GreedyCenters: Satellite imagery adaptive sampling method for artificial neural networks training
The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train neural networks on its full size. On the other hand satellite imagery tends to be limitedly available. Moreover, the objects of interest ten...
Saved in:
| Published in | E3S web of conferences Vol. 310; p. 2001 |
|---|---|
| Main Author | |
| Format | Journal Article Conference Proceeding |
| Language | English |
| Published |
Les Ulis
EDP Sciences
01.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2267-1242 2555-0403 2267-1242 |
| DOI | 10.1051/e3sconf/202131002001 |
Cover
| Abstract | The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train neural networks on its full size. On the other hand satellite imagery tends to be limitedly available. Moreover, the objects of interest tends to constitute a small fraction of whole dataset. This leads to the demand of sample extraction and augmentation method specialized on satellite imagery. Yet this area is immensely underrated so almost all widely used method limited to grid-based sample extraction and augmentation via combinations of 90-degrees rotations and mirroring on vertical or horizontal axes. This paper proposes the domain-agnostic method of sample extraction and augmentation. Adoption of this method to specific subject area is based on domain-specific way to generate significance field of image. In contrast to trivial greedy solutions and more advanced stochastic optimization methods the design of proposed method is focused on maximizing per-step progress. This makes its performance reasonably good even without low-level optimizations without significant quality loss. It can be easily implemented using widely known and open source software libraries. |
|---|---|
| AbstractList | The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train neural networks on its full size. On the other hand satellite imagery tends to be limitedly available. Moreover, the objects of interest tends to constitute a small fraction of whole dataset. This leads to the demand of sample extraction and augmentation method specialized on satellite imagery. Yet this area is immensely underrated so almost all widely used method limited to grid-based sample extraction and augmentation via combinations of 90-degrees rotations and mirroring on vertical or horizontal axes. This paper proposes the domain-agnostic method of sample extraction and augmentation. Adoption of this method to specific subject area is based on domain-specific way to generate significance field of image. In contrast to trivial greedy solutions and more advanced stochastic optimization methods the design of proposed method is focused on maximizing per-step progress. This makes its performance reasonably good even without low-level optimizations without significant quality loss. It can be easily implemented using widely known and open source software libraries. |
| Author | Gvozdev, Oleg |
| Author_xml | – sequence: 1 givenname: Oleg surname: Gvozdev fullname: Gvozdev, Oleg |
| BookMark | eNqNkE9PGzEQxa0KpFLKN-BgiXNg_G-TcKuiQpGQeoCerVnvOHW6sbe2U5RvX4egimMPoxmN3vz05n1iJzFFYuxSwLUAI25IFZeiv5EghRIAEkB8YGdSdvOZkFqevJs_sotSNtAU0iw06DOG95lo2K8oVsrllj9hpXEMlXjY4prynuOAUw1_iBfcTmOIa76l-jMN3KfMMdfggws48ki7_NrqS8q_Cq8ZQ2zyz-zU41jo4q2fsx93X59X32aP3-8fVl8eZ04aI2bDUnXa627pyYAhRcYLRFjMtfId9tCDJFz2Hpx3nfRGeCnaKIDU0Mqoc_Zw5A4JN3bKzX_e24TBvi5SXtuDWzeSdVIPy84I4fqFlg0PSg8d9EJ60m5-YJkjaxcn3L_gOP4DCrCH2O1b7PZ97O3u6ng35fR7R6XaTdrl2N62LXAFCxBaNZU-qlxOpWTy_wf_C-Owlss |
| Cites_doi | 10.1038/s41592-019-0686-2 10.7717/peerj.453 10.5194/egusphere-egu2020-102 10.1002/9781119751991.ch10 10.3390/info11020125 10.1145/324133.324234 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7ST 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ H8D HCIFZ KR7 L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI ADTOC UNPAY DOA |
| DOI | 10.1051/e3sconf/202131002001 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central (subscription) Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2267-1242 |
| ExternalDocumentID | oai_doaj_org_article_c24d96511cb842f6a034d60b12fe4c75 10.1051/e3sconf/202131002001 10_1051_e3sconf_202131002001 |
| Genre | Conference Proceeding |
| GroupedDBID | 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PUEGO PYCSY RIG 7ST 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ H8D KR7 L7M PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2551-d9364f469fe505e3e5f1aa08743f6ab0b02ea9bf0cfc62f51f21cfc10e3d0e353 |
| IEDL.DBID | DOA |
| ISSN | 2267-1242 2555-0403 |
| IngestDate | Fri Oct 03 12:36:10 EDT 2025 Tue Aug 19 17:29:29 EDT 2025 Fri Jul 25 11:43:51 EDT 2025 Wed Oct 01 03:15:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2551-d9364f469fe505e3e5f1aa08743f6ab0b02ea9bf0cfc62f51f21cfc10e3d0e353 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| OpenAccessLink | https://doaj.org/article/c24d96511cb842f6a034d60b12fe4c75 |
| PQID | 2583080143 |
| PQPubID | 2040555 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c24d96511cb842f6a034d60b12fe4c75 unpaywall_primary_10_1051_e3sconf_202131002001 proquest_journals_2583080143 crossref_primary_10_1051_e3sconf_202131002001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Les Ulis |
| PublicationPlace_xml | – name: Les Ulis |
| PublicationTitle | E3S web of conferences |
| PublicationYear | 2021 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| References | R3 R4 R5 R6 R7 Walt (R11) 2014; 2 Virtanen (R8) 2020; 17 R9 Blumofe (R13) 1999; 46 R10 R12 Buslaev (R2) 2020; 11 R1 |
| References_xml | – volume: 17 start-page: 261 year: 2020 ident: R8 publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 2 start-page: e453 year: 2014 ident: R11 publication-title: PeerJ doi: 10.7717/peerj.453 – ident: R5 doi: 10.5194/egusphere-egu2020-102 – ident: R12 – ident: R1 doi: 10.1002/9781119751991.ch10 – ident: R7 – volume: 11 start-page: 125 year: 2020 ident: R2 publication-title: Information doi: 10.3390/info11020125 – ident: R3 – ident: R10 – volume: 46 start-page: 720 year: 1999 ident: R13 publication-title: J ACM doi: 10.1145/324133.324234 – ident: R4 – ident: R6 – ident: R9 |
| SSID | ssj0001258404 |
| Score | 2.1324742 |
| Snippet | The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2001 |
| SubjectTerms | Adaptive sampling Artificial neural networks Augmentation Design optimization Image contrast Neural networks Sampling methods Satellite imagery |
| SummonAdditionalLinks | – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB5S59De-kio27Tsoddt9qGVpUAppDiEQk1oG8hNzL5CwZXdyCH433dnLdnOpfQgJMQixM7szjezM98AfDBW1jHZea6dRV5IITgqG3nAiQweQ4WB4pDfZuXldfH1xtwcwGyohaG0ymFPzBu1XziKkZ8qU2lBVCf68_IPp65RdLo6tNDAvrWC_5Qpxp7AoSJmrBEcnk9nV9_3oi7J4OaegglKG540WA_1dEaeBt0lJzRSQEBS4JvyjR7Zq0zr_wiLPr1vl7h-wPl8zyxdPIejXcEeu9qaohdwENqXcDzdFbHhnPWruHsFSMk2fk2B3QT-ztgPzLScq8B-_SZKizVDj0vaB1mHlHHe3rJNp2mWIC4jZdvwTjBiw8y3nEvesaHhxBFcX0x_frnkfasF7tJESO5rXRYxucoxJEgUdDBRIooq4YtYohVWqIC1jcJFV6poZFQyPUoRtE-X0ccwahdteA2sVtHLkBwvcnYSWLS1sWYSTawrHZwox8CHCW2WG0aNJp-EG9n0Amj2BTCGc5r17Vjiw84vFne3Tb-8GqcKX5cJPDpbFSr9stCFL4WVKobCTcwYTgaZNf0i7ZqdSo3h41aO__VTb_79vbfwjEZvQjUnMFrd3Yd3Cbys7PteI_8CZwzt5Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB5B9wAX3isKC_KBq1s_YjfhtqBdrZBYIUGl5WTZjo0Q3VCRVqhc-OvM5FF2OcGBQ5SHHcfOOPZn5_M3AC9MkFXGfp7rGDwvpBDcq5B58guZap9Kn2ge8u25PVsWby7MxeCqtB1plbrlcb_ere3Vggea2BwDKWy-rjMN3OW8tOM11xIJ2a-IW0lBThBhaIYxb8KBNYjVJ3CwPH93_JE8zilsIbBzo98MCKsNx9qsx7V1Ru6fQwnRJDglda3v6iT-r-HSW9tm7Xff_Wp1pYs6vQs_x8L1zJQvs-0mzOKPP3Qf_1_p78GdAd2y4z6h-3AjNQ_g8OT3YjoMHFqT9iF4Iv3UO5pgRhD6kr33nTzoJrHPlyStsWO-9mtqj1nrifnefGK9x2uGUJtRdnv9C0aqnN2u47S3bHR88QiWpycfXp_xweUDj2gEyetK2yLjkD0nhGZJJ5Ol96JEnJOtDyIIlXwVsog5WpWNzErioRRJ17gZfQiT5muTHgOrVK5lwgEgDboQtIbKBLPIJlelTlHYKfDRmG7dK3u47o-8kW58pVeNP4VXZPF9XNLl7i6ggdxgIBdVUVcWQWwMZaEwy0IXtRVBqpyKuDBTOBrrixsai9YpU2pBKj56CrN9HfqrTD351xuewm067SeRjmCy-bZNzxBWbcLz4dv4BYmAIZ4 priority: 102 providerName: Unpaywall |
| Title | GreedyCenters: Satellite imagery adaptive sampling method for artificial neural networks training |
| URI | https://www.proquest.com/docview/2583080143 https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/86/e3sconf_spatialdata2021_02001.pdf https://doaj.org/article/c24d96511cb842f6a034d60b12fe4c75 |
| UnpaywallVersion | publishedVersion |
| Volume | 310 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: ADMLS dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: GI~ dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2267-1242 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB0BPZQLaguIQIj20Kth1-t17N4ISqCVGkVAJDhZu_YsqkRNhIOqXPjtnbEdmpzKgYM_tLas0YzX82Y8-wbgq3Eq9eTnA507G0RKysCGzgdo-woLi4lFzkP-HMeX0-jHrbldafXFNWENPXCjuNM8jIo0JliQuyQKfWyljopYOhV6jPJ-zV4qk3QlmGqyK-RYZbRcK2fUKeqKAkzPwb7ipDbXEq35opqyfw1nfnwuZ3bxxz48rLic0SfYabGiOGtk_AwbWH6B_eG_pWl0sZ2b1S5YLqEpFpyuJUj3TVzbmmxzjuLXbyaqWAhb2Bl_3URluY68vBdN_2hBwFWwJho2CcEcl_WhrhCvxLKNxB5MR8Ob88ugbaAQ5BQpqKBIdRx5CoA9EtBBjcYra2VCqIEU6aSTIdrUeZn7PA69UT5UdKok6oI2o_dhq3ws8QBEGvpCIYVTHMIQBHSpcabvjU8TjbmMOxAsVZnNGp6MrP6_bVTWqj5bVX0HBqzv13uZ5boeINtnre2z_9m-A92ltbJ26lUZWV5L5sTRHTh5teCbhDp8D6GOYJuf2aRpurA1f3rGYwIuc9eDzWR00YMPg-F4ctWr31jaX3x_obHpeHJ29xe1uvDC |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hONBbH6Cmpe0e2uOWfXgduxKqRBsUCkSoBYnbdp8IKXVSHITy5_rbOuPYSbhUvXCwbFl-aWd35pvxzHyEvNdOlAnsPFPeWZYJzpmVLrFo-yIGGwsbMQ55NsqHl9m3K321Qf50tTCYVtnpxEZRh4nHGPm-1IXi2OpEfZ7-ZsgahX9XOwoN21IrhIOmxVhb2HES5_fgwtUHx19B3h-kPBpcfBmylmWAeYDTgoVS5VkCLzFFQANRRZ2EtbwA05py67jjMtrSJe6Tz2XSIkkBh4JHFWBD1ggwAVuZykpw_rYOB6Pz72tRHjDwDYchvEszWDGqq9_TYj-qGpzehAEIgYF2zG96YB8bGoEH2Hf7rpra-b0dj9fM4NFTsrMqEKTnS9P3jGzE6jnZHayK5uyYtlqjfkEsJveEOQaSAWx-oj9s0wZ0FunNL2yhMac22CnqXVpbzHCvrumC2ZoCpKY4uRd9Lih232x2Te56TTuCix1y-SiDvks2q0kVXxJayhREBEcPnSsAp67UTveTTmWhoud5j7BuQM100cHDNH_etTCtAMy6AHrkEEd9eS32325OTG6vTbucjZdZKHMAq94VmYRP5ioLOXdCppj5vu6RvU5mplUKtVlN4R75uJTjf33Uq38_7x3ZHl6cnZrT49HJa_IE71yEifbI5uz2Lr4B4DRzb9vZScnPx14QfwGxriuG |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB5B9wAX3isKC_KBq1s_YjfhtqBdrZBYIUGl5WTZjo0Q3VCRVqhc-OvM5FF2OcGBQ5SHHcfOOPZn5_M3AC9MkFXGfp7rGDwvpBDcq5B58guZap9Kn2ge8u25PVsWby7MxeCqtB1plbrlcb_ere3Vggea2BwDKWy-rjMN3OW8tOM11xIJ2a-IW0lBThBhaIYxb8KBNYjVJ3CwPH93_JE8zilsIbBzo98MCKsNx9qsx7V1Ru6fQwnRJDglda3v6iT-r-HSW9tm7Xff_Wp1pYs6vQs_x8L1zJQvs-0mzOKPP3Qf_1_p78GdAd2y4z6h-3AjNQ_g8OT3YjoMHFqT9iF4Iv3UO5pgRhD6kr33nTzoJrHPlyStsWO-9mtqj1nrifnefGK9x2uGUJtRdnv9C0aqnN2u47S3bHR88QiWpycfXp_xweUDj2gEyetK2yLjkD0nhGZJJ5Ol96JEnJOtDyIIlXwVsog5WpWNzErioRRJ17gZfQiT5muTHgOrVK5lwgEgDboQtIbKBLPIJlelTlHYKfDRmG7dK3u47o-8kW58pVeNP4VXZPF9XNLl7i6ggdxgIBdVUVcWQWwMZaEwy0IXtRVBqpyKuDBTOBrrixsai9YpU2pBKj56CrN9HfqrTD351xuewm067SeRjmCy-bZNzxBWbcLz4dv4BYmAIZ4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=GreedyCenters%3A+Satellite+imagery+adaptive+sampling+method+for+artificial+neural+networks+training&rft.au=Gvozdev%2C+Oleg&rft.date=2021-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=310&rft_id=info:doi/10.1051%2Fe3sconf%2F202131002001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon |