GreedyCenters: Satellite imagery adaptive sampling method for artificial neural networks training

The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train neural networks on its full size. On the other hand satellite imagery tends to be limitedly available. Moreover, the objects of interest ten...

Full description

Saved in:
Bibliographic Details
Published inE3S web of conferences Vol. 310; p. 2001
Main Author Gvozdev, Oleg
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2021
Subjects
Online AccessGet full text
ISSN2267-1242
2555-0403
2267-1242
DOI10.1051/e3sconf/202131002001

Cover

Abstract The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train neural networks on its full size. On the other hand satellite imagery tends to be limitedly available. Moreover, the objects of interest tends to constitute a small fraction of whole dataset. This leads to the demand of sample extraction and augmentation method specialized on satellite imagery. Yet this area is immensely underrated so almost all widely used method limited to grid-based sample extraction and augmentation via combinations of 90-degrees rotations and mirroring on vertical or horizontal axes. This paper proposes the domain-agnostic method of sample extraction and augmentation. Adoption of this method to specific subject area is based on domain-specific way to generate significance field of image. In contrast to trivial greedy solutions and more advanced stochastic optimization methods the design of proposed method is focused on maximizing per-step progress. This makes its performance reasonably good even without low-level optimizations without significant quality loss. It can be easily implemented using widely known and open source software libraries.
AbstractList The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train neural networks on its full size. On the other hand satellite imagery tends to be limitedly available. Moreover, the objects of interest tends to constitute a small fraction of whole dataset. This leads to the demand of sample extraction and augmentation method specialized on satellite imagery. Yet this area is immensely underrated so almost all widely used method limited to grid-based sample extraction and augmentation via combinations of 90-degrees rotations and mirroring on vertical or horizontal axes. This paper proposes the domain-agnostic method of sample extraction and augmentation. Adoption of this method to specific subject area is based on domain-specific way to generate significance field of image. In contrast to trivial greedy solutions and more advanced stochastic optimization methods the design of proposed method is focused on maximizing per-step progress. This makes its performance reasonably good even without low-level optimizations without significant quality loss. It can be easily implemented using widely known and open source software libraries.
Author Gvozdev, Oleg
Author_xml – sequence: 1
  givenname: Oleg
  surname: Gvozdev
  fullname: Gvozdev, Oleg
BookMark eNqNkE9PGzEQxa0KpFLKN-BgiXNg_G-TcKuiQpGQeoCerVnvOHW6sbe2U5RvX4egimMPoxmN3vz05n1iJzFFYuxSwLUAI25IFZeiv5EghRIAEkB8YGdSdvOZkFqevJs_sotSNtAU0iw06DOG95lo2K8oVsrllj9hpXEMlXjY4prynuOAUw1_iBfcTmOIa76l-jMN3KfMMdfggws48ki7_NrqS8q_Cq8ZQ2zyz-zU41jo4q2fsx93X59X32aP3-8fVl8eZ04aI2bDUnXa627pyYAhRcYLRFjMtfId9tCDJFz2Hpx3nfRGeCnaKIDU0Mqoc_Zw5A4JN3bKzX_e24TBvi5SXtuDWzeSdVIPy84I4fqFlg0PSg8d9EJ60m5-YJkjaxcn3L_gOP4DCrCH2O1b7PZ97O3u6ng35fR7R6XaTdrl2N62LXAFCxBaNZU-qlxOpWTy_wf_C-Owlss
Cites_doi 10.1038/s41592-019-0686-2
10.7717/peerj.453
10.5194/egusphere-egu2020-102
10.1002/9781119751991.ch10
10.3390/info11020125
10.1145/324133.324234
ContentType Journal Article
Conference Proceeding
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
KR7
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
ADTOC
UNPAY
DOA
DOI 10.1051/e3sconf/202131002001
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2267-1242
ExternalDocumentID oai_doaj_org_article_c24d96511cb842f6a034d60b12fe4c75
10.1051/e3sconf/202131002001
10_1051_e3sconf_202131002001
Genre Conference Proceeding
GroupedDBID 5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PUEGO
PYCSY
RIG
7ST
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
H8D
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ADTOC
UNPAY
ID FETCH-LOGICAL-c2551-d9364f469fe505e3e5f1aa08743f6ab0b02ea9bf0cfc62f51f21cfc10e3d0e353
IEDL.DBID DOA
ISSN 2267-1242
2555-0403
IngestDate Fri Oct 03 12:36:10 EDT 2025
Tue Aug 19 17:29:29 EDT 2025
Fri Jul 25 11:43:51 EDT 2025
Wed Oct 01 03:15:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2551-d9364f469fe505e3e5f1aa08743f6ab0b02ea9bf0cfc62f51f21cfc10e3d0e353
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://doaj.org/article/c24d96511cb842f6a034d60b12fe4c75
PQID 2583080143
PQPubID 2040555
ParticipantIDs doaj_primary_oai_doaj_org_article_c24d96511cb842f6a034d60b12fe4c75
unpaywall_primary_10_1051_e3sconf_202131002001
proquest_journals_2583080143
crossref_primary_10_1051_e3sconf_202131002001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle E3S web of conferences
PublicationYear 2021
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R3
R4
R5
R6
R7
Walt (R11) 2014; 2
Virtanen (R8) 2020; 17
R9
Blumofe (R13) 1999; 46
R10
R12
Buslaev (R2) 2020; 11
R1
References_xml – volume: 17
  start-page: 261
  year: 2020
  ident: R8
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 2
  start-page: e453
  year: 2014
  ident: R11
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– ident: R5
  doi: 10.5194/egusphere-egu2020-102
– ident: R12
– ident: R1
  doi: 10.1002/9781119751991.ch10
– ident: R7
– volume: 11
  start-page: 125
  year: 2020
  ident: R2
  publication-title: Information
  doi: 10.3390/info11020125
– ident: R3
– ident: R10
– volume: 46
  start-page: 720
  year: 1999
  ident: R13
  publication-title: J ACM
  doi: 10.1145/324133.324234
– ident: R4
– ident: R6
– ident: R9
SSID ssj0001258404
Score 2.1324742
Snippet The one of many significant particularities of satellite imagery is large size of images within orders of magnitude exceeds capability of modern GPGPU to train...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2001
SubjectTerms Adaptive sampling
Artificial neural networks
Augmentation
Design optimization
Image contrast
Neural networks
Sampling methods
Satellite imagery
SummonAdditionalLinks – databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB5S59De-kio27Tsoddt9qGVpUAppDiEQk1oG8hNzL5CwZXdyCH433dnLdnOpfQgJMQixM7szjezM98AfDBW1jHZea6dRV5IITgqG3nAiQweQ4WB4pDfZuXldfH1xtwcwGyohaG0ymFPzBu1XziKkZ8qU2lBVCf68_IPp65RdLo6tNDAvrWC_5Qpxp7AoSJmrBEcnk9nV9_3oi7J4OaegglKG540WA_1dEaeBt0lJzRSQEBS4JvyjR7Zq0zr_wiLPr1vl7h-wPl8zyxdPIejXcEeu9qaohdwENqXcDzdFbHhnPWruHsFSMk2fk2B3QT-ztgPzLScq8B-_SZKizVDj0vaB1mHlHHe3rJNp2mWIC4jZdvwTjBiw8y3nEvesaHhxBFcX0x_frnkfasF7tJESO5rXRYxucoxJEgUdDBRIooq4YtYohVWqIC1jcJFV6poZFQyPUoRtE-X0ccwahdteA2sVtHLkBwvcnYSWLS1sWYSTawrHZwox8CHCW2WG0aNJp-EG9n0Amj2BTCGc5r17Vjiw84vFne3Tb-8GqcKX5cJPDpbFSr9stCFL4WVKobCTcwYTgaZNf0i7ZqdSo3h41aO__VTb_79vbfwjEZvQjUnMFrd3Yd3Cbys7PteI_8CZwzt5Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB5B9wAX3isKC_KBq1s_YjfhtqBdrZBYIUGl5WTZjo0Q3VCRVqhc-OvM5FF2OcGBQ5SHHcfOOPZn5_M3AC9MkFXGfp7rGDwvpBDcq5B58guZap9Kn2ge8u25PVsWby7MxeCqtB1plbrlcb_ere3Vggea2BwDKWy-rjMN3OW8tOM11xIJ2a-IW0lBThBhaIYxb8KBNYjVJ3CwPH93_JE8zilsIbBzo98MCKsNx9qsx7V1Ru6fQwnRJDglda3v6iT-r-HSW9tm7Xff_Wp1pYs6vQs_x8L1zJQvs-0mzOKPP3Qf_1_p78GdAd2y4z6h-3AjNQ_g8OT3YjoMHFqT9iF4Iv3UO5pgRhD6kr33nTzoJrHPlyStsWO-9mtqj1nrifnefGK9x2uGUJtRdnv9C0aqnN2u47S3bHR88QiWpycfXp_xweUDj2gEyetK2yLjkD0nhGZJJ5Ol96JEnJOtDyIIlXwVsog5WpWNzErioRRJ17gZfQiT5muTHgOrVK5lwgEgDboQtIbKBLPIJlelTlHYKfDRmG7dK3u47o-8kW58pVeNP4VXZPF9XNLl7i6ggdxgIBdVUVcWQWwMZaEwy0IXtRVBqpyKuDBTOBrrixsai9YpU2pBKj56CrN9HfqrTD351xuewm067SeRjmCy-bZNzxBWbcLz4dv4BYmAIZ4
  priority: 102
  providerName: Unpaywall
Title GreedyCenters: Satellite imagery adaptive sampling method for artificial neural networks training
URI https://www.proquest.com/docview/2583080143
https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/86/e3sconf_spatialdata2021_02001.pdf
https://doaj.org/article/c24d96511cb842f6a034d60b12fe4c75
UnpaywallVersion publishedVersion
Volume 310
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: ADMLS
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: GI~
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB0BPZQLaguIQIj20Kth1-t17N4ISqCVGkVAJDhZu_YsqkRNhIOqXPjtnbEdmpzKgYM_tLas0YzX82Y8-wbgq3Eq9eTnA507G0RKysCGzgdo-woLi4lFzkP-HMeX0-jHrbldafXFNWENPXCjuNM8jIo0JliQuyQKfWyljopYOhV6jPJ-zV4qk3QlmGqyK-RYZbRcK2fUKeqKAkzPwb7ipDbXEq35opqyfw1nfnwuZ3bxxz48rLic0SfYabGiOGtk_AwbWH6B_eG_pWl0sZ2b1S5YLqEpFpyuJUj3TVzbmmxzjuLXbyaqWAhb2Bl_3URluY68vBdN_2hBwFWwJho2CcEcl_WhrhCvxLKNxB5MR8Ob88ugbaAQ5BQpqKBIdRx5CoA9EtBBjcYra2VCqIEU6aSTIdrUeZn7PA69UT5UdKok6oI2o_dhq3ws8QBEGvpCIYVTHMIQBHSpcabvjU8TjbmMOxAsVZnNGp6MrP6_bVTWqj5bVX0HBqzv13uZ5boeINtnre2z_9m-A92ltbJ26lUZWV5L5sTRHTh5teCbhDp8D6GOYJuf2aRpurA1f3rGYwIuc9eDzWR00YMPg-F4ctWr31jaX3x_obHpeHJ29xe1uvDC
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hONBbH6Cmpe0e2uOWfXgduxKqRBsUCkSoBYnbdp8IKXVSHITy5_rbOuPYSbhUvXCwbFl-aWd35pvxzHyEvNdOlAnsPFPeWZYJzpmVLrFo-yIGGwsbMQ55NsqHl9m3K321Qf50tTCYVtnpxEZRh4nHGPm-1IXi2OpEfZ7-ZsgahX9XOwoN21IrhIOmxVhb2HES5_fgwtUHx19B3h-kPBpcfBmylmWAeYDTgoVS5VkCLzFFQANRRZ2EtbwA05py67jjMtrSJe6Tz2XSIkkBh4JHFWBD1ggwAVuZykpw_rYOB6Pz72tRHjDwDYchvEszWDGqq9_TYj-qGpzehAEIgYF2zG96YB8bGoEH2Hf7rpra-b0dj9fM4NFTsrMqEKTnS9P3jGzE6jnZHayK5uyYtlqjfkEsJveEOQaSAWx-oj9s0wZ0FunNL2yhMac22CnqXVpbzHCvrumC2ZoCpKY4uRd9Lih232x2Te56TTuCix1y-SiDvks2q0kVXxJayhREBEcPnSsAp67UTveTTmWhoud5j7BuQM100cHDNH_etTCtAMy6AHrkEEd9eS32325OTG6vTbucjZdZKHMAq94VmYRP5ioLOXdCppj5vu6RvU5mplUKtVlN4R75uJTjf33Uq38_7x3ZHl6cnZrT49HJa_IE71yEifbI5uz2Lr4B4DRzb9vZScnPx14QfwGxriuG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB5B9wAX3isKC_KBq1s_YjfhtqBdrZBYIUGl5WTZjo0Q3VCRVqhc-OvM5FF2OcGBQ5SHHcfOOPZn5_M3AC9MkFXGfp7rGDwvpBDcq5B58guZap9Kn2ge8u25PVsWby7MxeCqtB1plbrlcb_ere3Vggea2BwDKWy-rjMN3OW8tOM11xIJ2a-IW0lBThBhaIYxb8KBNYjVJ3CwPH93_JE8zilsIbBzo98MCKsNx9qsx7V1Ru6fQwnRJDglda3v6iT-r-HSW9tm7Xff_Wp1pYs6vQs_x8L1zJQvs-0mzOKPP3Qf_1_p78GdAd2y4z6h-3AjNQ_g8OT3YjoMHFqT9iF4Iv3UO5pgRhD6kr33nTzoJrHPlyStsWO-9mtqj1nrifnefGK9x2uGUJtRdnv9C0aqnN2u47S3bHR88QiWpycfXp_xweUDj2gEyetK2yLjkD0nhGZJJ5Ol96JEnJOtDyIIlXwVsog5WpWNzErioRRJ17gZfQiT5muTHgOrVK5lwgEgDboQtIbKBLPIJlelTlHYKfDRmG7dK3u47o-8kW58pVeNP4VXZPF9XNLl7i6ggdxgIBdVUVcWQWwMZaEwy0IXtRVBqpyKuDBTOBrrixsai9YpU2pBKj56CrN9HfqrTD351xuewm067SeRjmCy-bZNzxBWbcLz4dv4BYmAIZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=GreedyCenters%3A+Satellite+imagery+adaptive+sampling+method+for+artificial+neural+networks+training&rft.au=Gvozdev%2C+Oleg&rft.date=2021-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=310&rft_id=info:doi/10.1051%2Fe3sconf%2F202131002001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon