Review on Applications of Machine Learning in Coastal and Ocean Engineering
Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean...
Saved in:
Published in | Han-guk haeyang gonghak hoeji (Online) Vol. 36; no. 3; pp. 194 - 210 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
한국해양공학회
01.06.2022
The Korean Society of Ocean Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1225-0767 2287-6715 |
DOI | 10.26748/KSOE.2022.007 |
Cover
Abstract | Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered. |
---|---|
AbstractList | Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered. Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered. KCI Citation Count: 2 |
Author | Woo-Dong Lee Taeyoon Kim |
Author_xml | – sequence: 1 givenname: Taeyoon orcidid: 0000-0002-5060-5302 surname: Kim fullname: Kim, Taeyoon – sequence: 2 givenname: Woo-Dong orcidid: 0000-0001-7776-4664 surname: Lee fullname: Lee, Woo-Dong |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002853283$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kUtrGzEUhUVJIa6bbdbadFMYR6-RNEvjOI2JW0OarsUdjeSqmUpGM0nJv48yDlkEihYXxDnffZxP6CSm6BA6p2TBpBL64ubnbr1ghLEFIeoDmjGmVSUVrU_QjDJWV0RJdYrOhiG0pOZcqVqSGbq5dY_B_cMp4uXh0AcLY0hxwMnj72B_h-jw1kGOIe5xiHiVYBihxxA7vLMOIl7HfRG5XASf0UcP_eDOXusc_bpa362uq-3u22a13FaW1bWqvJXAWuBOEap9y2vomOPQUC-lFQ5a55ywHCQXRCrO2q5tVEPqTnSE-MbzOfp65Mbszb0NJkGY6j6Z-2yWt3cbQ0k5RUN0EW-O4i7BH3PI4S_kp8kxfaS8N5DHYHtnhNdWaK0VJVo0QuquPA6aKy48bdrCWhxZNqdhyM6_8SgxUwzmJQbzEoMpMRSDeGewYZwuPGYI_f9tX14XfCh81wV4a_Rjd7mmZT4iKOPPRD6Xtw |
CitedBy_id | crossref_primary_10_1016_j_apor_2024_104291 crossref_primary_10_3390_app12199999 crossref_primary_10_2112_JCOASTRES_D_22TM_00002_1 crossref_primary_10_1016_j_cma_2024_117133 crossref_primary_10_3390_wind3020010 crossref_primary_10_1016_j_ocecoaman_2023_106516 crossref_primary_10_1109_ACCESS_2024_3401179 crossref_primary_10_1016_j_ress_2024_110081 crossref_primary_10_1016_j_compgeo_2024_106302 crossref_primary_10_3390_jmse12010159 crossref_primary_10_3389_fmars_2024_1443284 crossref_primary_10_3390_buildings14072067 crossref_primary_10_1016_j_oceaneng_2024_116918 crossref_primary_10_3390_jmse11050978 crossref_primary_10_3390_jmse11091729 |
Cites_doi | 10.1016/j.oceaneng.2017.12.044 10.1016/j.coastaleng.2007.01.001 10.1142/S0578563417500061 10.1007/978-3-319-44944-9_15 10.1016/j.oceaneng.2021.108699 10.1016/j.apor.2008.03.002 10.1016/j.oceaneng.2015.10.058 10.1016/j.engstruct.2018.05.084 10.14801/jkiit.2019.17.9.11 10.1016/S0029-8018(03)00115-X 10.1016/j.oceaneng.2010.07.004 10.1061/(ASCE)WW.1943-5460.0000540 10.1080/09715010.2018.1482796 10.1016/j.oceaneng.2017.03.033 10.1080/19942060.2020.1773932 10.1016/S0029-8018(02)00086-0 10.7857/JSGE.2016.21.6.067 10.9765/KSCOE.2020.32.6.561 10.3390/rs12111856 10.1007/s12205-019-1298-1 10.1007/s00477-021-02018-9 10.9798/KOSHAM.2020.20.6.301 10.1016/j.earscirev.2019.04.022 10.2166/hydro.2021.046 10.1016/j.coastaleng.2018.03.004 10.1016/j.coastaleng.2015.04.006 10.1016/j.egyai.2021.100049 10.1061/(ASCE)0733-950X(2004)130:5(256) 10.1061/(ASCE)PS.1949-1204.0000171 10.7465/jkdi.2020.31.2.273 10.1016/j.coastaleng.2006.12.001 10.5120/ijca2016908129 10.1016/j.coastaleng.2012.08.005 10.1016/j.coastaleng.2015.12.001 10.3390/w12061703 10.1016/j.envsoft.2021.105066 10.1016/j.oceaneng.2016.09.032 10.1016/j.coastaleng.2020.103830 10.1016/S0029-8018(97)10025-7 10.1016/j.oceaneng.2004.11.008 10.1016/j.apor.2012.05.009 10.1145/130385.130401 10.3390/s21248192 10.5194/nhess-18-599-2018 10.1016/j.apor.2009.08.003 10.9765/KSCOE.2020.32.4.262 10.23919/ChiCC.2018.8482902 10.1038/s41598-020-59018-y 10.1016/j.oceaneng.2005.03.004 |
ContentType | Journal Article |
DBID | DBRKI TDB AAYXX CITATION DOA ACYCR |
DOI | 10.26748/KSOE.2022.007 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2287-6715 |
EndPage | 210 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10022908 oai_doaj_org_article_4f8c4888710849468d8d83a83734f19b 10_26748_KSOE_2022_007 NODE11080412 |
GroupedDBID | 9ZL AAFWJ ACYCR ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV DBRKI GROUPED_DOAJ GW5 JDI KVFHK MZR M~E TDB ZZE AAYXX CITATION |
ID | FETCH-LOGICAL-c2557-fc6a2ba3e7018fb35ad2e3a91f66c4eabeee4c3a63406732bdb97905d4d00f9f3 |
IEDL.DBID | DOA |
ISSN | 1225-0767 |
IngestDate | Sat Aug 09 03:11:40 EDT 2025 Wed Aug 27 01:10:58 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Tue Jul 01 02:25:11 EDT 2025 Sun Mar 09 07:50:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Coastal engineering Sensitivity analysis Data-driven model Machine learning Prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2557-fc6a2ba3e7018fb35ad2e3a91f66c4eabeee4c3a63406732bdb97905d4d00f9f3 |
Notes | https://www.joet.org/journal/view.php?doi=10.26748/KSOE.2022.007 |
ORCID | 0000-0002-5060-5302 0000-0001-7776-4664 |
OpenAccessLink | https://doaj.org/article/4f8c4888710849468d8d83a83734f19b |
PageCount | 17 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10022908 doaj_primary_oai_doaj_org_article_4f8c4888710849468d8d83a83734f19b crossref_primary_10_26748_KSOE_2022_007 crossref_citationtrail_10_26748_KSOE_2022_007 nurimedia_primary_NODE11080412 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06 |
PublicationDecade | 2020 |
PublicationTitle | Han-guk haeyang gonghak hoeji (Online) |
PublicationYear | 2022 |
Publisher | 한국해양공학회 The Korean Society of Ocean Engineers |
Publisher_xml | – name: 한국해양공학회 – name: The Korean Society of Ocean Engineers |
References | ref56 ref15 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref19 ref18 Van der Meer (ref52) 1988 Dwarakish (ref5) 2013 ref51 ref50 ref46 ref45 ref48 ref47 ref41 ref44 ref43 Pullen (ref12) 2007 ref49 ref8 Na (ref42) 2017 ref7 ref9 ref3 ref6 ref40 Van der Meer (ref13) 2018 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Kim (ref26) 2010 ref2 ref1 ref39 ref38 De Rouck (ref4) 2004 ref24 ref23 Zanuttigh (ref57) 2014 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Goyal (ref16) 2014 |
References_xml | – ident: ref44 doi: 10.1016/j.oceaneng.2017.12.044 – ident: ref45 doi: 10.1016/j.coastaleng.2007.01.001 – ident: ref14 doi: 10.1142/S0578563417500061 – ident: ref48 doi: 10.1007/978-3-319-44944-9_15 – ident: ref18 doi: 10.1016/j.oceaneng.2021.108699 – ident: ref40 doi: 10.1016/j.apor.2008.03.002 – start-page: 693 volume-title: Advances in Modelling Wave- structure Interaction Tthrough Artificial Neural Networks year: 2014 ident: ref57 – ident: ref30 doi: 10.1016/j.oceaneng.2015.10.058 – ident: ref49 doi: 10.1016/j.engstruct.2018.05.084 – ident: ref23 doi: 10.14801/jkiit.2019.17.9.11 – ident: ref36 doi: 10.1016/S0029-8018(03)00115-X – ident: ref20 doi: 10.1016/j.oceaneng.2010.07.004 – ident: ref34 doi: 10.1061/(ASCE)WW.1943-5460.0000540 – ident: ref32 doi: 10.1080/09715010.2018.1482796 – ident: ref39 doi: 10.1016/j.oceaneng.2017.03.033 – year: 2007 ident: ref12 – volume-title: Quarter Circular Breakwater: Prediction 3 of Transmission Using Multiple Regression 4 and Artificial Neural Network year: 2014 ident: ref16 – ident: ref51 doi: 10.1080/19942060.2020.1773932 – ident: ref9 doi: 10.1016/S0029-8018(02)00086-0 – ident: ref31 doi: 10.7857/JSGE.2016.21.6.067 – ident: ref46 doi: 10.9765/KSCOE.2020.32.6.561 – ident: ref15 doi: 10.3390/rs12111856 – ident: ref35 doi: 10.1007/s12205-019-1298-1 – ident: ref19 doi: 10.1007/s00477-021-02018-9 – ident: ref27 doi: 10.9798/KOSHAM.2020.20.6.301 – ident: ref17 doi: 10.1016/j.earscirev.2019.04.022 – ident: ref21 doi: 10.2166/hydro.2021.046 – start-page: 261 volume-title: Crest Level Assessment of Coastal Structures by Full Scale Monitoring, Neural Network Prediction and Hazard Analysis on Permissible Wave Overtoppingg - (CLASH) year: 2004 ident: ref4 – ident: ref22 doi: 10.1016/j.coastaleng.2018.03.004 – ident: ref54 doi: 10.1016/j.coastaleng.2015.04.006 – start-page: 324 volume-title: Review on Applications of Neural Network in Coastal Engineering year: 2013 ident: ref5 – ident: ref38 doi: 10.1016/j.egyai.2021.100049 – ident: ref1 doi: 10.1061/(ASCE)0733-950X(2004)130:5(256) – start-page: 1151 volume-title: Analysis of Approval Ratings of Presidential Candidates Using Multidimensional Gaussian Process and Time Series Text Data year: 2017 ident: ref42 – ident: ref43 doi: 10.1061/(ASCE)PS.1949-1204.0000171 – ident: ref29 doi: 10.7465/jkdi.2020.31.2.273 – start-page: 396 volume-title: Rock Slopes and Gravel Beaches under Wave Attack (Ph.D. thesis) year: 1988 ident: ref52 – ident: ref53 doi: 10.1016/j.coastaleng.2006.12.001 – ident: ref50 doi: 10.5120/ijca2016908129 – ident: ref56 doi: 10.1016/j.coastaleng.2012.08.005 – ident: ref11 doi: 10.1016/j.coastaleng.2015.12.001 – volume-title: Manual on Wave Overtopping of Sea Defences and Related Structures: An Overtopping Manual Largely Based on European Research, but for Worldwide Application (2nd ed.) year: 2018 ident: ref13 – ident: ref6 doi: 10.3390/w12061703 – ident: ref3 doi: 10.1016/j.envsoft.2021.105066 – ident: ref58 doi: 10.1016/j.oceaneng.2016.09.032 – ident: ref7 doi: 10.1016/j.coastaleng.2020.103830 – ident: ref8 doi: 10.1016/S0029-8018(97)10025-7 – ident: ref25 doi: 10.1016/j.oceaneng.2004.11.008 – ident: ref24 doi: 10.1016/j.apor.2012.05.009 – ident: ref2 doi: 10.1145/130385.130401 – ident: ref28 doi: 10.3390/s21248192 – ident: ref47 doi: 10.5194/nhess-18-599-2018 – ident: ref10 doi: 10.1016/j.apor.2009.08.003 – start-page: 126 volume-title: Calculating Expected Damage of Breakwater Using Artificial Neural Network for Wave Height Calculation year: 2010 ident: ref26 – ident: ref33 doi: 10.9765/KSCOE.2020.32.4.262 – ident: ref37 doi: 10.23919/ChiCC.2018.8482902 – ident: ref41 doi: 10.1038/s41598-020-59018-y – ident: ref55 doi: 10.1016/j.oceaneng.2005.03.004 |
SSID | ssib053377560 ssib022233305 ssj0002849400 |
Score | 2.187857 |
Snippet | Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are... |
SourceID | nrf doaj crossref nurimedia |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 194 |
SubjectTerms | coastal engineering data-driven model machine learning prediction sensitivity analysis 해양공학 |
Title | Review on Applications of Machine Learning in Coastal and Ocean Engineering |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11080412 https://doaj.org/article/4f8c4888710849468d8d83a83734f19b https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002853283 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국해양공학회지, 2022, 36(3), 166, pp.194-210 |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2287-6715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002849400 issn: 1225-0767 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2287-6715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002849400 issn: 1225-0767 databaseCode: M~E dateStart: 19980101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei3oQn1hfLCh4Cqa7m9dRa6UqbQ9a8LbsU7RlI6Ve_e3OJLHEg3iRQELCJtl8M2Tm22y-IeTc-Dj1AqUvmTCR0JmPtGUuiplK8lhZlhj8wXk4SgcTcf-cPLdKfeGcsFoeuAbuUvjcgJNBXh_nohBpbmHhCngVF75baHz7QhhrkSnwJMhhsuw78X-rhpAEVgBH9gUOHAF5z2oFR4bFNi4fHsd94IoMxTuzHxGqEvKHuBPmsLMWPlBzHwzXikG3W2SzSR7pVd3pbbLiwg7ZaEkK7pKHerCfloFetb5N09LTYTVv0tFGUvWFvgbaKxWkhzOqgqVj41Sgravtkclt_6k3iJqCCZEBZpBF3qSKacVdFndzr3kCWDuuiq5PUyOc0s45YbhKucD6NExbXaBAlxU2jn3h-T5ZDWVwB4QiMVQQzm2ijYAsCyynXBcacWY5Z1mHRN8gSdOoiWNRi5kEVlGBKhFUiaBKALVDLpbt32sdjV9bXiPmy1aof10dAK-QjVfIv7yiQ87AYnJqXqvzcftSyulcAku4Q51mlLnPO-R0adHl_Ubjmz7-G4FCZIf_0Zcjso7PVs8vOyari_mHO4FMZqFPK6eF9fCz_wVjbOiV |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+Applications+of+Machine+Learning+in+Coastal+and+Ocean+Engineering&rft.jtitle=Han-guk+haeyang+gonghak+hoeji+%28Online%29&rft.au=%EA%B9%80%ED%83%9C%EC%9C%A4&rft.au=%EC%9D%B4%EC%9A%B0%EB%8F%99&rft.date=2022-06-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%95%B4%EC%96%91%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1225-0767&rft.eissn=2287-6715&rft.spage=194&rft.epage=210&rft_id=info:doi/10.26748%2FKSOE.2022.007&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10022908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-0767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-0767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-0767&client=summon |