Review on Applications of Machine Learning in Coastal and Ocean Engineering

Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean...

Full description

Saved in:
Bibliographic Details
Published inHan-guk haeyang gonghak hoeji (Online) Vol. 36; no. 3; pp. 194 - 210
Main Authors Kim, Taeyoon, Lee, Woo-Dong
Format Journal Article
LanguageEnglish
Published 한국해양공학회 01.06.2022
The Korean Society of Ocean Engineers
Subjects
Online AccessGet full text
ISSN1225-0767
2287-6715
DOI10.26748/KSOE.2022.007

Cover

Abstract Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.
AbstractList Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.
Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered. KCI Citation Count: 2
Author Woo-Dong Lee
Taeyoon Kim
Author_xml – sequence: 1
  givenname: Taeyoon
  orcidid: 0000-0002-5060-5302
  surname: Kim
  fullname: Kim, Taeyoon
– sequence: 2
  givenname: Woo-Dong
  orcidid: 0000-0001-7776-4664
  surname: Lee
  fullname: Lee, Woo-Dong
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002853283$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kUtrGzEUhUVJIa6bbdbadFMYR6-RNEvjOI2JW0OarsUdjeSqmUpGM0nJv48yDlkEihYXxDnffZxP6CSm6BA6p2TBpBL64ubnbr1ghLEFIeoDmjGmVSUVrU_QjDJWV0RJdYrOhiG0pOZcqVqSGbq5dY_B_cMp4uXh0AcLY0hxwMnj72B_h-jw1kGOIe5xiHiVYBihxxA7vLMOIl7HfRG5XASf0UcP_eDOXusc_bpa362uq-3u22a13FaW1bWqvJXAWuBOEap9y2vomOPQUC-lFQ5a55ywHCQXRCrO2q5tVEPqTnSE-MbzOfp65Mbszb0NJkGY6j6Z-2yWt3cbQ0k5RUN0EW-O4i7BH3PI4S_kp8kxfaS8N5DHYHtnhNdWaK0VJVo0QuquPA6aKy48bdrCWhxZNqdhyM6_8SgxUwzmJQbzEoMpMRSDeGewYZwuPGYI_f9tX14XfCh81wV4a_Rjd7mmZT4iKOPPRD6Xtw
CitedBy_id crossref_primary_10_1016_j_apor_2024_104291
crossref_primary_10_3390_app12199999
crossref_primary_10_2112_JCOASTRES_D_22TM_00002_1
crossref_primary_10_1016_j_cma_2024_117133
crossref_primary_10_3390_wind3020010
crossref_primary_10_1016_j_ocecoaman_2023_106516
crossref_primary_10_1109_ACCESS_2024_3401179
crossref_primary_10_1016_j_ress_2024_110081
crossref_primary_10_1016_j_compgeo_2024_106302
crossref_primary_10_3390_jmse12010159
crossref_primary_10_3389_fmars_2024_1443284
crossref_primary_10_3390_buildings14072067
crossref_primary_10_1016_j_oceaneng_2024_116918
crossref_primary_10_3390_jmse11050978
crossref_primary_10_3390_jmse11091729
Cites_doi 10.1016/j.oceaneng.2017.12.044
10.1016/j.coastaleng.2007.01.001
10.1142/S0578563417500061
10.1007/978-3-319-44944-9_15
10.1016/j.oceaneng.2021.108699
10.1016/j.apor.2008.03.002
10.1016/j.oceaneng.2015.10.058
10.1016/j.engstruct.2018.05.084
10.14801/jkiit.2019.17.9.11
10.1016/S0029-8018(03)00115-X
10.1016/j.oceaneng.2010.07.004
10.1061/(ASCE)WW.1943-5460.0000540
10.1080/09715010.2018.1482796
10.1016/j.oceaneng.2017.03.033
10.1080/19942060.2020.1773932
10.1016/S0029-8018(02)00086-0
10.7857/JSGE.2016.21.6.067
10.9765/KSCOE.2020.32.6.561
10.3390/rs12111856
10.1007/s12205-019-1298-1
10.1007/s00477-021-02018-9
10.9798/KOSHAM.2020.20.6.301
10.1016/j.earscirev.2019.04.022
10.2166/hydro.2021.046
10.1016/j.coastaleng.2018.03.004
10.1016/j.coastaleng.2015.04.006
10.1016/j.egyai.2021.100049
10.1061/(ASCE)0733-950X(2004)130:5(256)
10.1061/(ASCE)PS.1949-1204.0000171
10.7465/jkdi.2020.31.2.273
10.1016/j.coastaleng.2006.12.001
10.5120/ijca2016908129
10.1016/j.coastaleng.2012.08.005
10.1016/j.coastaleng.2015.12.001
10.3390/w12061703
10.1016/j.envsoft.2021.105066
10.1016/j.oceaneng.2016.09.032
10.1016/j.coastaleng.2020.103830
10.1016/S0029-8018(97)10025-7
10.1016/j.oceaneng.2004.11.008
10.1016/j.apor.2012.05.009
10.1145/130385.130401
10.3390/s21248192
10.5194/nhess-18-599-2018
10.1016/j.apor.2009.08.003
10.9765/KSCOE.2020.32.4.262
10.23919/ChiCC.2018.8482902
10.1038/s41598-020-59018-y
10.1016/j.oceaneng.2005.03.004
ContentType Journal Article
DBID DBRKI
TDB
AAYXX
CITATION
DOA
ACYCR
DOI 10.26748/KSOE.2022.007
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2287-6715
EndPage 210
ExternalDocumentID oai_kci_go_kr_ARTI_10022908
oai_doaj_org_article_4f8c4888710849468d8d83a83734f19b
10_26748_KSOE_2022_007
NODE11080412
GroupedDBID 9ZL
AAFWJ
ACYCR
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
DBRKI
GROUPED_DOAJ
GW5
JDI
KVFHK
MZR
M~E
TDB
ZZE
AAYXX
CITATION
ID FETCH-LOGICAL-c2557-fc6a2ba3e7018fb35ad2e3a91f66c4eabeee4c3a63406732bdb97905d4d00f9f3
IEDL.DBID DOA
ISSN 1225-0767
IngestDate Sat Aug 09 03:11:40 EDT 2025
Wed Aug 27 01:10:58 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Tue Jul 01 02:25:11 EDT 2025
Sun Mar 09 07:50:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Coastal engineering
Sensitivity analysis
Data-driven model
Machine learning
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2557-fc6a2ba3e7018fb35ad2e3a91f66c4eabeee4c3a63406732bdb97905d4d00f9f3
Notes https://www.joet.org/journal/view.php?doi=10.26748/KSOE.2022.007
ORCID 0000-0002-5060-5302
0000-0001-7776-4664
OpenAccessLink https://doaj.org/article/4f8c4888710849468d8d83a83734f19b
PageCount 17
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10022908
doaj_primary_oai_doaj_org_article_4f8c4888710849468d8d83a83734f19b
crossref_primary_10_26748_KSOE_2022_007
crossref_citationtrail_10_26748_KSOE_2022_007
nurimedia_primary_NODE11080412
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06
PublicationDecade 2020
PublicationTitle Han-guk haeyang gonghak hoeji (Online)
PublicationYear 2022
Publisher 한국해양공학회
The Korean Society of Ocean Engineers
Publisher_xml – name: 한국해양공학회
– name: The Korean Society of Ocean Engineers
References ref56
ref15
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref19
ref18
Van der Meer (ref52) 1988
Dwarakish (ref5) 2013
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
Pullen (ref12) 2007
ref49
ref8
Na (ref42) 2017
ref7
ref9
ref3
ref6
ref40
Van der Meer (ref13) 2018
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Kim (ref26) 2010
ref2
ref1
ref39
ref38
De Rouck (ref4) 2004
ref24
ref23
Zanuttigh (ref57) 2014
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Goyal (ref16) 2014
References_xml – ident: ref44
  doi: 10.1016/j.oceaneng.2017.12.044
– ident: ref45
  doi: 10.1016/j.coastaleng.2007.01.001
– ident: ref14
  doi: 10.1142/S0578563417500061
– ident: ref48
  doi: 10.1007/978-3-319-44944-9_15
– ident: ref18
  doi: 10.1016/j.oceaneng.2021.108699
– ident: ref40
  doi: 10.1016/j.apor.2008.03.002
– start-page: 693
  volume-title: Advances in Modelling Wave- structure Interaction Tthrough Artificial Neural Networks
  year: 2014
  ident: ref57
– ident: ref30
  doi: 10.1016/j.oceaneng.2015.10.058
– ident: ref49
  doi: 10.1016/j.engstruct.2018.05.084
– ident: ref23
  doi: 10.14801/jkiit.2019.17.9.11
– ident: ref36
  doi: 10.1016/S0029-8018(03)00115-X
– ident: ref20
  doi: 10.1016/j.oceaneng.2010.07.004
– ident: ref34
  doi: 10.1061/(ASCE)WW.1943-5460.0000540
– ident: ref32
  doi: 10.1080/09715010.2018.1482796
– ident: ref39
  doi: 10.1016/j.oceaneng.2017.03.033
– year: 2007
  ident: ref12
– volume-title: Quarter Circular Breakwater: Prediction 3 of Transmission Using Multiple Regression 4 and Artificial Neural Network
  year: 2014
  ident: ref16
– ident: ref51
  doi: 10.1080/19942060.2020.1773932
– ident: ref9
  doi: 10.1016/S0029-8018(02)00086-0
– ident: ref31
  doi: 10.7857/JSGE.2016.21.6.067
– ident: ref46
  doi: 10.9765/KSCOE.2020.32.6.561
– ident: ref15
  doi: 10.3390/rs12111856
– ident: ref35
  doi: 10.1007/s12205-019-1298-1
– ident: ref19
  doi: 10.1007/s00477-021-02018-9
– ident: ref27
  doi: 10.9798/KOSHAM.2020.20.6.301
– ident: ref17
  doi: 10.1016/j.earscirev.2019.04.022
– ident: ref21
  doi: 10.2166/hydro.2021.046
– start-page: 261
  volume-title: Crest Level Assessment of Coastal Structures by Full Scale Monitoring, Neural Network Prediction and Hazard Analysis on Permissible Wave Overtoppingg - (CLASH)
  year: 2004
  ident: ref4
– ident: ref22
  doi: 10.1016/j.coastaleng.2018.03.004
– ident: ref54
  doi: 10.1016/j.coastaleng.2015.04.006
– start-page: 324
  volume-title: Review on Applications of Neural Network in Coastal Engineering
  year: 2013
  ident: ref5
– ident: ref38
  doi: 10.1016/j.egyai.2021.100049
– ident: ref1
  doi: 10.1061/(ASCE)0733-950X(2004)130:5(256)
– start-page: 1151
  volume-title: Analysis of Approval Ratings of Presidential Candidates Using Multidimensional Gaussian Process and Time Series Text Data
  year: 2017
  ident: ref42
– ident: ref43
  doi: 10.1061/(ASCE)PS.1949-1204.0000171
– ident: ref29
  doi: 10.7465/jkdi.2020.31.2.273
– start-page: 396
  volume-title: Rock Slopes and Gravel Beaches under Wave Attack (Ph.D. thesis)
  year: 1988
  ident: ref52
– ident: ref53
  doi: 10.1016/j.coastaleng.2006.12.001
– ident: ref50
  doi: 10.5120/ijca2016908129
– ident: ref56
  doi: 10.1016/j.coastaleng.2012.08.005
– ident: ref11
  doi: 10.1016/j.coastaleng.2015.12.001
– volume-title: Manual on Wave Overtopping of Sea Defences and Related Structures: An Overtopping Manual Largely Based on European Research, but for Worldwide Application (2nd ed.)
  year: 2018
  ident: ref13
– ident: ref6
  doi: 10.3390/w12061703
– ident: ref3
  doi: 10.1016/j.envsoft.2021.105066
– ident: ref58
  doi: 10.1016/j.oceaneng.2016.09.032
– ident: ref7
  doi: 10.1016/j.coastaleng.2020.103830
– ident: ref8
  doi: 10.1016/S0029-8018(97)10025-7
– ident: ref25
  doi: 10.1016/j.oceaneng.2004.11.008
– ident: ref24
  doi: 10.1016/j.apor.2012.05.009
– ident: ref2
  doi: 10.1145/130385.130401
– ident: ref28
  doi: 10.3390/s21248192
– ident: ref47
  doi: 10.5194/nhess-18-599-2018
– ident: ref10
  doi: 10.1016/j.apor.2009.08.003
– start-page: 126
  volume-title: Calculating Expected Damage of Breakwater Using Artificial Neural Network for Wave Height Calculation
  year: 2010
  ident: ref26
– ident: ref33
  doi: 10.9765/KSCOE.2020.32.4.262
– ident: ref37
  doi: 10.23919/ChiCC.2018.8482902
– ident: ref41
  doi: 10.1038/s41598-020-59018-y
– ident: ref55
  doi: 10.1016/j.oceaneng.2005.03.004
SSID ssib053377560
ssib022233305
ssj0002849400
Score 2.187857
Snippet Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are...
SourceID nrf
doaj
crossref
nurimedia
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 194
SubjectTerms coastal engineering
data-driven model
machine learning
prediction
sensitivity analysis
해양공학
Title Review on Applications of Machine Learning in Coastal and Ocean Engineering
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11080412
https://doaj.org/article/4f8c4888710849468d8d83a83734f19b
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002853283
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국해양공학회지, 2022, 36(3), 166, pp.194-210
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2287-6715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002849400
  issn: 1225-0767
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2287-6715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002849400
  issn: 1225-0767
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei3oQn1hfLCh4Cqa7m9dRa6UqbQ9a8LbsU7RlI6Ve_e3OJLHEg3iRQELCJtl8M2Tm22y-IeTc-Dj1AqUvmTCR0JmPtGUuiplK8lhZlhj8wXk4SgcTcf-cPLdKfeGcsFoeuAbuUvjcgJNBXh_nohBpbmHhCngVF75baHz7QhhrkSnwJMhhsuw78X-rhpAEVgBH9gUOHAF5z2oFR4bFNi4fHsd94IoMxTuzHxGqEvKHuBPmsLMWPlBzHwzXikG3W2SzSR7pVd3pbbLiwg7ZaEkK7pKHerCfloFetb5N09LTYTVv0tFGUvWFvgbaKxWkhzOqgqVj41Sgravtkclt_6k3iJqCCZEBZpBF3qSKacVdFndzr3kCWDuuiq5PUyOc0s45YbhKucD6NExbXaBAlxU2jn3h-T5ZDWVwB4QiMVQQzm2ijYAsCyynXBcacWY5Z1mHRN8gSdOoiWNRi5kEVlGBKhFUiaBKALVDLpbt32sdjV9bXiPmy1aof10dAK-QjVfIv7yiQ87AYnJqXqvzcftSyulcAku4Q51mlLnPO-R0adHl_Ubjmz7-G4FCZIf_0Zcjso7PVs8vOyari_mHO4FMZqFPK6eF9fCz_wVjbOiV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+Applications+of+Machine+Learning+in+Coastal+and+Ocean+Engineering&rft.jtitle=Han-guk+haeyang+gonghak+hoeji+%28Online%29&rft.au=%EA%B9%80%ED%83%9C%EC%9C%A4&rft.au=%EC%9D%B4%EC%9A%B0%EB%8F%99&rft.date=2022-06-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%95%B4%EC%96%91%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1225-0767&rft.eissn=2287-6715&rft.spage=194&rft.epage=210&rft_id=info:doi/10.26748%2FKSOE.2022.007&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10022908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-0767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-0767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-0767&client=summon