perform view indicator matrix fusion, which can seamlessly obtain the categories of all samples. Furthermore, we introduce the weighted tensor Schatten p-norm (WTSN) regularization, which can better approximate the rank and exploit the salient structural information in the matrix based on the differences between the singular values. To evaluate the effectiveness of our method, we conduct comprehensive experiments by comparing it with eight baseline methods utilizing five evaluation metrics. The results demonstrate that the proposed LCCF model exhibits superior performance compared to existing state-of-the-art methods. In particular, on the NGs dataset with a missing rate of 50%, the LCCF model exhibits much better performance in terms of ACC and MNI metrics, with an improvement of 8.4% and 22.7%, respectively, in comparison to the second-best algorithm. |
|---|---|
| AbstractList | Incomplete multi-view clustering (IMVC) has attracted much attention due to its superior performance in handling incomplete multi-view data. However, existing IMVC methods pay little attention to the semantic associations between incomplete data and concepts. On the other hand, the acquisition of cluster labels also needs to be achieved by clustering algorithms, which splits concept factorization and label learning into two steps. To address these limitations, we design a new IMVC model called label completion based concept factorization (LCCF). Specifically, we first integrate the concept factorization and label learning into the IMVC framework, which can explore the semantic associations between incomplete data and concepts and simultaneously reduce the cost of the completion process. Meanwhile, the weighted spectral rotation is employed to adaptively perform view indicator matrix fusion, which can seamlessly obtain the categories of all samples. Furthermore, we introduce the weighted tensor Schatten p-norm (WTSN) regularization, which can better approximate the rank and exploit the salient structural information in the matrix based on the differences between the singular values. To evaluate the effectiveness of our method, we conduct comprehensive experiments by comparing it with eight baseline methods utilizing five evaluation metrics. The results demonstrate that the proposed LCCF model exhibits superior performance compared to existing state-of-the-art methods. In particular, on the NGs dataset with a missing rate of 50%, the LCCF model exhibits much better performance in terms of ACC and MNI metrics, with an improvement of 8.4% and 22.7%, respectively, in comparison to the second-best algorithm. |
| ArticleNumber | 112953 |
| Author | Yu, Yanwei Cheng, Yuanbo Song, Peng Liu, Zhaowei Yang, Beihua |
| Author_xml | – sequence: 1 givenname: Beihua surname: Yang fullname: Yang, Beihua email: beihuayang@s.ytu.edu.cn organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China – sequence: 2 givenname: Peng orcidid: 0000-0002-6567-663X surname: Song fullname: Song, Peng email: pengsong@ytu.edu.cn organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China – sequence: 3 givenname: Yuanbo surname: Cheng fullname: Cheng, Yuanbo email: c17860393828@s.ytu.edu.cn organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China – sequence: 4 givenname: Zhaowei surname: Liu fullname: Liu, Zhaowei email: lzw@ytu.edu.cn organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China – sequence: 5 givenname: Yanwei orcidid: 0000-0002-5924-1410 surname: Yu fullname: Yu, Yanwei email: yuyanwei@ouc.edu.cn organization: College of Computer Science and Technology, Ocean University of China, Qingdao 266400, China |
| BookMark | eNp9kM1OwzAQhH0oEm3hDTjkBRLWTpzEFyRU8SdVQkhwthxnjVxSu7JdUHl60qZnTivt7oxmvgWZOe-QkBsKBQVa326KL-fjIRYMGC8oZYKXMzIHwSFvgNNLsohxAwCM0XZO3taqwyHTfrsbMFnvsk5F7MeF07hLmVE6-WB_1elmfMisOz9jtt0PyebfFn8yPexjwmDd5xW5MGqIeH2eS_Lx-PC-es7Xr08vq_t1rhnnKWd1Q1kFrGWmErziZVWLskM2BqYdcs2EEE3Z6Jb2bQe6RmQGULEeWtHrxpRLUk2-OvgYAxq5C3arwkFSkEcUciMnFPKIQk4oRtndJMMx2xg9yKgtjmV7G1An2Xv7v8EfzOdufA |
| Cites_doi | 10.1109/TCYB.2021.3140068 10.1609/aaai.v37i9.26340 10.1016/j.inffus.2023.101914 10.1109/TIP.2022.3171411 10.1109/ACCESS.2024.3358681 10.1145/1008992.1009029 10.1016/j.eswa.2023.119742 10.1145/3474085.3475379 10.1016/j.ins.2020.12.073 10.1109/TCSVT.2023.3276362 10.1609/aaai.v33i01.33015393 10.1609/aaai.v38i12.29310 10.1007/s11228-004-7197-7 10.1609/aaai.v27i1.8683 10.1109/TIP.2015.2511584 10.1016/j.eswa.2023.121013 10.1109/TCYB.2020.2987164 10.1016/j.knosys.2022.110244 10.1016/j.inffus.2024.102245 10.1109/TNNLS.2022.3201562 10.1016/j.ins.2023.119562 10.1609/aaai.v35i11.17231 10.1016/j.neunet.2024.106170 10.1109/ICCV.2019.00826 10.1609/aaai.v38i15.29609 10.1177/01655515241233742 10.1016/j.eswa.2023.119949 10.1016/j.ins.2024.120335 10.1145/3581783.3613445 10.1016/j.neunet.2023.07.022 10.1016/j.dsp.2024.104534 10.1109/CVPR.2014.31 10.1016/j.knosys.2023.110601 10.1016/j.inffus.2023.102155 10.1016/j.patcog.2023.110082 10.1609/aaai.v38i14.29526 10.1016/j.eswa.2024.124103 10.1109/TCYB.2021.3052352 10.1109/TIP.2022.3147046 10.1109/TNNLS.2022.3189763 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2025.112953 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2025_112953 S0950705125000012 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c255t-2671240282f4954534693be21291be5c2999737c81d8b0c6ee2f0ea2d089dc7f3 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Wed Oct 01 06:32:49 EDT 2025 Sat Apr 19 16:01:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Concept factorization Spectral rotation Incomplete multi-view clustering Weighted tensor Schatten p-norm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-2671240282f4954534693be21291be5c2999737c81d8b0c6ee2f0ea2d089dc7f3 |
| ORCID | 0000-0002-6567-663X 0000-0002-5924-1410 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2025_112953 elsevier_sciencedirect_doi_10_1016_j_knosys_2025_112953 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-15 |
| PublicationDateYYYYMMDD | 2025-02-15 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yu, Fu, Cai, Lu (b38) 2023 Sun, Wen, Liu, Fei, Li (b54) 2023; 166 Chen, Wang, Huang, Lai, Philip (b40) 2024 Liu, Chen, Li, Zhao, Yang, Farahbakhsh, Crespi, Huang (b29) 2023; 221 Yang, Gao, Xia, Yang, Gao (b42) 2022; 31 Wang, Wang, Miao, Ma (b15) 2024; 104 He, Zhang, Wei (b19) 2023; 649 Xia, Zhang, Gao, Shu, Han, Gao (b44) 2021; 52 Sun, Zhang (b51) 2022; 35 Wen, Zhang, Zhang, Fei, Wang (b11) 2020; 51 J. Liu, X. Liu, Y. Zhang, P. Zhang, W. Tu, S. Wang, S. Zhou, W. Liang, S. Wang, Y. Yang, Self-representation subspace clustering for incomplete multi-view data, in: Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 2726–2734. Lv, Zhang, Li, Jia, Chen (b9) 2023 Yu, Sun (b23) 2024 Han, Zhou, Ren, Wang, You (b21) 2024; 664 J. Wen, Z. Zhang, Z. Zhang, L. Zhu, L. Fei, B. Zhang, Y. Xu, Unified tensor framework for incomplete multi-view clustering and missing-view inferring, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 10273–10281, 11. Yin, Sun (b22) 2021; 35 Tzortzis, Likas (b4) 2012 Yang, Zhang, Wei, Wang, Nie, Hu (b47) 2024; 147 Song, Liu, Mu, Cheng (b17) 2024; 151 Deng, Wen, Liu, Yan, Xu, Xu (b53) 2023 Zhou, Song, Yu, Zheng (b48) 2023; 272 Li, Chen, Wang, Lai (b33) 2022; 35 W. Xu, Y. Gong, Document clustering by concept factorization, in: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004, pp. 202–209. Shao, He, Lu, Philip (b24) 2016 Deisenroth, Faisal, Ong (b57) 2020 Liu, Palade, Zheng (b10) 2024 Mu, Song, Liu, Li (b37) 2023; 223 Wu, Yang, Xue, Zhang, Lin, Chen (b39) 2024; 173 Zhong, Pun (b50) 2023; 262 M.M. Kalayeh, H. Idrees, M. Shah, NMF-KNN: Image annotation using weighted multi-view non-negative matrix factorization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 184–191. Liu, Liu, Wang, Niu, Zhu (b20) 2022 S. Zhao, J. Wen, L. Fei, B. Zhang, Tensorized incomplete multi-view clustering with intrinsic graph completion, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, 2023, pp. 11327–11335, 9. J. Wen, Z. Zhang, Y. Xu, B. Zhang, L. Fei, H. Liu, Unified embedding alignment with missing views inferring for incomplete multi-view clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 5393–5400, 01. J. Huang, F. Nie, H. Huang, Spectral rotation versus k-means in spectral clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 27, 2013, pp. 431–437, 1. Zhang, He (b55) 2023; 100 Lewis, Sendov (b56) 2005; 13 C. Zhang, X. Jia, Z. Li, C. Chen, H. Li, Learning Cluster-Wise Anchors for Multi-View Clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 16696–16704, 15. Xu, Ren, Li, Pan, Zhu, Xu (b6) 2021; 573 Khan, Khan, Anwar, Ashraf, Javed, Diallo (b25) 2024 Xia, Gao, Wang, Gao (b32) 2022; 52 T. Wu, S. Feng, J. Yuan, Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 15952–15960, 14. Wan, Liu, Gan, Liu, Wang, Wen, Wan, Zhu (b41) 2024 Mei, Li, Gao, Yang (b3) 2024 C. Zhang, J. Wei, B. Wang, Z. Li, C. Chen, H. Li, Robust spectral embedding completion based incomplete multi-view clustering, in: Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 300–308. Cai, Che, Pan, Leung, Liu, Wen (b27) 2024; 105 Lu, Tang, Yan, Lin (b31) 2015; 25 Liu, Teng, Zhang, Fang, Fei, Zhang (b28) 2021 R. Li, C. Zhang, H. Fu, X. Peng, T. Zhou, Q. Hu, Reciprocal multi-layer subspace learning for multi-view clustering, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8172–8180. Li, Tang, Zheng, Liu, Zhang, Zhu (b8) 2022; 31 Cheng, Song, Mu, Yu, Zheng (b2) 2024; 251 Hao, Pang, Bai, Xue (b14) 2023; 33 S. Liu, J. Zhang, Y. Wen, X. Yang, S. Wang, Y. Zhang, E. Zhu, C. Tang, L. Zhao, X. Liu, Sample-Level Cross-View Similarity Learning for Incomplete Multi-View Clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 14017–14025, 12. Lin, Li, Chen, Wang, Zhang (b34) 2022 Zhang, Li, Chen, Jia, Chen (b7) 2022 Mu, Song, Yu, Zheng (b16) 2023; 234 Zhao, Liu, Fu (b52) 2016 Peng, Mi, Ren, Kang (b5) 2024 Chen (10.1016/j.knosys.2025.112953_b40) 2024 Wan (10.1016/j.knosys.2025.112953_b41) 2024 Deisenroth (10.1016/j.knosys.2025.112953_b57) 2020 Yu (10.1016/j.knosys.2025.112953_b38) 2023 Li (10.1016/j.knosys.2025.112953_b33) 2022; 35 Yin (10.1016/j.knosys.2025.112953_b22) 2021; 35 Liu (10.1016/j.knosys.2025.112953_b28) 2021 Lv (10.1016/j.knosys.2025.112953_b9) 2023 Liu (10.1016/j.knosys.2025.112953_b29) 2023; 221 Tzortzis (10.1016/j.knosys.2025.112953_b4) 2012 Khan (10.1016/j.knosys.2025.112953_b25) 2024 Yang (10.1016/j.knosys.2025.112953_b47) 2024; 147 Shao (10.1016/j.knosys.2025.112953_b24) 2016 10.1016/j.knosys.2025.112953_b13 10.1016/j.knosys.2025.112953_b12 Hao (10.1016/j.knosys.2025.112953_b14) 2023; 33 10.1016/j.knosys.2025.112953_b18 Sun (10.1016/j.knosys.2025.112953_b54) 2023; 166 Lewis (10.1016/j.knosys.2025.112953_b56) 2005; 13 Deng (10.1016/j.knosys.2025.112953_b53) 2023 Liu (10.1016/j.knosys.2025.112953_b10) 2024 Han (10.1016/j.knosys.2025.112953_b21) 2024; 664 Sun (10.1016/j.knosys.2025.112953_b51) 2022; 35 Li (10.1016/j.knosys.2025.112953_b8) 2022; 31 Cheng (10.1016/j.knosys.2025.112953_b2) 2024; 251 Wen (10.1016/j.knosys.2025.112953_b11) 2020; 51 10.1016/j.knosys.2025.112953_b43 Wu (10.1016/j.knosys.2025.112953_b39) 2024; 173 10.1016/j.knosys.2025.112953_b46 10.1016/j.knosys.2025.112953_b45 Xia (10.1016/j.knosys.2025.112953_b44) 2021; 52 10.1016/j.knosys.2025.112953_b49 Yang (10.1016/j.knosys.2025.112953_b42) 2022; 31 Xu (10.1016/j.knosys.2025.112953_b6) 2021; 573 Xia (10.1016/j.knosys.2025.112953_b32) 2022; 52 Peng (10.1016/j.knosys.2025.112953_b5) 2024 Yu (10.1016/j.knosys.2025.112953_b23) 2024 Cai (10.1016/j.knosys.2025.112953_b27) 2024; 105 Zhou (10.1016/j.knosys.2025.112953_b48) 2023; 272 Wang (10.1016/j.knosys.2025.112953_b15) 2024; 104 Mu (10.1016/j.knosys.2025.112953_b16) 2023; 234 10.1016/j.knosys.2025.112953_b30 10.1016/j.knosys.2025.112953_b36 10.1016/j.knosys.2025.112953_b35 Mu (10.1016/j.knosys.2025.112953_b37) 2023; 223 Lin (10.1016/j.knosys.2025.112953_b34) 2022 He (10.1016/j.knosys.2025.112953_b19) 2023; 649 Zhong (10.1016/j.knosys.2025.112953_b50) 2023; 262 Song (10.1016/j.knosys.2025.112953_b17) 2024; 151 Zhao (10.1016/j.knosys.2025.112953_b52) 2016 Liu (10.1016/j.knosys.2025.112953_b20) 2022 Mei (10.1016/j.knosys.2025.112953_b3) 2024 Zhang (10.1016/j.knosys.2025.112953_b55) 2023; 100 Zhang (10.1016/j.knosys.2025.112953_b7) 2022 Lu (10.1016/j.knosys.2025.112953_b31) 2015; 25 10.1016/j.knosys.2025.112953_b1 10.1016/j.knosys.2025.112953_b26 |
| References_xml | – year: 2020 ident: b57 article-title: Mathematics for Machine Learning – volume: 151 year: 2024 ident: b17 article-title: Deep embedding based tensor incomplete multi-view clustering publication-title: Digit. Signal Process. – start-page: 9312 year: 2022 end-page: 9324 ident: b7 article-title: Low-rank tensor regularized views recovery for incomplete multiview clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 7740 year: 2022 end-page: 7751 ident: b20 article-title: Fast incomplete multi-view clustering with view-independent anchors publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 52 start-page: 13635 year: 2022 end-page: 13644 ident: b32 article-title: Tensor completion-based incomplete multiview clustering publication-title: IEEE Trans. Cybern. – reference: C. Zhang, X. Jia, Z. Li, C. Chen, H. Li, Learning Cluster-Wise Anchors for Multi-View Clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 16696–16704, 15. – start-page: 1 year: 2023 end-page: 12 ident: b9 article-title: Joint projection learning and tensor decomposition-based incomplete multiview clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: J. Liu, X. Liu, Y. Zhang, P. Zhang, W. Tu, S. Wang, S. Zhou, W. Liang, S. Wang, Y. Yang, Self-representation subspace clustering for incomplete multi-view data, in: Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 2726–2734. – volume: 223 year: 2023 ident: b37 article-title: Dual-graph regularized concept factorization for multi-view clustering publication-title: Expert Syst. Appl. – start-page: 2392 year: 2016 end-page: 2398 ident: b52 article-title: Incomplete multi-modal visual data grouping publication-title: IJCAI – volume: 105 year: 2024 ident: b27 article-title: Projected cross-view learning for unbalanced incomplete multi-view clustering publication-title: Inf. Fusion – volume: 52 start-page: 8962 year: 2021 end-page: 8975 ident: b44 article-title: Multiview subspace clustering by an enhanced tensor nuclear norm publication-title: IEEE Trans. Cybern. – volume: 573 start-page: 279 year: 2021 end-page: 290 ident: b6 article-title: Deep embedded multi-view clustering with collaborative training publication-title: Inform. Sci. – volume: 664 year: 2024 ident: b21 article-title: View-specific anchors coupled tensorial bipartite graph learning for incomplete multi-view clustering publication-title: Inform. Sci. – volume: 33 start-page: 7156 year: 2023 end-page: 7169 ident: b14 article-title: Tensor-based incomplete multi-view clustering with low-rank data reconstruction and consistency guidance publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 35 start-page: 4017 year: 2022 end-page: 4031 ident: b51 article-title: Incomplete multiview nonnegative representation learning with graph completion and adaptive neighbors publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2024 ident: b41 article-title: One-step multi-view clustering with diverse representation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1012 year: 2016 end-page: 1017 ident: b24 article-title: Online multi-view clustering with incomplete views publication-title: 2016 IEEE International Conference on Big Data – start-page: 675 year: 2012 end-page: 684 ident: b4 article-title: Kernel-based weighted multi-view clustering publication-title: 2012 IEEE 12th International Conference on Data Mining – volume: 221 year: 2023 ident: b29 article-title: IMC-NLT: Incomplete multi-view clustering by NMF and low-rank tensor publication-title: Expert Syst. Appl. – start-page: 3180 year: 2021 end-page: 3184 ident: b28 article-title: Incomplete multi-view subspace clustering with low-rank tensor publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 35 start-page: 2671 year: 2021 end-page: 2682 ident: b22 article-title: Incomplete multi-view clustering with reconstructed views publication-title: IEEE Trans. Knowl. Data Eng. – year: 2022 ident: b34 article-title: Incomplete data meets uncoupled case: A challenging task of multiview clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: M.M. Kalayeh, H. Idrees, M. Shah, NMF-KNN: Image annotation using weighted multi-view non-negative matrix factorization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 184–191. – start-page: 1 year: 2024 end-page: 10 ident: b25 article-title: Weighted concept factorization based incomplete multi-view clustering publication-title: IEEE Trans. Artif. Intell. – volume: 147 year: 2024 ident: b47 article-title: Geometric-inspired graph-based incomplete multi-view clustering publication-title: Pattern Recognit. – year: 2024 ident: b3 article-title: Anchor-free clustering based on anchor graph factorization – volume: 31 start-page: 3591 year: 2022 end-page: 3605 ident: b42 article-title: Multiview spectral clustering with bipartite graph publication-title: IEEE Trans. Image Process. – reference: W. Xu, Y. Gong, Document clustering by concept factorization, in: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004, pp. 202–209. – volume: 31 start-page: 2067 year: 2022 end-page: 2080 ident: b8 article-title: High-order correlation preserved incomplete multi-view subspace clustering publication-title: IEEE Trans. Image Process. – volume: 272 year: 2023 ident: b48 article-title: Structural regularization based discriminative multi-view unsupervised feature selection publication-title: Knowl.-Based Syst. – reference: T. Wu, S. Feng, J. Yuan, Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 15952–15960, 14. – volume: 35 start-page: 2300 year: 2022 end-page: 2313 ident: b33 article-title: Refining graph structure for incomplete multi-view clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: J. Huang, F. Nie, H. Huang, Spectral rotation versus k-means in spectral clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 27, 2013, pp. 431–437, 1. – start-page: 19087 year: 2024 end-page: 19099 ident: b23 article-title: Incomplete multi-view clustering based on dynamic dimensionality reduction weighted graph learning publication-title: IEEE Access – reference: R. Li, C. Zhang, H. Fu, X. Peng, T. Zhou, Q. Hu, Reciprocal multi-layer subspace learning for multi-view clustering, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8172–8180. – reference: J. Wen, Z. Zhang, Y. Xu, B. Zhang, L. Fei, H. Liu, Unified embedding alignment with missing views inferring for incomplete multi-view clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 5393–5400, 01. – volume: 25 start-page: 829 year: 2015 end-page: 839 ident: b31 article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm publication-title: IEEE Trans. Image Process. – start-page: 1 year: 2024 end-page: 14 ident: b40 article-title: Concept factorization based multiview clustering for large-scale data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 262 year: 2023 ident: b50 article-title: Simultaneous Laplacian embedding and subspace clustering for incomplete multi-view data publication-title: Knowl.-Based Syst. – volume: 13 start-page: 213 year: 2005 end-page: 241 ident: b56 article-title: Nonsmooth analysis of singular values. Part I: Theory publication-title: Set-Valued Anal. – volume: 100 year: 2023 ident: b55 article-title: Tensorized topological graph learning for generalized incomplete multi-view clustering publication-title: Inf. Fusion – volume: 166 start-page: 260 year: 2023 end-page: 272 ident: b54 article-title: Balance guided incomplete multi-view spectral clustering publication-title: Neural Netw. – year: 2024 ident: b10 article-title: Learning the consensus and complementary information for large-scale multi-view clustering publication-title: Neural Netw. – start-page: 1 year: 2023 end-page: 15 ident: b38 article-title: Hyper-Laplacian regularized concept factorization in low-rank tensor space for multi-view clustering – reference: J. Wen, Z. Zhang, Z. Zhang, L. Zhu, L. Fei, B. Zhang, Y. Xu, Unified tensor framework for incomplete multi-view clustering and missing-view inferring, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 10273–10281, 11. – volume: 173 year: 2024 ident: b39 article-title: Fast multi-view clustering via correntropy-based orthogonal concept factorization publication-title: Neural Netw. – volume: 234 year: 2023 ident: b16 article-title: Tensor-based consensus learning for incomplete multi-view clustering publication-title: Expert Syst. Appl. – reference: S. Liu, J. Zhang, Y. Wen, X. Yang, S. Wang, Y. Zhang, E. Zhu, C. Tang, L. Zhao, X. Liu, Sample-Level Cross-View Similarity Learning for Incomplete Multi-View Clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, 2024, pp. 14017–14025, 12. – volume: 251 year: 2024 ident: b2 article-title: Comprehensive multi-view self-representations for clustering publication-title: Expert Syst. Appl. – reference: S. Zhao, J. Wen, L. Fei, B. Zhang, Tensorized incomplete multi-view clustering with intrinsic graph completion, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, 2023, pp. 11327–11335, 9. – volume: 104 year: 2024 ident: b15 article-title: Joint learning of data recovering and graph contrastive denoising for incomplete multi-view clustering publication-title: Inf. Fusion – year: 2024 ident: b5 article-title: One-step multi-view clustering via deep-level semantics exploiting publication-title: J. Inf. Sci. – volume: 51 start-page: 101 year: 2020 end-page: 114 ident: b11 article-title: Generalized incomplete multiview clustering with flexible locality structure diffusion publication-title: IEEE Trans. Cybern. – volume: 649 year: 2023 ident: b19 article-title: Scalable incomplete multi-view clustering with adaptive data completion publication-title: Inform. Sci. – reference: C. Zhang, J. Wei, B. Wang, Z. Li, C. Chen, H. Li, Robust spectral embedding completion based incomplete multi-view clustering, in: Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 300–308. – start-page: 10539 year: 2023 end-page: 10551 ident: b53 article-title: Projective incomplete multi-view clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 52 start-page: 13635 issue: 12 year: 2022 ident: 10.1016/j.knosys.2025.112953_b32 article-title: Tensor completion-based incomplete multiview clustering publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3140068 – start-page: 3180 year: 2021 ident: 10.1016/j.knosys.2025.112953_b28 article-title: Incomplete multi-view subspace clustering with low-rank tensor – ident: 10.1016/j.knosys.2025.112953_b35 doi: 10.1609/aaai.v37i9.26340 – volume: 100 year: 2023 ident: 10.1016/j.knosys.2025.112953_b55 article-title: Tensorized topological graph learning for generalized incomplete multi-view clustering publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.101914 – volume: 31 start-page: 3591 year: 2022 ident: 10.1016/j.knosys.2025.112953_b42 article-title: Multiview spectral clustering with bipartite graph publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3171411 – start-page: 675 year: 2012 ident: 10.1016/j.knosys.2025.112953_b4 article-title: Kernel-based weighted multi-view clustering – start-page: 1012 year: 2016 ident: 10.1016/j.knosys.2025.112953_b24 article-title: Online multi-view clustering with incomplete views – start-page: 19087 year: 2024 ident: 10.1016/j.knosys.2025.112953_b23 article-title: Incomplete multi-view clustering based on dynamic dimensionality reduction weighted graph learning publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3358681 – ident: 10.1016/j.knosys.2025.112953_b36 doi: 10.1145/1008992.1009029 – year: 2022 ident: 10.1016/j.knosys.2025.112953_b34 article-title: Incomplete data meets uncoupled case: A challenging task of multiview clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 221 year: 2023 ident: 10.1016/j.knosys.2025.112953_b29 article-title: IMC-NLT: Incomplete multi-view clustering by NMF and low-rank tensor publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119742 – start-page: 2392 year: 2016 ident: 10.1016/j.knosys.2025.112953_b52 article-title: Incomplete multi-modal visual data grouping – ident: 10.1016/j.knosys.2025.112953_b12 doi: 10.1145/3474085.3475379 – volume: 573 start-page: 279 year: 2021 ident: 10.1016/j.knosys.2025.112953_b6 article-title: Deep embedded multi-view clustering with collaborative training publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.12.073 – volume: 33 start-page: 7156 issue: 12 year: 2023 ident: 10.1016/j.knosys.2025.112953_b14 article-title: Tensor-based incomplete multi-view clustering with low-rank data reconstruction and consistency guidance publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2023.3276362 – ident: 10.1016/j.knosys.2025.112953_b26 doi: 10.1609/aaai.v33i01.33015393 – ident: 10.1016/j.knosys.2025.112953_b43 doi: 10.1609/aaai.v38i12.29310 – year: 2020 ident: 10.1016/j.knosys.2025.112953_b57 – year: 2024 ident: 10.1016/j.knosys.2025.112953_b10 article-title: Learning the consensus and complementary information for large-scale multi-view clustering publication-title: Neural Netw. – volume: 13 start-page: 213 year: 2005 ident: 10.1016/j.knosys.2025.112953_b56 article-title: Nonsmooth analysis of singular values. Part I: Theory publication-title: Set-Valued Anal. doi: 10.1007/s11228-004-7197-7 – ident: 10.1016/j.knosys.2025.112953_b45 doi: 10.1609/aaai.v27i1.8683 – volume: 25 start-page: 829 issue: 2 year: 2015 ident: 10.1016/j.knosys.2025.112953_b31 article-title: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2511584 – volume: 234 year: 2023 ident: 10.1016/j.knosys.2025.112953_b16 article-title: Tensor-based consensus learning for incomplete multi-view clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121013 – start-page: 9312 year: 2022 ident: 10.1016/j.knosys.2025.112953_b7 article-title: Low-rank tensor regularized views recovery for incomplete multiview clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 51 start-page: 101 issue: 1 year: 2020 ident: 10.1016/j.knosys.2025.112953_b11 article-title: Generalized incomplete multiview clustering with flexible locality structure diffusion publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2987164 – volume: 262 year: 2023 ident: 10.1016/j.knosys.2025.112953_b50 article-title: Simultaneous Laplacian embedding and subspace clustering for incomplete multi-view data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110244 – volume: 105 year: 2024 ident: 10.1016/j.knosys.2025.112953_b27 article-title: Projected cross-view learning for unbalanced incomplete multi-view clustering publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102245 – volume: 35 start-page: 4017 issue: 3 year: 2022 ident: 10.1016/j.knosys.2025.112953_b51 article-title: Incomplete multiview nonnegative representation learning with graph completion and adaptive neighbors publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3201562 – start-page: 1 year: 2023 ident: 10.1016/j.knosys.2025.112953_b9 article-title: Joint projection learning and tensor decomposition-based incomplete multiview clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 649 year: 2023 ident: 10.1016/j.knosys.2025.112953_b19 article-title: Scalable incomplete multi-view clustering with adaptive data completion publication-title: Inform. Sci. doi: 10.1016/j.ins.2023.119562 – start-page: 1 year: 2024 ident: 10.1016/j.knosys.2025.112953_b25 article-title: Weighted concept factorization based incomplete multi-view clustering publication-title: IEEE Trans. Artif. Intell. – start-page: 10539 year: 2023 ident: 10.1016/j.knosys.2025.112953_b53 article-title: Projective incomplete multi-view clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. – ident: 10.1016/j.knosys.2025.112953_b13 doi: 10.1609/aaai.v35i11.17231 – volume: 173 year: 2024 ident: 10.1016/j.knosys.2025.112953_b39 article-title: Fast multi-view clustering via correntropy-based orthogonal concept factorization publication-title: Neural Netw. doi: 10.1016/j.neunet.2024.106170 – start-page: 1 year: 2023 ident: 10.1016/j.knosys.2025.112953_b38 – start-page: 7740 year: 2022 ident: 10.1016/j.knosys.2025.112953_b20 article-title: Fast incomplete multi-view clustering with view-independent anchors publication-title: IEEE Trans. Neural Netw. Learn. Syst. – ident: 10.1016/j.knosys.2025.112953_b1 doi: 10.1109/ICCV.2019.00826 – ident: 10.1016/j.knosys.2025.112953_b49 doi: 10.1609/aaai.v38i15.29609 – year: 2024 ident: 10.1016/j.knosys.2025.112953_b5 article-title: One-step multi-view clustering via deep-level semantics exploiting publication-title: J. Inf. Sci. doi: 10.1177/01655515241233742 – volume: 35 start-page: 2671 issue: 3 year: 2021 ident: 10.1016/j.knosys.2025.112953_b22 article-title: Incomplete multi-view clustering with reconstructed views publication-title: IEEE Trans. Knowl. Data Eng. – volume: 223 year: 2023 ident: 10.1016/j.knosys.2025.112953_b37 article-title: Dual-graph regularized concept factorization for multi-view clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119949 – volume: 664 year: 2024 ident: 10.1016/j.knosys.2025.112953_b21 article-title: View-specific anchors coupled tensorial bipartite graph learning for incomplete multi-view clustering publication-title: Inform. Sci. doi: 10.1016/j.ins.2024.120335 – ident: 10.1016/j.knosys.2025.112953_b46 doi: 10.1145/3581783.3613445 – volume: 166 start-page: 260 year: 2023 ident: 10.1016/j.knosys.2025.112953_b54 article-title: Balance guided incomplete multi-view spectral clustering publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.07.022 – year: 2024 ident: 10.1016/j.knosys.2025.112953_b3 – volume: 151 year: 2024 ident: 10.1016/j.knosys.2025.112953_b17 article-title: Deep embedding based tensor incomplete multi-view clustering publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2024.104534 – start-page: 1 year: 2024 ident: 10.1016/j.knosys.2025.112953_b40 article-title: Concept factorization based multiview clustering for large-scale data publication-title: IEEE Trans. Knowl. Data Eng. – ident: 10.1016/j.knosys.2025.112953_b18 doi: 10.1109/CVPR.2014.31 – year: 2024 ident: 10.1016/j.knosys.2025.112953_b41 article-title: One-step multi-view clustering with diverse representation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 272 year: 2023 ident: 10.1016/j.knosys.2025.112953_b48 article-title: Structural regularization based discriminative multi-view unsupervised feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110601 – volume: 104 year: 2024 ident: 10.1016/j.knosys.2025.112953_b15 article-title: Joint learning of data recovering and graph contrastive denoising for incomplete multi-view clustering publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102155 – volume: 147 year: 2024 ident: 10.1016/j.knosys.2025.112953_b47 article-title: Geometric-inspired graph-based incomplete multi-view clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.110082 – ident: 10.1016/j.knosys.2025.112953_b30 doi: 10.1609/aaai.v38i14.29526 – volume: 251 year: 2024 ident: 10.1016/j.knosys.2025.112953_b2 article-title: Comprehensive multi-view self-representations for clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124103 – volume: 52 start-page: 8962 issue: 9 year: 2021 ident: 10.1016/j.knosys.2025.112953_b44 article-title: Multiview subspace clustering by an enhanced tensor nuclear norm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3052352 – volume: 31 start-page: 2067 year: 2022 ident: 10.1016/j.knosys.2025.112953_b8 article-title: High-order correlation preserved incomplete multi-view subspace clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3147046 – volume: 35 start-page: 2300 issue: 2 year: 2022 ident: 10.1016/j.knosys.2025.112953_b33 article-title: Refining graph structure for incomplete multi-view clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3189763 |
| SSID | ssj0002218 |
| Score | 2.4242086 |
| Snippet | Incomplete multi-view clustering (IMVC) has attracted much attention due to its superior performance in handling incomplete multi-view data. However, existing... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 112953 |
| SubjectTerms | Concept factorization Incomplete multi-view clustering Spectral rotation Weighted tensor Schatten p-norm |
| Title | Label completion based concept factorization for incomplete multi-view clustering |
| URI | https://dx.doi.org/10.1016/j.knosys.2025.112953 |
| Volume | 310 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdYXe_C6NtlHNjmWYqmvgmiht5BsNlAtbdH24MXf7swmQQXx4DHLLoQvm_lmdr-ZAbiIhbTSGuoRpgUGKFHGY_RCeCgyKv6RCZ3Tgf79KBqO1c1ET1rQb3JhSFZZ2_7KpntrXY90azS7y-m0-4jOAe5XJCztj6jJDitlqIvB5ceXzEMIf8ZHkznNbtLnvMbrZb54e6ei3UJTLk2i5e_09I1yBjuwVfuKrFe9zi603HwPtps-DKz-Lffh4S7L3Yx5dbgjoBlxU4EDPiWRVT116oRLhl4qo5IMfrJjXlHI6YKA2dmayiYgmR3AeHD11B_yulUCtxgTrLiITEj3JLEoMeJRWmLUK3OHvJSEudMWSScx0lj0TuM8sJFzogxcJoogTgprSnkI7fli7o6AldplykhnC5so5YIkE9RbSBZKhDYUZQd4g1C6rCpipI1U7DmtEE0J0bRCtAOmgTH98WVTNNp_rjz-98oT2KQnUleH-hTaq9e1O0PnYZWf-91xDhu969vh6BPyDMOZ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMsDCN6J8emA1Tew4TkZUURVoKyFaqZuVOI5UqNIK0oGF386dkwiQEAOrY0vRi3Pvzn53R8hVxIURRmGPMMkhQAkTFoEXwnyeYPGPhMsUD_RH43AwDe5nctYivSYXBmWVte2vbLqz1vVIt0azu5rPu0_gHMB-BcKS7oga7PBGILnCCOz640vnwbk75MPZDKc3-XNO5PVSLN_esWo3l5hME0vxOz9945z-LtmunUV6U73PHmnZYp_sNI0YaP1fHpDHYZLaBXXycItIUySnDAZcTiKtmurUGZcU3FSKNRncZEudpJDhDQE1izXWTQA2OyTT_u2kN2B1rwRmICgoGQ-VjxclEc8h5AmkgLBXpBaIKfZTKw2wTqyEMuCeRqlnQmt57tmEZ14UZ0bl4oi0i2VhjwnNpU0CJazJTBwE1osTjs2FRBZw3_g87xDWIKRXVUkM3WjFnnWFqEZEdYVoh6gGRv3j02qw2n-uPPn3ykuyOZiMhnp4N344JVv4BKXWvjwj7fJ1bc_BkyjTC7dTPgG1nMUu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+completion+based+concept+factorization+for+incomplete+multi-view+clustering&rft.jtitle=Knowledge-based+systems&rft.au=Yang%2C+Beihua&rft.au=Song%2C+Peng&rft.au=Cheng%2C+Yuanbo&rft.au=Liu%2C+Zhaowei&rft.date=2025-02-15&rft.issn=0950-7051&rft.volume=310&rft.spage=112953&rft_id=info:doi/10.1016%2Fj.knosys.2025.112953&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2025_112953 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |