A novel probabilistic connectivity network link prediction model for natural gas price based on an improved K-shell algorithm
Accurate natural gas price forecasts play a critical role in mitigating market volatility, guiding commodity trading, and enhancing regulatory decision-making. However, the existing natural gas price prediction studies predominantly rely on data with a limited lag period as the forecast input, ignor...
Saved in:
| Published in | Physica A Vol. 671; p. 130672 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-4371 |
| DOI | 10.1016/j.physa.2025.130672 |
Cover
| Abstract | Accurate natural gas price forecasts play a critical role in mitigating market volatility, guiding commodity trading, and enhancing regulatory decision-making. However, the existing natural gas price prediction studies predominantly rely on data with a limited lag period as the forecast input, ignoring historical information, and considering less the complex information embedded in historical data. Therefore, we propose a novel probabilistic connectivity network (PCnet) link prediction model for natural gas prices, comprising four key components: data decomposition, node influence measurement, probabilistic network construction, and combination forecasting. First, the Aquila Optimizer is employed to optimize the parameters of Variational Mode Decomposition to decompose the original data and extract its intrinsic mode functions, providing a better feature. Second, a K-shell method positioned with neighbor and Shell-diversity (KPNS) is proposed to comprehensively and effectively measure the contained information between nodes and extract structural features basis for subsequent modeling. Third, a probabilistic connectivity network (PCnet) is constructed based on the KPNS, effectively preserving the uncertainty information of the nodes. Finally, a Local Random Walk with Restart is used to locate similar nodes in the network, and the prediction results are obtained with a combination of Support Vector Regression, CatBoost, and Extra Trees according to the link prediction idea. The empirical results validate the outstanding predictive accuracy of the model, highlighting its potential applicability in natural gas price forecasting. |
|---|---|
| AbstractList | Accurate natural gas price forecasts play a critical role in mitigating market volatility, guiding commodity trading, and enhancing regulatory decision-making. However, the existing natural gas price prediction studies predominantly rely on data with a limited lag period as the forecast input, ignoring historical information, and considering less the complex information embedded in historical data. Therefore, we propose a novel probabilistic connectivity network (PCnet) link prediction model for natural gas prices, comprising four key components: data decomposition, node influence measurement, probabilistic network construction, and combination forecasting. First, the Aquila Optimizer is employed to optimize the parameters of Variational Mode Decomposition to decompose the original data and extract its intrinsic mode functions, providing a better feature. Second, a K-shell method positioned with neighbor and Shell-diversity (KPNS) is proposed to comprehensively and effectively measure the contained information between nodes and extract structural features basis for subsequent modeling. Third, a probabilistic connectivity network (PCnet) is constructed based on the KPNS, effectively preserving the uncertainty information of the nodes. Finally, a Local Random Walk with Restart is used to locate similar nodes in the network, and the prediction results are obtained with a combination of Support Vector Regression, CatBoost, and Extra Trees according to the link prediction idea. The empirical results validate the outstanding predictive accuracy of the model, highlighting its potential applicability in natural gas price forecasting. |
| ArticleNumber | 130672 |
| Author | Liu, Jinpei Qiu, Biyue Zhao, Xiaoman Zhu, Jiaming Du, Pengcheng |
| Author_xml | – sequence: 1 givenname: Jinpei surname: Liu fullname: Liu, Jinpei email: liujinpei2012@163.com organization: School of Business, Anhui University, Hefei, Anhui 230601, China – sequence: 2 givenname: Biyue surname: Qiu fullname: Qiu, Biyue email: qby9527@163.com organization: School of Business, Anhui University, Hefei, Anhui 230601, China – sequence: 3 givenname: Pengcheng surname: Du fullname: Du, Pengcheng email: dupengch@126.com organization: School of Business, Anhui University, Hefei, Anhui 230601, China – sequence: 4 givenname: Xiaoman surname: Zhao fullname: Zhao, Xiaoman email: man006688@163.com organization: School of Business, Anhui University, Hefei, Anhui 230601, China – sequence: 5 givenname: Jiaming surname: Zhu fullname: Zhu, Jiaming email: jiamingzhu@ahu.edu.cn organization: School of Internet, Anhui University, Hefei, Anhui 230039, China |
| BookMark | eNp9kMtOwzAQRb0oEm3hC9j4BxL8SOJkwaKqeIlKbGBtOc6kdevYlR2CuuDfMZQ1q9Fo7rkanQWaOe8AoRtKckpodbvPj7tTVDkjrMwpJ5VgMzQnXNRZwQW9RIsY94QQKjibo68Vdn4Ci4_Bt6o11sTRaKy9c6BHM5nxhB2Mnz4csDXukHLQmXTxDg--S2DvA3Zq_AjK4q2KKWA04FZF6HAKKYfNkMqntL5kcQfWYmW3PphxN1yhi17ZCNd_c4neH-7f1k_Z5vXxeb3aZJqV5Zixoi50U9W9Fgo4L8pG1FAUmhRdxWjF2xZUVXZNSRgFUWolmq7tSa1rrkjdML5E_Nyrg48xQC_Tl4MKJ0mJ_LEm9_LXmvyxJs_WEnV3piC9NhkIMmoDTicBIcmRnTf_8t9hdH0v |
| Cites_doi | 10.1109/TSMC.2020.3034485 10.1016/j.eneco.2019.02.011 10.1016/j.knosys.2023.110255 10.1080/10095020.2022.2068385 10.1016/j.techfore.2022.121967 10.1016/j.energy.2021.121082 10.1016/j.energy.2020.117520 10.1016/j.physrep.2023.03.005 10.1209/0295-5075/86/30001 10.1186/s40537-020-00369-8 10.1016/j.apenergy.2023.122015 10.1016/j.jngse.2013.07.002 10.1016/j.measurement.2023.113643 10.1016/j.eswa.2020.113681 10.1016/j.energy.2022.125013 10.1016/j.apenergy.2022.118601 10.1016/j.ins.2023.03.133 10.1016/j.socnet.2004.11.009 10.1016/j.cor.2021.105254 10.1103/PhysRevE.80.046103 10.1016/j.ins.2021.08.088 10.1002/er.5608 10.1109/TIM.2023.3316250 10.1016/j.energy.2022.123968 10.1038/nphys1746 10.3390/app13148303 10.1016/j.resourpol.2022.102656 10.1016/j.physa.2022.127029 10.1016/j.physa.2019.123262 10.1177/0165551516664039 10.1016/j.eneco.2022.106162 10.1016/j.enconman.2020.112963 10.1016/j.energy.2021.120478 10.1016/j.eneco.2014.08.010 10.1016/j.eswa.2023.120647 10.1016/j.apenergy.2024.124261 10.1016/j.jclepro.2023.137130 10.1016/j.eneco.2018.02.021 10.1016/j.petrol.2020.107240 10.1016/j.engappai.2023.106826 10.1016/j.chaos.2022.112784 10.1016/j.frl.2024.105874 10.1016/j.energy.2022.125407 10.1016/j.ijepes.2023.109420 10.1016/j.knosys.2022.110163 10.1016/j.energy.2019.04.077 10.3390/en12061094 10.1016/j.jenvman.2023.118446 10.1287/ijoc.2018.0829 10.1016/j.energy.2014.05.016 10.1016/j.energy.2022.123940 10.1016/j.apenergy.2022.118756 10.1016/j.egyr.2024.09.025 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.physa.2025.130672 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 10_1016_j_physa_2025_130672 S0378437125003243 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AATTM AAXKI AAXUO AAYWO ABAOU ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEIPS AEKER AEYQN AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIIUN AIKHN AITUG AIVDX ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR AXJTR AXLSJ BKOJK BLXMC BNPGV EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSB SSF SSH SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQXK AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AFODL AGQPQ AJWLA ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNTGB BPUDD BULVW BZJEE CITATION EFKBS EFLBG EJD FEDTE FGOYB HMV HVGLF HZ~ K-O M38 MVM NDZJH R2- SPG VOH WUQ XJT XOL YYP ZY4 ~HD |
| ID | FETCH-LOGICAL-c255t-2484c968fc7ae3345978e44c04d62163bbea65d95021e75ca79dbf08c83a08923 |
| IEDL.DBID | .~1 |
| ISSN | 0378-4371 |
| IngestDate | Wed Oct 01 06:04:19 EDT 2025 Sat Jul 05 17:11:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Link prediction Natural gas price forecasting Influential nodes K-shell algorithm Probabilistic connectivity network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-2484c968fc7ae3345978e44c04d62163bbea65d95021e75ca79dbf08c83a08923 |
| ParticipantIDs | crossref_primary_10_1016_j_physa_2025_130672 elsevier_sciencedirect_doi_10_1016_j_physa_2025_130672 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Physica A |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Wang, Wang, Zhang, Pan (bib14) 2022; 77 Garud, Jayaraj, Lee (bib17) 2021; 45 Lacasa, Luque, Luque, Nuno (bib24) 2009; 86 Xu, Niu (bib53) 2022; 184 Wang, Tian, Zhou (bib31) 2018; 71 Fang, Zheng, Wang (bib15) 2023; 263 Shakeel, Chong, Wang (bib56) 2023; 409 Liu, Liu (bib48) 2023; 222 Hancock, Khoshgoftaar (bib49) 2020; 7 Saghi, Jahangoshai Rezaee (bib33) 2021 Sheng, Dai, Wang, Duan, Long, Zhang, Guan (bib46) 2020; 541 Wang, Qu, Zhang, Ji, Wu (bib2) 2022; 259 Chen, Wu, Kan, Zhang, Li (bib16) 2023; 154 Duan, Liu, Wang (bib18) 2022; 251 Zhang, Shen, Zhang, Zhao (bib35) 2023; 263 Wang, Liao, Li, Zhang, Liang, Wei (bib3) 2022; 252 Zhou, Huang, Zhang (bib54) 2022; 311 Wang, Zhu, Tian (bib28) 2022; 112 Maji, Mandal, Sen (bib42) 2020; 161 Abdollahi, Ebrahimi (bib7) 2020; 200 Liu, Zhao, Luo, Tao (bib13) 2024; 376 Luque, Lacasa, Ballesteros, Luque (bib25) 2009; 80 Freeman (bib44) 2002; 1 Wang, Lei, Guo (bib21) 2020; 192 Wang, Cao, Yuan, Cheng (bib23) 2021; 233 Ji, Ye, Mu, Lin, Tian, Hens, Kurths (bib27) 2023; 1017 Zhao, Li, Sun, Zhang, Liu (bib43) 2023; 260 Zhao, Peng, Tu, Li, Yan, Li (bib57) 2024; 12 Li, Wu, Tian, Fan (bib22) 2021; 227 Su, Zhang, Zhu, Zha (bib10) 2019; 12 Hailemariam, Smyth (bib5) 2019; 80 Kitsak, Gallos, Havlin, Liljeros, Muchnik, Stanley, Makse (bib41) 2010; 6 Zhu, Ma, Zhang, Ding, Zhan (bib52) 2023; 634 Göncü, Kuzubaş, Saltoğlu (bib50) 2024; 67 Ding, Zhao, Wang (bib11) 2022; 312 Al-qaness, Ewees, Fan, AlRassas, Abd Elaziz (bib19) 2022; 25 Bai, Liu, Li, Yuan (bib37) 2021; 52 Newman (bib40) 2005; 27 Gao, Cai, Yang, Dang, Zhang (bib26) 2016; 6 Xiong, Su, Qian (bib36) 2021; 580 Shi, Wang, Zhang (bib12) 2024; 353 Herrera, Constantino, Tabak, Pistori, Su, Naranpanawa (bib9) 2019; 179 Jeong, Yu (bib45) 2022; 165 Alozie, Arulselvan, Akartunali, Pasiliao (bib38) 2021; 131 Yan, Yan, Song, Zhou, Zhang, Liang (bib1) 2020; 217 Van Goor, Scholtens (bib6) 2014; 72 Salehnia, Falahi, Seifi, Adeli (bib8) 2013; 14 Si, Li, Wang, Wei, Gu, Li, Meng (bib55) 2023 Zheng, Luo, Chen, Chen, Shang (bib20) 2023; 344 Tao, Dai, Wu, Ho, Zheng, Cheang (bib32) 2021; 69 Veremyev, Prokopyev, Pasiliao (bib39) 2019; 31 Cao, Liu, Mei, Mei, Yu (bib51) 2023; 126 Yu, Zhao, An, Lin (bib34) 2017; 43 Zhao, Sun, Zhang, Peng, Zhong, Liang (bib47) 2023; 13 Hu, Xiao (bib30) 2022; 594 Nick, Thoenes (bib4) 2014; 45 Mao, Zeng (bib29) 2023; 230 Zhou (10.1016/j.physa.2025.130672_bib54) 2022; 311 Alozie (10.1016/j.physa.2025.130672_bib38) 2021; 131 Abdollahi (10.1016/j.physa.2025.130672_bib7) 2020; 200 Luque (10.1016/j.physa.2025.130672_bib25) 2009; 80 Lacasa (10.1016/j.physa.2025.130672_bib24) 2009; 86 Maji (10.1016/j.physa.2025.130672_bib42) 2020; 161 Chen (10.1016/j.physa.2025.130672_bib16) 2023; 154 Hu (10.1016/j.physa.2025.130672_bib30) 2022; 594 Wang (10.1016/j.physa.2025.130672_bib2) 2022; 259 Newman (10.1016/j.physa.2025.130672_bib40) 2005; 27 Fang (10.1016/j.physa.2025.130672_bib15) 2023; 263 Wang (10.1016/j.physa.2025.130672_bib21) 2020; 192 Kitsak (10.1016/j.physa.2025.130672_bib41) 2010; 6 Zhang (10.1016/j.physa.2025.130672_bib14) 2022; 77 Van Goor (10.1016/j.physa.2025.130672_bib6) 2014; 72 Liu (10.1016/j.physa.2025.130672_bib13) 2024; 376 Zhang (10.1016/j.physa.2025.130672_bib35) 2023; 263 Salehnia (10.1016/j.physa.2025.130672_bib8) 2013; 14 Zheng (10.1016/j.physa.2025.130672_bib20) 2023; 344 Wang (10.1016/j.physa.2025.130672_bib3) 2022; 252 Hailemariam (10.1016/j.physa.2025.130672_bib5) 2019; 80 Shi (10.1016/j.physa.2025.130672_bib12) 2024; 353 Hancock (10.1016/j.physa.2025.130672_bib49) 2020; 7 Freeman (10.1016/j.physa.2025.130672_bib44) 2002; 1 Xu (10.1016/j.physa.2025.130672_bib53) 2022; 184 Ding (10.1016/j.physa.2025.130672_bib11) 2022; 312 Su (10.1016/j.physa.2025.130672_bib10) 2019; 12 Wang (10.1016/j.physa.2025.130672_bib28) 2022; 112 Jeong (10.1016/j.physa.2025.130672_bib45) 2022; 165 Al-qaness (10.1016/j.physa.2025.130672_bib19) 2022; 25 Bai (10.1016/j.physa.2025.130672_bib37) 2021; 52 Zhu (10.1016/j.physa.2025.130672_bib52) 2023; 634 Zhao (10.1016/j.physa.2025.130672_bib47) 2023; 13 Si (10.1016/j.physa.2025.130672_bib55) 2023 Nick (10.1016/j.physa.2025.130672_bib4) 2014; 45 Wang (10.1016/j.physa.2025.130672_bib23) 2021; 233 Mao (10.1016/j.physa.2025.130672_bib29) 2023; 230 Liu (10.1016/j.physa.2025.130672_bib48) 2023; 222 Yan (10.1016/j.physa.2025.130672_bib1) 2020; 217 Li (10.1016/j.physa.2025.130672_bib22) 2021; 227 Yu (10.1016/j.physa.2025.130672_bib34) 2017; 43 Cao (10.1016/j.physa.2025.130672_bib51) 2023; 126 Saghi (10.1016/j.physa.2025.130672_bib33) 2021 Herrera (10.1016/j.physa.2025.130672_bib9) 2019; 179 Wang (10.1016/j.physa.2025.130672_bib31) 2018; 71 Duan (10.1016/j.physa.2025.130672_bib18) 2022; 251 Garud (10.1016/j.physa.2025.130672_bib17) 2021; 45 Zhao (10.1016/j.physa.2025.130672_bib57) 2024; 12 Veremyev (10.1016/j.physa.2025.130672_bib39) 2019; 31 Sheng (10.1016/j.physa.2025.130672_bib46) 2020; 541 Gao (10.1016/j.physa.2025.130672_bib26) 2016; 6 Zhao (10.1016/j.physa.2025.130672_bib43) 2023; 260 Göncü (10.1016/j.physa.2025.130672_bib50) 2024; 67 Tao (10.1016/j.physa.2025.130672_bib32) 2021; 69 Shakeel (10.1016/j.physa.2025.130672_bib56) 2023; 409 Ji (10.1016/j.physa.2025.130672_bib27) 2023; 1017 Xiong (10.1016/j.physa.2025.130672_bib36) 2021; 580 |
| References_xml | – volume: 376 year: 2024 ident: bib13 article-title: A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information publication-title: Appl. Energy – volume: 251 year: 2022 ident: bib18 article-title: A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting publication-title: Energy – volume: 594 year: 2022 ident: bib30 article-title: A novel method for forecasting time series based on directed visibility graph and improved random walk publication-title: Phys. A Stat. Mech. Appl. – volume: 6 start-page: 888 year: 2010 end-page: 893 ident: bib41 article-title: Identification of influential spreaders in complex networks publication-title: Nat. Phys. – volume: 77 year: 2022 ident: bib14 article-title: How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method publication-title: Resour. Policy – volume: 233 year: 2021 ident: bib23 article-title: Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network publication-title: Energy – volume: 126 year: 2023 ident: bib51 article-title: Short-term district power load self-prediction based on improved XGBoost model publication-title: Eng. Appl. Artif. Intell. – volume: 1017 start-page: 1 year: 2023 end-page: 96 ident: bib27 article-title: Signal propagation in complex networks publication-title: Phys. Rep. – volume: 344 year: 2023 ident: bib20 article-title: Natural gas spot price prediction research under the background of Russia-Ukraine conflict-based on FS-GA-SVR hybrid model publication-title: J. Environ. Manag. – volume: 12 start-page: 1094 year: 2019 ident: bib10 article-title: Data-driven natural gas spot price forecasting with least squares regression boosting algorithm publication-title: Energies – volume: 80 year: 2009 ident: bib25 article-title: Horizontal visibility graphs: exact results for random time series publication-title: Phys. Rev. E – volume: 252 year: 2022 ident: bib3 article-title: How does soaring natural gas prices impact renewable energy: a case study in China publication-title: Energy – volume: 13 start-page: 8303 year: 2023 ident: bib47 article-title: A complex network important node identification based on the KPDN method publication-title: Appl. Sci. – start-page: 1 year: 2021 end-page: 33 ident: bib33 article-title: Integrating wavelet decomposition and fuzzy transformation for improving the accuracy of forecasting crude oil price publication-title: Comput. Econ. – volume: 263 year: 2023 ident: bib35 article-title: Network representation learning via improved random walk with restart publication-title: Knowl. -Based Syst. – volume: 31 start-page: 367 year: 2019 end-page: 389 ident: bib39 article-title: Finding critical links for closeness centrality publication-title: INFORMS J. Comput. – volume: 179 start-page: 214 year: 2019 end-page: 221 ident: bib9 article-title: Long-term forecast of energy commodities price using machine learning publication-title: Energy – volume: 263 year: 2023 ident: bib15 article-title: Forecasting the crude oil prices with an EMD-ISBM-FNN model publication-title: Energy – volume: 14 start-page: 238 year: 2013 end-page: 249 ident: bib8 article-title: Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis publication-title: J. Nat. Gas. Sci. Eng. – volume: 12 start-page: 3470 year: 2024 end-page: 3487 ident: bib57 article-title: WOA-VMD-SCINet: hybrid model for accurate prediction of ultra-short-term Photovoltaic generation power considering seasonal variations publication-title: Energy Rep. – volume: 86 start-page: 30001 year: 2009 ident: bib24 article-title: The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion publication-title: Europhys. Lett. – volume: 259 year: 2022 ident: bib2 article-title: Time-varying determinants of China's liquefied natural gas import price: a dynamic model averaging approach publication-title: Energy – volume: 230 year: 2023 ident: bib29 article-title: SimVGNets: similarity-based visibility graph networks for carbon price forecasting publication-title: Expert Syst. Appl. – volume: 71 start-page: 201 year: 2018 end-page: 212 ident: bib31 article-title: A novel approach for oil price forecasting based on data fluctuation network publication-title: Energy Econ. – volume: 161 year: 2020 ident: bib42 article-title: A systematic survey on influential spreaders identification in complex networks with a focus on K-shell based techniques publication-title: Expert Syst. Appl. – volume: 260 year: 2023 ident: bib43 article-title: Ranking influential spreaders based on both node k-shell and structural hole publication-title: Knowl. -Based Syst. – volume: 69 start-page: 1009 year: 2021 end-page: 1013 ident: bib32 article-title: Complex network analysis of the bitcoin transaction network publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 222 year: 2023 ident: bib48 article-title: A novel hybrid model based on GA-VMD, sample entropy reconstruction and BiLSTM for wind speed prediction publication-title: Measurement – volume: 192 year: 2020 ident: bib21 article-title: Daily natural gas price forecasting by a weighted hybrid data-driven model publication-title: J. Pet. Sci. Eng. – volume: 227 year: 2021 ident: bib22 article-title: Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network publication-title: Energy – volume: 27 start-page: 39 year: 2005 end-page: 54 ident: bib40 article-title: A measure of betweenness centrality based on random walks publication-title: Soc. Netw. – volume: 217 year: 2020 ident: bib1 article-title: Design and optimal siting of regional heat-gas-renewable energy system based on building clusters publication-title: Energy Convers. Manag. – volume: 312 year: 2022 ident: bib11 article-title: Probability density forecasts for natural gas demand in China: do mixed-frequency dynamic factors matter? publication-title: Appl. Energy – volume: 353 year: 2024 ident: bib12 article-title: A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power publication-title: Appl. Energy – volume: 311 year: 2022 ident: bib54 article-title: Carbon price forecasting based on CEEMDAN and LSTM publication-title: Appl. Energy – volume: 6 year: 2016 ident: bib26 article-title: Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series publication-title: Sci. Rep. – volume: 7 start-page: 94 year: 2020 ident: bib49 article-title: CatBoost for big data: an interdisciplinary review publication-title: J. big data – volume: 112 year: 2022 ident: bib28 article-title: A novel framework for carbon price forecasting with uncertainties publication-title: Energy Econ. – volume: 45 start-page: 517 year: 2014 end-page: 527 ident: bib4 article-title: What drives natural gas prices?—A structural VAR approach publication-title: Energy Econ. – volume: 154 year: 2023 ident: bib16 article-title: Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction – volume: 634 start-page: 696 year: 2023 end-page: 715 ident: bib52 article-title: Information granules-based long-term forecasting of time series via BPNN under three-way decision framework publication-title: Inf. Sci. – volume: 165 year: 2022 ident: bib45 article-title: Effects of quadrilateral clustering on complex contagion publication-title: Chaos Solitons Fractals – year: 2023 ident: bib55 article-title: A Novel coal-gangue recognition method for top coal caving face based on IALO-VMD and improved MobileNetV2 network publication-title: IEEE Trans. Instrum. Meas. – volume: 131 year: 2021 ident: bib38 article-title: Efficient methods for the distance-based critical node detection problem in complex networks publication-title: Comput. Oper. Res. – volume: 67 year: 2024 ident: bib50 article-title: Predicting oil prices: a comparative analysis of machine learning and image recognition algorithms for trend prediction publication-title: Financ. Res. Lett. – volume: 541 year: 2020 ident: bib46 article-title: Identifying influential nodes in complex networks based on global and local structure publication-title: Phys. A Stat. Mech. Appl. – volume: 184 year: 2022 ident: bib53 article-title: Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices? publication-title: Technol. Forecast. Soc. Change – volume: 409 year: 2023 ident: bib56 article-title: District heating load forecasting with a hybrid model based on LightGBM and FB-prophet publication-title: J. Clean. Prod. – volume: 80 start-page: 731 year: 2019 end-page: 742 ident: bib5 article-title: What drives volatility in natural gas prices? publication-title: Energy Econ. – volume: 200 year: 2020 ident: bib7 article-title: A new hybrid model for forecasting Brent crude oil price publication-title: Energy – volume: 580 start-page: 408 year: 2021 end-page: 418 ident: bib36 article-title: Conflicting evidence combination from the perspective of networks publication-title: Inf. Sci. – volume: 45 start-page: 6 year: 2021 end-page: 35 ident: bib17 article-title: A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models publication-title: Int. J. Energy Res. – volume: 52 start-page: 3378 year: 2021 end-page: 3390 ident: bib37 article-title: Cost-aware deployment of check-in nodes in complex networks publication-title: IEEE Trans. Syst., Man, Cybern. Syst. – volume: 1 start-page: 238 year: 2002 end-page: 263 ident: bib44 article-title: Centrality in social networks: conceptual clarification publication-title: Soc. Netw. – volume: 25 start-page: 519 year: 2022 end-page: 535 ident: bib19 article-title: Modified aquila optimizer for forecasting oil production publication-title: Geo-Spat. Inf. Sci. – volume: 43 start-page: 683 year: 2017 end-page: 695 ident: bib34 article-title: Similarity-based link prediction in social networks: a path and node combined approach publication-title: J. Inf. Sci. – volume: 72 start-page: 126 year: 2014 end-page: 134 ident: bib6 article-title: Modeling natural gas price volatility: the case of the UK gas market publication-title: Energy – volume: 52 start-page: 3378 issue: 6 year: 2021 ident: 10.1016/j.physa.2025.130672_bib37 article-title: Cost-aware deployment of check-in nodes in complex networks publication-title: IEEE Trans. Syst., Man, Cybern. Syst. doi: 10.1109/TSMC.2020.3034485 – volume: 80 start-page: 731 year: 2019 ident: 10.1016/j.physa.2025.130672_bib5 article-title: What drives volatility in natural gas prices? publication-title: Energy Econ. doi: 10.1016/j.eneco.2019.02.011 – volume: 263 year: 2023 ident: 10.1016/j.physa.2025.130672_bib35 article-title: Network representation learning via improved random walk with restart publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2023.110255 – volume: 25 start-page: 519 issue: 4 year: 2022 ident: 10.1016/j.physa.2025.130672_bib19 article-title: Modified aquila optimizer for forecasting oil production publication-title: Geo-Spat. Inf. Sci. doi: 10.1080/10095020.2022.2068385 – volume: 184 year: 2022 ident: 10.1016/j.physa.2025.130672_bib53 article-title: Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices? publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2022.121967 – volume: 233 year: 2021 ident: 10.1016/j.physa.2025.130672_bib23 article-title: Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network publication-title: Energy doi: 10.1016/j.energy.2021.121082 – volume: 200 year: 2020 ident: 10.1016/j.physa.2025.130672_bib7 article-title: A new hybrid model for forecasting Brent crude oil price publication-title: Energy doi: 10.1016/j.energy.2020.117520 – volume: 1017 start-page: 1 year: 2023 ident: 10.1016/j.physa.2025.130672_bib27 article-title: Signal propagation in complex networks publication-title: Phys. Rep. doi: 10.1016/j.physrep.2023.03.005 – volume: 86 start-page: 30001 issue: 3 year: 2009 ident: 10.1016/j.physa.2025.130672_bib24 article-title: The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion publication-title: Europhys. Lett. doi: 10.1209/0295-5075/86/30001 – volume: 7 start-page: 94 issue: 1 year: 2020 ident: 10.1016/j.physa.2025.130672_bib49 article-title: CatBoost for big data: an interdisciplinary review publication-title: J. big data doi: 10.1186/s40537-020-00369-8 – volume: 353 year: 2024 ident: 10.1016/j.physa.2025.130672_bib12 article-title: A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122015 – volume: 14 start-page: 238 year: 2013 ident: 10.1016/j.physa.2025.130672_bib8 article-title: Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis publication-title: J. Nat. Gas. Sci. Eng. doi: 10.1016/j.jngse.2013.07.002 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.physa.2025.130672_bib26 article-title: Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series publication-title: Sci. Rep. – volume: 222 year: 2023 ident: 10.1016/j.physa.2025.130672_bib48 article-title: A novel hybrid model based on GA-VMD, sample entropy reconstruction and BiLSTM for wind speed prediction publication-title: Measurement doi: 10.1016/j.measurement.2023.113643 – volume: 1 start-page: 238 year: 2002 ident: 10.1016/j.physa.2025.130672_bib44 article-title: Centrality in social networks: conceptual clarification publication-title: Soc. Netw. – volume: 161 year: 2020 ident: 10.1016/j.physa.2025.130672_bib42 article-title: A systematic survey on influential spreaders identification in complex networks with a focus on K-shell based techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113681 – volume: 259 year: 2022 ident: 10.1016/j.physa.2025.130672_bib2 article-title: Time-varying determinants of China's liquefied natural gas import price: a dynamic model averaging approach publication-title: Energy doi: 10.1016/j.energy.2022.125013 – volume: 311 year: 2022 ident: 10.1016/j.physa.2025.130672_bib54 article-title: Carbon price forecasting based on CEEMDAN and LSTM publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118601 – volume: 634 start-page: 696 year: 2023 ident: 10.1016/j.physa.2025.130672_bib52 article-title: Information granules-based long-term forecasting of time series via BPNN under three-way decision framework publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.03.133 – volume: 27 start-page: 39 issue: 1 year: 2005 ident: 10.1016/j.physa.2025.130672_bib40 article-title: A measure of betweenness centrality based on random walks publication-title: Soc. Netw. doi: 10.1016/j.socnet.2004.11.009 – volume: 131 year: 2021 ident: 10.1016/j.physa.2025.130672_bib38 article-title: Efficient methods for the distance-based critical node detection problem in complex networks publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105254 – volume: 80 issue: 4 year: 2009 ident: 10.1016/j.physa.2025.130672_bib25 article-title: Horizontal visibility graphs: exact results for random time series publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.046103 – volume: 580 start-page: 408 year: 2021 ident: 10.1016/j.physa.2025.130672_bib36 article-title: Conflicting evidence combination from the perspective of networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.08.088 – volume: 45 start-page: 6 issue: 1 year: 2021 ident: 10.1016/j.physa.2025.130672_bib17 article-title: A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models publication-title: Int. J. Energy Res. doi: 10.1002/er.5608 – year: 2023 ident: 10.1016/j.physa.2025.130672_bib55 article-title: A Novel coal-gangue recognition method for top coal caving face based on IALO-VMD and improved MobileNetV2 network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3316250 – volume: 251 year: 2022 ident: 10.1016/j.physa.2025.130672_bib18 article-title: A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting publication-title: Energy doi: 10.1016/j.energy.2022.123968 – volume: 6 start-page: 888 issue: 11 year: 2010 ident: 10.1016/j.physa.2025.130672_bib41 article-title: Identification of influential spreaders in complex networks publication-title: Nat. Phys. doi: 10.1038/nphys1746 – volume: 13 start-page: 8303 issue: 14 year: 2023 ident: 10.1016/j.physa.2025.130672_bib47 article-title: A complex network important node identification based on the KPDN method publication-title: Appl. Sci. doi: 10.3390/app13148303 – volume: 77 year: 2022 ident: 10.1016/j.physa.2025.130672_bib14 article-title: How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method publication-title: Resour. Policy doi: 10.1016/j.resourpol.2022.102656 – volume: 594 year: 2022 ident: 10.1016/j.physa.2025.130672_bib30 article-title: A novel method for forecasting time series based on directed visibility graph and improved random walk publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2022.127029 – volume: 541 year: 2020 ident: 10.1016/j.physa.2025.130672_bib46 article-title: Identifying influential nodes in complex networks based on global and local structure publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123262 – volume: 43 start-page: 683 issue: 5 year: 2017 ident: 10.1016/j.physa.2025.130672_bib34 article-title: Similarity-based link prediction in social networks: a path and node combined approach publication-title: J. Inf. Sci. doi: 10.1177/0165551516664039 – volume: 112 year: 2022 ident: 10.1016/j.physa.2025.130672_bib28 article-title: A novel framework for carbon price forecasting with uncertainties publication-title: Energy Econ. doi: 10.1016/j.eneco.2022.106162 – volume: 217 year: 2020 ident: 10.1016/j.physa.2025.130672_bib1 article-title: Design and optimal siting of regional heat-gas-renewable energy system based on building clusters publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112963 – volume: 227 year: 2021 ident: 10.1016/j.physa.2025.130672_bib22 article-title: Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network publication-title: Energy doi: 10.1016/j.energy.2021.120478 – volume: 45 start-page: 517 year: 2014 ident: 10.1016/j.physa.2025.130672_bib4 article-title: What drives natural gas prices?—A structural VAR approach publication-title: Energy Econ. doi: 10.1016/j.eneco.2014.08.010 – volume: 230 year: 2023 ident: 10.1016/j.physa.2025.130672_bib29 article-title: SimVGNets: similarity-based visibility graph networks for carbon price forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120647 – volume: 376 year: 2024 ident: 10.1016/j.physa.2025.130672_bib13 article-title: A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.124261 – volume: 409 year: 2023 ident: 10.1016/j.physa.2025.130672_bib56 article-title: District heating load forecasting with a hybrid model based on LightGBM and FB-prophet publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.137130 – volume: 71 start-page: 201 year: 2018 ident: 10.1016/j.physa.2025.130672_bib31 article-title: A novel approach for oil price forecasting based on data fluctuation network publication-title: Energy Econ. doi: 10.1016/j.eneco.2018.02.021 – volume: 192 year: 2020 ident: 10.1016/j.physa.2025.130672_bib21 article-title: Daily natural gas price forecasting by a weighted hybrid data-driven model publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107240 – volume: 126 year: 2023 ident: 10.1016/j.physa.2025.130672_bib51 article-title: Short-term district power load self-prediction based on improved XGBoost model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106826 – volume: 165 year: 2022 ident: 10.1016/j.physa.2025.130672_bib45 article-title: Effects of quadrilateral clustering on complex contagion publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112784 – volume: 67 year: 2024 ident: 10.1016/j.physa.2025.130672_bib50 article-title: Predicting oil prices: a comparative analysis of machine learning and image recognition algorithms for trend prediction publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2024.105874 – volume: 263 year: 2023 ident: 10.1016/j.physa.2025.130672_bib15 article-title: Forecasting the crude oil prices with an EMD-ISBM-FNN model publication-title: Energy doi: 10.1016/j.energy.2022.125407 – volume: 154 year: 2023 ident: 10.1016/j.physa.2025.130672_bib16 article-title: Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2023.109420 – volume: 260 year: 2023 ident: 10.1016/j.physa.2025.130672_bib43 article-title: Ranking influential spreaders based on both node k-shell and structural hole publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2022.110163 – volume: 179 start-page: 214 year: 2019 ident: 10.1016/j.physa.2025.130672_bib9 article-title: Long-term forecast of energy commodities price using machine learning publication-title: Energy doi: 10.1016/j.energy.2019.04.077 – volume: 69 start-page: 1009 issue: 3 year: 2021 ident: 10.1016/j.physa.2025.130672_bib32 article-title: Complex network analysis of the bitcoin transaction network publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 12 start-page: 1094 issue: 6 year: 2019 ident: 10.1016/j.physa.2025.130672_bib10 article-title: Data-driven natural gas spot price forecasting with least squares regression boosting algorithm publication-title: Energies doi: 10.3390/en12061094 – volume: 344 year: 2023 ident: 10.1016/j.physa.2025.130672_bib20 article-title: Natural gas spot price prediction research under the background of Russia-Ukraine conflict-based on FS-GA-SVR hybrid model publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.118446 – volume: 31 start-page: 367 issue: 2 year: 2019 ident: 10.1016/j.physa.2025.130672_bib39 article-title: Finding critical links for closeness centrality publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2018.0829 – volume: 72 start-page: 126 year: 2014 ident: 10.1016/j.physa.2025.130672_bib6 article-title: Modeling natural gas price volatility: the case of the UK gas market publication-title: Energy doi: 10.1016/j.energy.2014.05.016 – volume: 252 year: 2022 ident: 10.1016/j.physa.2025.130672_bib3 article-title: How does soaring natural gas prices impact renewable energy: a case study in China publication-title: Energy doi: 10.1016/j.energy.2022.123940 – start-page: 1 year: 2021 ident: 10.1016/j.physa.2025.130672_bib33 article-title: Integrating wavelet decomposition and fuzzy transformation for improving the accuracy of forecasting crude oil price publication-title: Comput. Econ. – volume: 312 year: 2022 ident: 10.1016/j.physa.2025.130672_bib11 article-title: Probability density forecasts for natural gas demand in China: do mixed-frequency dynamic factors matter? publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118756 – volume: 12 start-page: 3470 year: 2024 ident: 10.1016/j.physa.2025.130672_bib57 article-title: WOA-VMD-SCINet: hybrid model for accurate prediction of ultra-short-term Photovoltaic generation power considering seasonal variations publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.09.025 |
| SSID | ssj0001732 |
| Score | 2.4688053 |
| Snippet | Accurate natural gas price forecasts play a critical role in mitigating market volatility, guiding commodity trading, and enhancing regulatory decision-making.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 130672 |
| SubjectTerms | Influential nodes K-shell algorithm Link prediction Natural gas price forecasting Probabilistic connectivity network |
| Title | A novel probabilistic connectivity network link prediction model for natural gas price based on an improved K-shell algorithm |
| URI | https://dx.doi.org/10.1016/j.physa.2025.130672 |
| Volume | 671 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0378-4371 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001732 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0378-4371 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001732 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0378-4371 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001732 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0378-4371 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001732 providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mISQuiKcYjykHjpR1SZq0x2liGkzsApN2q5I0G0Ojm7bBDX47dtoKkBAHbk3lqJWd2k789TMhl6HgWVtKFjjmTCA0fFImiWzQNkpGGROu7Ym074eyPxJ342hcI93qXxiEVZa-v_Dp3luXd1qlNlvL2az1EHIVC64gQsPKZAIZP4VQ2MXg-uML5tFWvKgkwG4JpSvmIY_xwtMDJB9iEXZFlor9Hp2-RZzeHtktU0XaKd5mn9RcfkC2PWTTrg_Je4fmizc3p9gTxvPkIuUytYhcsUVPCJoXIG-KZVqQw6IMGoL6_jcU8lXqiT3hKVO9BgHwGhTjWkZBSOd05o8cYDgI1ogYpXo-Xaxmm6eXIzLq3Tx2-0HZTCGwsGvYBEzEwiYynlilHecCNhKxE8KGIpMMkjJjnAbrJBEEfaciq1WSmUkY25jrMIY08JjU80XuTgjlynJlwkgbFgonXRwxpU2iITM0Dq4b5KpSYrosODPSCkz2nHqdp6jztNB5g8hK0ekP06fg1f-aePrfiWdkB0cFju-c1DerV3cBucXGNP3iaZKtzu2gP_wEnWDPKg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKEYIF8RTl6YGR0NR27GSsKqpCHwut1C2yHbcUlbRqAxv8ds5OIkBCDGx5nJXo7NzD9-U7hK59RpMG58QzxCiPSfikVBRor6EEDxLCTMMRafcHvDNiD-NgXEGt8l8YC6ssbH9u0521Lq7UC23Wl7NZ_dGnImRUgIeGlUkY3UCbLCDCZmC3H184j4ageSkB0iUrXlIPOZCX3T6w7EMksG2RuSC_u6dvLqe9h3aLWBE389fZRxWTHqAth9nU60P03sTp4s3MsW0K44hyLecy1ha6ovOmEDjNUd7Y1mlBzlZl7Exg1wAHQ8CKHbMnPGUq1yAAZgNbx5ZgEJIpnrk9BzjtemsLGcVyPl2sZtnTyxEate-GrY5XdFPwNKQNmUdYyHTEw4kW0lDKIJMIDWPaZwknEJUpZSRMTxSA1zci0FJEiZr4oQ6p9EOIA49RNV2k5gRhKjQVyg-kIj4z3ISgdqkiCaGhMnBcQzelEuNlTpoRl2iy59jpPLY6j3Od1xAvFR3_mPsYzPpfA0__O_AKbXeG_V7cux90z9COvZOD-s5RNVu9mgsINDJ16RbSJ5bo0L8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+probabilistic+connectivity+network+link+prediction+model+for+natural+gas+price+based+on+an+improved+K-shell+algorithm&rft.jtitle=Physica+A&rft.au=Liu%2C+Jinpei&rft.au=Qiu%2C+Biyue&rft.au=Du%2C+Pengcheng&rft.au=Zhao%2C+Xiaoman&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-4371&rft.volume=671&rft_id=info:doi/10.1016%2Fj.physa.2025.130672&rft.externalDocID=S0378437125003243 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |