Application of machine learning to stress corrosion cracking risk assessment
•The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on the use of machine learning in stress corrosion cracking were summarized.•Knowledge gaps and challenges of using machine learning in SCC were...
Saved in:
Published in | Egyptian journal of petroleum Vol. 31; no. 4; pp. 11 - 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
Egyptian Petroleum Research Institute |
Subjects | |
Online Access | Get full text |
ISSN | 1110-0621 |
DOI | 10.1016/j.ejpe.2022.09.001 |
Cover
Abstract | •The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on the use of machine learning in stress corrosion cracking were summarized.•Knowledge gaps and challenges of using machine learning in SCC were discussed.•Future perspectives were highlighted.
One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings highest forms of risks to the industry. Performing risk assessment of stress corrosion cracking is critical to ensure that industrial equipment failure is avoided by employing proper maintenance techniques. With the advancement of digital technology and the fourth industrial revolution called Industrial Internet of Things (IIOT), coupled with the availability of computing power and data, advanced analytical tools like artificial intelligence and machine learning bring powerful algorithms for performing advanced corrosion risk assessment. A perusal of the literature reveals that a review focused on the use of machine learning in corrosion risk assessment of stress corrosion cracking is scarce. So, a comprehensive and up-to-date review on this subject is timely. In this work review we present an overview on the machine learning application in the risk assessment of stress corrosion cracking. First, the current state of the art is briefly summarized. The fundamentals of machine learning algorithms and stress corrosion cracking were presented. Existing knowledge gaps were identified and discussed while the challenges and the future perspectives on the employ of machine learning in corrosion risks assessment of stress corrosion cracking were outlined. |
---|---|
AbstractList | •The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on the use of machine learning in stress corrosion cracking were summarized.•Knowledge gaps and challenges of using machine learning in SCC were discussed.•Future perspectives were highlighted.
One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings highest forms of risks to the industry. Performing risk assessment of stress corrosion cracking is critical to ensure that industrial equipment failure is avoided by employing proper maintenance techniques. With the advancement of digital technology and the fourth industrial revolution called Industrial Internet of Things (IIOT), coupled with the availability of computing power and data, advanced analytical tools like artificial intelligence and machine learning bring powerful algorithms for performing advanced corrosion risk assessment. A perusal of the literature reveals that a review focused on the use of machine learning in corrosion risk assessment of stress corrosion cracking is scarce. So, a comprehensive and up-to-date review on this subject is timely. In this work review we present an overview on the machine learning application in the risk assessment of stress corrosion cracking. First, the current state of the art is briefly summarized. The fundamentals of machine learning algorithms and stress corrosion cracking were presented. Existing knowledge gaps were identified and discussed while the challenges and the future perspectives on the employ of machine learning in corrosion risks assessment of stress corrosion cracking were outlined. One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings highest forms of risks to the industry. Performing risk assessment of stress corrosion cracking is critical to ensure that industrial equipment failure is avoided by employing proper maintenance techniques. With the advancement of digital technology and the fourth industrial revolution called Industrial Internet of Things (IIOT), coupled with the availability of computing power and data, advanced analytical tools like artificial intelligence and machine learning bring powerful algorithms for performing advanced corrosion risk assessment. A perusal of the literature reveals that a review focused on the use of machine learning in corrosion risk assessment of stress corrosion cracking is scarce. So, a comprehensive and up-to-date review on this subject is timely. In this work review we present an overview on the machine learning application in the risk assessment of stress corrosion cracking. First, the current state of the art is briefly summarized. The fundamentals of machine learning algorithms and stress corrosion cracking were presented. Existing knowledge gaps were identified and discussed while the challenges and the future perspectives on the employ of machine learning in corrosion risks assessment of stress corrosion cracking were outlined. |
Author | Alamri, Aeshah H. |
Author_xml | – sequence: 1 givenname: Aeshah H. surname: Alamri fullname: Alamri, Aeshah H. email: ahalamri@iau.edu.sa organization: Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia |
BookMark | eNp9kMtOwzAQRb0oEqX0B1jlBxrGztMSm6riUakSG1hb9mRSnKZxZUdI_D0ORSxY1BtLHp87M-eGzQY3EGN3HFIOvLzvUupOlAoQIgWZAvAZm3POYQWl4NdsGUIH8ZQFz4t6znbr06m3qEfrhsS1yVHjhx0o6Un7wQ77ZHRJGD2FkKDz3oXpH3qNh6nobTgkOoRYPtIw3rKrVveBlr_3gr0_Pb5tXla71-ftZr1boSgKvmq4rsosN5TlVGHdGF4a4CYOlWdQC1k0RnAQoIFMBi1mxsgWtCxbIzlCmy3Y9pzbON2pk7dH7b-U01b9PDi_V9qPFntSGoWpUNam1UVeAEqssiKv6thf1qUxMUucszAuFzy1f3kc1KRUdWpSqialCqSKSiNU_4PQjj8OR69tfxl9OKMUBX1a8iqgpQGpsZ5wjBvYS_g3aWKWLg |
CitedBy_id | crossref_primary_10_1007_s13349_024_00777_x crossref_primary_10_1016_j_eswa_2024_123631 crossref_primary_10_1080_19942060_2024_2302906 crossref_primary_10_1016_j_oceaneng_2024_116796 crossref_primary_10_1016_j_engfailanal_2023_107747 crossref_primary_10_3724_j_GTER_20240002 crossref_primary_10_3390_met14040409 crossref_primary_10_1016_j_corcom_2024_07_002 crossref_primary_10_1016_j_array_2024_100351 crossref_primary_10_1016_j_jpse_2024_100178 crossref_primary_10_1016_j_advengsoft_2024_103721 crossref_primary_10_1016_j_egyr_2023_08_009 crossref_primary_10_1016_j_mtcomm_2024_108591 crossref_primary_10_1007_s43938_024_00065_6 crossref_primary_10_3390_machines12010042 crossref_primary_10_1108_ACMM_07_2023_2854 crossref_primary_10_3390_toxics11040350 crossref_primary_10_1016_j_engfailanal_2023_107097 crossref_primary_10_1016_j_crgsc_2024_100402 crossref_primary_10_3390_buildings13102403 crossref_primary_10_1007_s13369_024_09241_w crossref_primary_10_1016_j_heliyon_2024_e25276 crossref_primary_10_1177_1478422X241276727 crossref_primary_10_1016_j_oceaneng_2024_119600 crossref_primary_10_1016_j_sna_2024_115383 crossref_primary_10_1038_s41529_024_00529_8 crossref_primary_10_1016_j_corsci_2023_111779 |
Cites_doi | 10.1016/S0011-9164(01)00316-2 10.1016/j.jpcs.2021.110341 10.1080/19392699.2020.1768080 10.1016/j.autcon.2017.01.016 10.1016/j.neunet.2015.04.007 10.1016/j.dsp.2009.10.004 10.1016/0022-3697(87)90120-X 10.1002/maco.202011902 10.3390/bdcc3020028 10.1007/BF00545203 10.1002/cjce.20342 10.1109/TBDATA.2016.2541167 10.1016/j.psep.2018.08.021 10.5516/NET.2007.39.4.337 10.1016/j.seps.2006.11.002 10.1103/PhysRevFluids.5.014002 10.1016/j.jiec.2021.09.022 10.1017/CBO9781139042918.002 10.5006/0010-9312-19.11.369 10.5006/3741 10.1177/0049124105283119 10.1016/j.apsusc.2020.145612 10.1016/j.neunet.2014.05.006 10.1111/0885-9507.00065 10.1016/j.asr.2014.08.018 10.1007/978-3-642-04070-2_100 10.1016/j.eswa.2009.10.012 10.1049/iet-sen.2013.0046 10.1016/j.corsci.2009.10.041 10.1007/978-1-4419-7046-6_19 10.5006/1.3280476 10.1149/1.2404217 10.1016/j.matdes.2019.108368 10.22531/muglajsci.471538 10.1016/j.jngse.2019.102971 10.1016/j.conbuildmat.2019.04.227 10.1007/s10712-019-09558-4 10.1007/s11661-010-0384-2 10.1080/14786436308211122 10.1096/fasebj.1.5.3315805 10.1016/j.psep.2018.07.006 10.1023/A:1023760326768 10.1016/j.eswa.2010.08.022 10.3390/ma10050543 10.1016/j.neuroimage.2021.117923 10.2166/hydro.2010.032 10.1016/0010-938X(93)90175-G 10.1016/j.jhydrol.2006.09.020 10.1016/j.elecom.2021.107124 10.1179/174328409X411727 10.5006/1.3292123 10.1021/acs.jctc.5b00141 10.1002/asmb.2273 10.1021/acs.iecr.8b06205 10.1021/acs.jpcc.9b09538 10.1016/j.commatsci.2019.109259 10.1016/S0031-3203(02)00060-2 10.1016/j.sbspro.2013.12.027 10.1016/j.corsci.2013.03.032 10.1533/9781845696825.1.177 10.1016/j.proeng.2014.11.085 10.1002/stc.2230 10.3390/ma9060483 10.1016/j.ijhydene.2019.02.108 10.1016/j.jlp.2012.10.010 10.1007/978-1-4899-1724-9_3 10.1016/j.energy.2014.08.072 |
ContentType | Journal Article |
Copyright | 2022 Egyptian Petroleum Research Institute |
Copyright_xml | – notice: 2022 Egyptian Petroleum Research Institute |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.ejpe.2022.09.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_ac2b7c98bfa5450c9c735478634986bb 10_1016_j_ejpe_2022_09_001 S1110062122000642 |
GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 RIG ROL SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c2551-d1a7634be34e7c8db16b01b0064308295db21020a0eb30fc3bb9f0a96fb91c0f3 |
IEDL.DBID | DOA |
ISSN | 1110-0621 |
IngestDate | Wed Aug 27 01:28:18 EDT 2025 Thu Apr 24 22:58:01 EDT 2025 Tue Jul 01 01:44:24 EDT 2025 Thu Jul 20 20:09:40 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Machine learning (ML) Industrial internet of things (IIOT) Forms of corrosion Stress corrosion cracking (SCC) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2551-d1a7634be34e7c8db16b01b0064308295db21020a0eb30fc3bb9f0a96fb91c0f3 |
OpenAccessLink | https://doaj.org/article/ac2b7c98bfa5450c9c735478634986bb |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac2b7c98bfa5450c9c735478634986bb crossref_primary_10_1016_j_ejpe_2022_09_001 crossref_citationtrail_10_1016_j_ejpe_2022_09_001 elsevier_sciencedirect_doi_10_1016_j_ejpe_2022_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Egyptian journal of petroleum |
PublicationYear | 2022 |
Publisher | Elsevier B.V Egyptian Petroleum Research Institute |
Publisher_xml | – name: Elsevier B.V – name: Egyptian Petroleum Research Institute |
References | Kramer (b0415) 2013 Shoji, Lu, Murakami (b0355) 2010; 52 Al-Jamimi, Al-Azani, Saleh (b0275) 2018; 120 Patwardhan, Hamadah, Patel, Hafiz, Al-Gwaiz (b0040) 2019; 58 Wang, Zhang, Sun, Zhang (b0070) 2017; 10 Galvele (b0475) 1993; 35 Chau, Wu (b0215) 2010; 12 Cheng (b0375) 2013 Jones (b0470) 1996; 52 Zhang, Tsai (b0290) 2005 Jiang, Craig, Crosky, Maghrebi, Canbulat, Saydam (b0125) 2018; 34 Moreno-Boza, Martínez-Calvo, Sevilla (b0365) 2020; 5 Völker, Kruschwitz, Ebell (b0025) 2020; 41 Saraswat, Kumari, Yadav (b0015) 2022; 160 Chen (b0220) 2007; 333 Zong, Song, Min, Cheng, Lumezanu, Cho, Chen (b0425) 2018 Likas, Vlassis, Verbeek (b0420) 2003; 36 Mueller, Kusne, Ramprasad (b0170) 2016; 29 Ozbas, Aksu, Ongen, Aydin, Ozcan (b0335) 2019; 44 Dede, Sazlı (b0230) 2010; 20 R. Olivas, Decision Trees, A Primer for Decision-making Professionals, 2007. Ahmed, Al-Jamimi (b0280) 2013; 7 Dral, von Lilienfeld, Thiel (b0030) 2015; 11 Catal, Sevim, Diri (b0405) 2011; 38 Shoji (b0350) 1993 Jacobsen, Zscherpel, Perner (b0075) 1999 Motulsky, Ransnas (b0400) 1987; 1 Schindelholz, Melia, Rodelas (b0005) 2021; 77 Na, Kim, Lim (b0065) 2007; 39 Rahimi, Marrow (b0445) 2020; 187 McDonald, García-Pedrajas, Macdonald, Ounis (b0315) 2017 Modarres, Astorga, Droguett, Meruane (b0085) 2018; 25 Ser, Žuvela, Wong (b0035) 2020; 512 Abd El-Lateef, Shalabi, Sayed, Gomha, Bakir (b0010) 2022; 105 Berk (b0395) 2006; 34 Takeda, Kanamori (b0235) 2014; 57 Tagliaferri (b0270) 2017 Forty, Humble (b0460) 1963; 8 P. Rudling, A. Strasser, F. Garzarolli, L. van Swam, Welding of Zirconium alloys, IZNA7 special topic report Welding of Zirconium Alloys2007. John Lu (b0260) 2010 Robertson (b0465) 1956 Wright, Guillen, Soltis (b0485) 2017 Choi, Chudnovsky (b0110) 2011; 42 D. Che, Q. Liu, K. Rasheed, X. Tao, Decision tree and ensemble learning algorithms with their applications in bioinformatics, Software tools and algorithms for biological systems2011, pp. 191-199. Elmaz, Yücel, Mutlu (b0330) 2019; 5 V. Karbhari, L.S.-W. Lee, Vibration-based damage detection techniques for structural health monitoring of civil infrastructure systems, Structural health monitoring of civil infrastructure systems, Elsevier 2009, pp. 177-212. Kim, Kang (b0240) 2010; 37 Ossai (b0055) 2019; 3 Calabrese, Campanella, Proverbio (b0130) 2013; 73 Sieradzki, Newman (b0380) 1987; 48 C. Venkatesh, P. Farinha, Corrosion Risk Assessment (CRA) in the oil and gas industry-An overview and its holistic approach, 2006. Perumal (b0480) 2014; 86 R. Bekkerman, M. Bilenko, J. Langford, Scaling up machine learning: Introduction, Scaling up Machine Learning: Parallel and Distributed Approaches; Bekkerman, R., Bilenko, M., Langford, J., Eds, DOI (2012) 1-22. Taffese, Sistonen (b0165) 2017; 77 P. Jiang, Machine learning methods for corrosion and stress corrosion cracking risk analysis of engineered systems, Doctoral dissertation). University of New South Wales, 2018. Uyanık, Güler (b0300) 2013; 106 Galvele (b0390) 1995 Han, Pei, Kamber (b0305) 2011 J.X. Lu, C. Tupper, J. Murray, Biochemistry, Dissolution and Solubility, StatPearls Publishing, Treasure Island (FL), 2021. Sturrock, Bogaerts (b0100) 1997; 53 Murphy (b0250) 2012 Tan, Goh, Chua, Chen (b0140) 2018 Abbas, Norman, Charles (b0185) 2018; 119 Cherkassky, Mulier (b0160) 2007 Bayar, Bilir (b0095) 2019; 215 W. Zewdu Taffese, Data-Driven Method for Enhanced Corrosion Assessment of Reinforced Concrete Structures, arXiv e-prints, DOI (2020) arXiv: 2007.01164. Swann, Pickering (b0450) 1963; 19 Di, Li, Yue, Sun, Liu (b0225) 2014; 54 Popov (b0340) 2015 Reich (b0245) 1997; 12 Vermilyea (b0360) 1972; 119 Nasrabadi (b0265) 2007; 16 Vaughan, Bohac (b0195) 2015; 70 Zhang, Cao, Quinn, Vivekananda, Zhan, Liu, Sun, Woolrich, Lu, Litvak (b0430) 2021; 233 Ashrafriahi, Ebrahimy, Ramsundar, Korinek, Newman (b0060) 2021; 72 Wang, Zhang, Zhou, Wei, Ding, Li (b0080) 2020; 171 S. Zhang, K.-W. Chau, Dimension reduction using semi-supervised locally linear embedding for plant leaf classification, International conference on intelligent computing, Springer, 2009, pp. 948-955. Bai, Li, Liu, Ma (b0320) 2017 Galvão, Novell-Leruth, Kuznetsova, Tedim, Gomes (b0020) 2020; 124 T. Papamarkou, H. Guy, B. Kroencke, J. Miller, P. Robinette, D. Schultz, J. Hinkle, L. Pullum, C. Schuman, J. Renshaw, Automated detection of pitting and stress corrosion cracks in used nuclear fuel dry storage canisters using residual neural networks, arXiv preprint arXiv:2003.032412020. Wu, Liang, Yang (b0410) 2008; 42 Chen, Chen, Yang, Su, Qiao (b0440) 2021; 131 Wang, Zhang, Ding, Zheng (b0180) 2010; 88 Al-Jamimi, Ahmed (b0285) 2013 Hagn (b0370) 1983 Zukhrufany (b0135) 2018 Askari, Aliofkhazraei, Afroukhteh (b0115) 2019; 71 Zhang, Tsai (b0175) 2003; 11 Reed, Starink, Gunn, Sinclair (b0120) 2009; 25 Aladejare, Onifade, Lawal (b0295) 2022; 42 Jamshidi, Yazdani-Chamzini, Yakhchali, Khaleghi (b0145) 2013; 26 Zhang, Bao, Jiang, He (b0150) 2016; 9 Kialashaki, Reisel (b0200) 2014; 76 Lynch (b0455) 1985; 20 Habib, Fakhral-Deen (b0105) 2001; 139 C. Nicholson, A Beginner's Guide to Neural Networks and Deep Learning, Retrieved January, 30 (2019) 2020. Raja, Shoji (b0345) 2011 West, Wesley-Smith, Bergstrom (b0435) 2016; 2 Zhang (10.1016/j.ejpe.2022.09.001_b0150) 2016; 9 Hagn (10.1016/j.ejpe.2022.09.001_b0370) 1983 Dede (10.1016/j.ejpe.2022.09.001_b0230) 2010; 20 Abd El-Lateef (10.1016/j.ejpe.2022.09.001_b0010) 2022; 105 Perumal (10.1016/j.ejpe.2022.09.001_b0480) 2014; 86 Calabrese (10.1016/j.ejpe.2022.09.001_b0130) 2013; 73 Ser (10.1016/j.ejpe.2022.09.001_b0035) 2020; 512 West (10.1016/j.ejpe.2022.09.001_b0435) 2016; 2 Chen (10.1016/j.ejpe.2022.09.001_b0440) 2021; 131 10.1016/j.ejpe.2022.09.001_b0050 Zukhrufany (10.1016/j.ejpe.2022.09.001_b0135) 2018 McDonald (10.1016/j.ejpe.2022.09.001_b0315) 2017 Cheng (10.1016/j.ejpe.2022.09.001_b0375) 2013 Moreno-Boza (10.1016/j.ejpe.2022.09.001_b0365) 2020; 5 10.1016/j.ejpe.2022.09.001_b0210 Na (10.1016/j.ejpe.2022.09.001_b0065) 2007; 39 Chen (10.1016/j.ejpe.2022.09.001_b0220) 2007; 333 Ashrafriahi (10.1016/j.ejpe.2022.09.001_b0060) 2021; 72 Dral (10.1016/j.ejpe.2022.09.001_b0030) 2015; 11 Bayar (10.1016/j.ejpe.2022.09.001_b0095) 2019; 215 Reich (10.1016/j.ejpe.2022.09.001_b0245) 1997; 12 Kialashaki (10.1016/j.ejpe.2022.09.001_b0200) 2014; 76 Wang (10.1016/j.ejpe.2022.09.001_b0080) 2020; 171 Völker (10.1016/j.ejpe.2022.09.001_b0025) 2020; 41 Forty (10.1016/j.ejpe.2022.09.001_b0460) 1963; 8 Vermilyea (10.1016/j.ejpe.2022.09.001_b0360) 1972; 119 10.1016/j.ejpe.2022.09.001_b0045 Reed (10.1016/j.ejpe.2022.09.001_b0120) 2009; 25 Taffese (10.1016/j.ejpe.2022.09.001_b0165) 2017; 77 Wright (10.1016/j.ejpe.2022.09.001_b0485) 2017 Wang (10.1016/j.ejpe.2022.09.001_b0180) 2010; 88 Shoji (10.1016/j.ejpe.2022.09.001_b0355) 2010; 52 Motulsky (10.1016/j.ejpe.2022.09.001_b0400) 1987; 1 Raja (10.1016/j.ejpe.2022.09.001_b0345) 2011 Bai (10.1016/j.ejpe.2022.09.001_b0320) 2017 Vaughan (10.1016/j.ejpe.2022.09.001_b0195) 2015; 70 Tan (10.1016/j.ejpe.2022.09.001_b0140) 2018 Elmaz (10.1016/j.ejpe.2022.09.001_b0330) 2019; 5 10.1016/j.ejpe.2022.09.001_b0325 10.1016/j.ejpe.2022.09.001_b0205 Cherkassky (10.1016/j.ejpe.2022.09.001_b0160) 2007 10.1016/j.ejpe.2022.09.001_b0155 10.1016/j.ejpe.2022.09.001_b0310 Galvele (10.1016/j.ejpe.2022.09.001_b0475) 1993; 35 Galvão (10.1016/j.ejpe.2022.09.001_b0020) 2020; 124 John Lu (10.1016/j.ejpe.2022.09.001_b0260) 2010 Saraswat (10.1016/j.ejpe.2022.09.001_b0015) 2022; 160 Likas (10.1016/j.ejpe.2022.09.001_b0420) 2003; 36 Zhang (10.1016/j.ejpe.2022.09.001_b0290) 2005 Jacobsen (10.1016/j.ejpe.2022.09.001_b0075) 1999 Lynch (10.1016/j.ejpe.2022.09.001_b0455) 1985; 20 10.1016/j.ejpe.2022.09.001_b0385 Berk (10.1016/j.ejpe.2022.09.001_b0395) 2006; 34 Han (10.1016/j.ejpe.2022.09.001_b0305) 2011 Sieradzki (10.1016/j.ejpe.2022.09.001_b0380) 1987; 48 Jamshidi (10.1016/j.ejpe.2022.09.001_b0145) 2013; 26 10.1016/j.ejpe.2022.09.001_b0490 Shoji (10.1016/j.ejpe.2022.09.001_b0350) 1993 10.1016/j.ejpe.2022.09.001_b0090 Wu (10.1016/j.ejpe.2022.09.001_b0410) 2008; 42 Catal (10.1016/j.ejpe.2022.09.001_b0405) 2011; 38 10.1016/j.ejpe.2022.09.001_b0255 Al-Jamimi (10.1016/j.ejpe.2022.09.001_b0275) 2018; 120 Swann (10.1016/j.ejpe.2022.09.001_b0450) 1963; 19 Chau (10.1016/j.ejpe.2022.09.001_b0215) 2010; 12 Zhang (10.1016/j.ejpe.2022.09.001_b0430) 2021; 233 Habib (10.1016/j.ejpe.2022.09.001_b0105) 2001; 139 Abbas (10.1016/j.ejpe.2022.09.001_b0185) 2018; 119 Schindelholz (10.1016/j.ejpe.2022.09.001_b0005) 2021; 77 Murphy (10.1016/j.ejpe.2022.09.001_b0250) 2012 Rahimi (10.1016/j.ejpe.2022.09.001_b0445) 2020; 187 Mueller (10.1016/j.ejpe.2022.09.001_b0170) 2016; 29 Aladejare (10.1016/j.ejpe.2022.09.001_b0295) 2022; 42 Jones (10.1016/j.ejpe.2022.09.001_b0470) 1996; 52 Wang (10.1016/j.ejpe.2022.09.001_b0070) 2017; 10 Sturrock (10.1016/j.ejpe.2022.09.001_b0100) 1997; 53 Takeda (10.1016/j.ejpe.2022.09.001_b0235) 2014; 57 Zhang (10.1016/j.ejpe.2022.09.001_b0175) 2003; 11 Zong (10.1016/j.ejpe.2022.09.001_b0425) 2018 Uyanık (10.1016/j.ejpe.2022.09.001_b0300) 2013; 106 Robertson (10.1016/j.ejpe.2022.09.001_b0465) 1956 Nasrabadi (10.1016/j.ejpe.2022.09.001_b0265) 2007; 16 Choi (10.1016/j.ejpe.2022.09.001_b0110) 2011; 42 Tagliaferri (10.1016/j.ejpe.2022.09.001_b0270) 2017 Ozbas (10.1016/j.ejpe.2022.09.001_b0335) 2019; 44 Kramer (10.1016/j.ejpe.2022.09.001_b0415) 2013 Askari (10.1016/j.ejpe.2022.09.001_b0115) 2019; 71 10.1016/j.ejpe.2022.09.001_b0190 Patwardhan (10.1016/j.ejpe.2022.09.001_b0040) 2019; 58 Kim (10.1016/j.ejpe.2022.09.001_b0240) 2010; 37 Al-Jamimi (10.1016/j.ejpe.2022.09.001_b0285) 2013 Jiang (10.1016/j.ejpe.2022.09.001_b0125) 2018; 34 Di (10.1016/j.ejpe.2022.09.001_b0225) 2014; 54 Popov (10.1016/j.ejpe.2022.09.001_b0340) 2015 Ossai (10.1016/j.ejpe.2022.09.001_b0055) 2019; 3 Galvele (10.1016/j.ejpe.2022.09.001_b0390) 1995 Modarres (10.1016/j.ejpe.2022.09.001_b0085) 2018; 25 Ahmed (10.1016/j.ejpe.2022.09.001_b0280) 2013; 7 |
References_xml | – volume: 35 start-page: 419 year: 1993 end-page: 434 ident: b0475 article-title: Surface mobility mechanism of stress-corrosion cracking publication-title: Corros. Sci. – volume: 86 start-page: 597 year: 2014 end-page: 605 ident: b0480 article-title: Corrosion risk analysis, risk based inspection and a case study concerning a condensate pipeline publication-title: Procedia Eng. – volume: 119 start-page: 36 year: 2018 end-page: 45 ident: b0185 article-title: Neural network modelling of high pressure CO2 corrosion in pipeline steels publication-title: Process Saf. Environ. Prot. – volume: 53 year: 1997 ident: b0100 article-title: Empirical learning investigations of the stress corrosion cracking of austenitic stainless steels in high-temperature aqueous environments publication-title: Corrosion – volume: 1 start-page: 365 year: 1987 end-page: 374 ident: b0400 article-title: Fitting curves to data using nonlinear regression: a practical and nonmathematical review publication-title: FASEB J. – volume: 77 start-page: 1 year: 2017 end-page: 14 ident: b0165 article-title: Machine learning for durability and service-life assessment of reinforced concrete structures: recent advances and future directions publication-title: Autom. Constr. – volume: 124 start-page: 5624 year: 2020 end-page: 5635 ident: b0020 article-title: Elucidating structure-property relationships in aluminum alloy corrosion inhibitors by machine learning publication-title: J. Phys. Chem. C – reference: J.X. Lu, C. Tupper, J. Murray, Biochemistry, Dissolution and Solubility, StatPearls Publishing, Treasure Island (FL), 2021. – volume: 12 start-page: 295 year: 1997 end-page: 310 ident: b0245 article-title: Machine learning techniques for civil engineering problems publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 34 start-page: 263 year: 2006 end-page: 295 ident: b0395 article-title: An introduction to ensemble methods for data analysis publication-title: Sociol. Methods Res. – volume: 16 year: 2007 ident: b0265 article-title: Pattern recognition and machine learning publication-title: J. Electron. Imaging – start-page: 1 year: 2013 end-page: 4 ident: b0285 article-title: Machine learning-based software quality prediction models: state of the art publication-title: 2013 International Conference on Information Science and Applications (ICISA) – year: 2015 ident: b0340 article-title: Corrosion Engineering: Principles and Solved Problems – volume: 39 start-page: 337 year: 2007 end-page: 348 ident: b0065 article-title: Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models publication-title: Nucl. Eng. Technol. – volume: 19 start-page: 369t year: 1963 end-page: 372t ident: b0450 article-title: Implications of the stress aging yield phenomenon with regard to stress corrosion cracking publication-title: Corrosion – reference: C. Venkatesh, P. Farinha, Corrosion Risk Assessment (CRA) in the oil and gas industry-An overview and its holistic approach, 2006. – year: 2018 ident: b0135 article-title: The utilization of supervised machine learning in predicting corrosion to support preventing pipelines leakage in oil and gas industry – start-page: 1290 year: 2018 end-page: 1295 ident: b0140 article-title: Learning with corrosion feature: For automated quantitative risk analysis of corrosion mechanism publication-title: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE) – volume: 11 start-page: 87 year: 2003 end-page: 119 ident: b0175 article-title: Machine learning and software engineering publication-title: Software Qual. J. – reference: D. Che, Q. Liu, K. Rasheed, X. Tao, Decision tree and ensemble learning algorithms with their applications in bioinformatics, Software tools and algorithms for biological systems2011, pp. 191-199. – volume: 187 year: 2020 ident: b0445 article-title: A new method for predicting susceptibility of austenitic stainless steels to intergranular stress corrosion cracking publication-title: Mater. Des. – volume: 131 year: 2021 ident: b0440 article-title: Study of the relationship between intergranular stress corrosion cracking and grain boundary characteristics in brass publication-title: Electrochem. Commun. – reference: V. Karbhari, L.S.-W. Lee, Vibration-based damage detection techniques for structural health monitoring of civil infrastructure systems, Structural health monitoring of civil infrastructure systems, Elsevier 2009, pp. 177-212. – start-page: 1 year: 2017 end-page: 7 ident: b0485 article-title: Risk management of stress corrosion cracking of buried pipelines publication-title: Rio Pipeline Conf. Exhibition – reference: R. Olivas, Decision Trees, A Primer for Decision-making Professionals, 2007. – volume: 11 start-page: 2120 year: 2015 end-page: 2125 ident: b0030 article-title: Machine learning of parameters for accurate semiempirical quantum chemical calculations publication-title: J. Chem. Theory Comput. – start-page: 144 year: 1999 end-page: 158 ident: b0075 article-title: A comparison between neural networks and decision trees publication-title: Machine Learning and Data Mining in Pattern Recognition – volume: 120 start-page: 57 year: 2018 end-page: 71 ident: b0275 article-title: Supervised machine learning techniques in the desulfurization of oil products for environmental protection: a review publication-title: Process Saf. Environ. Prot. – volume: 20 start-page: 763 year: 2010 end-page: 768 ident: b0230 article-title: Speech recognition with artificial neural networks publication-title: Digital Signal Process. – reference: S. Zhang, K.-W. Chau, Dimension reduction using semi-supervised locally linear embedding for plant leaf classification, International conference on intelligent computing, Springer, 2009, pp. 948-955. – volume: 333 start-page: 554 year: 2007 end-page: 568 ident: b0220 article-title: Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley, Nebraska publication-title: J. Hydrol. – volume: 5 year: 2020 ident: b0365 article-title: Stokes theory of thin-film rupture publication-title: Phys. Rev. Fluids – reference: P. Rudling, A. Strasser, F. Garzarolli, L. van Swam, Welding of Zirconium alloys, IZNA7 special topic report Welding of Zirconium Alloys2007. – volume: 106 start-page: 234 year: 2013 end-page: 240 ident: b0300 article-title: A study on multiple linear regression analysis publication-title: Proc.-Social Behav. Sci. – volume: 42 start-page: 1830 year: 2022 end-page: 1851 ident: b0295 article-title: Application of metaheuristic based artificial neural network and multilinear regression for the prediction of higher heating values of fuels publication-title: Int. J. Coal Preparation Util. – volume: 7 start-page: 317 year: 2013 end-page: 326 ident: b0280 article-title: Machine learning approaches for predicting software maintainability: a fuzzy-based transparent model publication-title: IET Software – volume: 12 start-page: 458 year: 2010 end-page: 473 ident: b0215 article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction publication-title: J. Hydroinformatics – volume: 8 start-page: 247 year: 1963 end-page: 264 ident: b0460 article-title: The influence of surface tarnish on the stress-corrosion of α-brass publication-title: Phil. Mag. – volume: 76 start-page: 749 year: 2014 end-page: 760 ident: b0200 article-title: Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States publication-title: Energy – volume: 72 start-page: 517 year: 2021 end-page: 527 ident: b0060 article-title: New insights into the stress corrosion cracking of carbon steel in ethanolic media publication-title: Mater. Corros. – volume: 38 start-page: 2347 year: 2011 end-page: 2353 ident: b0405 article-title: Practical development of an Eclipse-based software fault prediction tool using Naive Bayes algorithm publication-title: Expert Syst. Appl. – reference: R. Bekkerman, M. Bilenko, J. Langford, Scaling up machine learning: Introduction, Scaling up Machine Learning: Parallel and Distributed Approaches; Bekkerman, R., Bilenko, M., Langford, J., Eds, DOI (2012) 1-22. – year: 2013 ident: b0375 article-title: Stress Corrosion Cracking of Pipelines – year: 2005 ident: b0290 article-title: Machine learning applications in software engineering – reference: C. Nicholson, A Beginner's Guide to Neural Networks and Deep Learning, Retrieved January, 30 (2019) 2020. – volume: 25 start-page: 488 year: 2009 end-page: 503 ident: b0120 article-title: Invited review: Adaptive numerical modelling and hybrid physically based ANM approaches in materials engineering–a survey publication-title: Mater. Sci. Technol. – volume: 36 start-page: 451 year: 2003 end-page: 461 ident: b0420 article-title: The global k-means clustering algorithm publication-title: Pattern Recogn. – start-page: 13 year: 2013 end-page: 23 ident: b0415 article-title: K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors – reference: T. Papamarkou, H. Guy, B. Kroencke, J. Miller, P. Robinette, D. Schultz, J. Hinkle, L. Pullum, C. Schuman, J. Renshaw, Automated detection of pitting and stress corrosion cracks in used nuclear fuel dry storage canisters using residual neural networks, arXiv preprint arXiv:2003.032412020. – year: 2007 ident: b0160 article-title: Learning from data: concepts, theory, and methods – volume: 48 start-page: 1101 year: 1987 end-page: 1113 ident: b0380 article-title: Stress-corrosion cracking publication-title: J. Phys. Chem. Solids – start-page: 1421 year: 2017 end-page: 1426 ident: b0320 article-title: Short-term prediction of distribution network faults based on support vector machine publication-title: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA) – volume: 9 start-page: 483 year: 2016 ident: b0150 article-title: An artificial neural network-based algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation publication-title: Materials – year: 2017 ident: b0270 article-title: An introduction to machine learning publication-title: DigitalOcean – volume: 44 start-page: 17260 year: 2019 end-page: 17268 ident: b0335 article-title: Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms publication-title: Int. J. Hydrogen Energy – volume: 105 start-page: 238 year: 2022 end-page: 250 ident: b0010 article-title: The novel polythiadiazole polymer and its composite with α-Al (OH) 3 as inhibitors for steel alloy corrosion in molar H2SO4: Experimental and computational evaluations publication-title: J. Ind. Eng. Chem. – volume: 25 start-page: e2230 year: 2018 ident: b0085 article-title: Convolutional neural networks for automated damage recognition and damage type identification publication-title: Struct. Control Health Monitor. – volume: 37 start-page: 3373 year: 2010 end-page: 3379 ident: b0240 article-title: Ensemble with neural networks for bankruptcy prediction publication-title: Expert Syst. Appl. – volume: 57 start-page: 29 year: 2014 end-page: 38 ident: b0235 article-title: Using financial risk measures for analyzing generalization performance of machine learning models publication-title: Neural networks – volume: 77 start-page: 484 year: 2021 end-page: 503 ident: b0005 article-title: Corrosion of additively manufactured stainless steels—process, structure, performance: A review publication-title: Corrosion – volume: 3 start-page: 28 year: 2019 ident: b0055 article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study publication-title: Big Data Cogn. Comput. – volume: 52 year: 1996 ident: b0470 article-title: Localized surface plasticity during stress corrosion cracking publication-title: Corrosion – volume: 54 start-page: 2419 year: 2014 end-page: 2429 ident: b0225 article-title: A machine learning approach to crater detection from topographic data publication-title: Adv. Space Res. – volume: 70 start-page: 18 year: 2015 end-page: 26 ident: b0195 article-title: Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series publication-title: Neural Networks – volume: 233 year: 2021 ident: b0430 article-title: Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model publication-title: NeuroImage – year: 2018 ident: b0425 article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection publication-title: International Conference on Learning Representations – start-page: 1097 year: 2017 end-page: 1100 ident: b0315 article-title: A study of SVM kernel functions for sensitivity classification ensembles with POS sequences publication-title: Proceedings of the 40th international ACM SIGIR Conference on Research and Development in Information Retrieval – reference: W. Zewdu Taffese, Data-Driven Method for Enhanced Corrosion Assessment of Reinforced Concrete Structures, arXiv e-prints, DOI (2020) arXiv: 2007.01164. – volume: 42 start-page: 383 year: 2011 end-page: 395 ident: b0110 article-title: Observation and modeling of stress corrosion cracking in high pressure gas pipe steel publication-title: Metall. Mater. Trans. A – year: 2012 ident: b0250 article-title: Machine learning: a probabilistic perspective – volume: 42 start-page: 206 year: 2008 end-page: 220 ident: b0410 article-title: Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis publication-title: Socio-Econ. Plann. Sci. – volume: 160 year: 2022 ident: b0015 article-title: Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies publication-title: J. Phys. Chem. Solids – start-page: 481 year: 1983 end-page: 516 ident: b0370 article-title: Lifetime prediction for parts in corrosive environments publication-title: Corros. Power Generat. Equip. – volume: 10 start-page: 543 year: 2017 ident: b0070 article-title: A comparison study of machine learning based algorithms for fatigue crack growth calculation publication-title: Materials – reference: P. Jiang, Machine learning methods for corrosion and stress corrosion cracking risk analysis of engineered systems, Doctoral dissertation). University of New South Wales, 2018. – start-page: 233 year: 1995 end-page: 358 ident: b0390 article-title: Electrochemical aspects of stress corrosion cracking, Modern aspects of electrochemistry – volume: 29 start-page: 186 year: 2016 end-page: 273 ident: b0170 article-title: Machine learning in materials science: Recent progress and emerging applications publication-title: Rev. Comput. Chem. – volume: 512 year: 2020 ident: b0035 article-title: Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships publication-title: Appl. Surf. Sci. – volume: 73 start-page: 161 year: 2013 end-page: 171 ident: b0130 article-title: Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam publication-title: Corros. Sci. – volume: 171 year: 2020 ident: b0080 article-title: A computer vision based machine learning approach for fatigue crack initiation sites recognition publication-title: Comput. Mater. Sci. – volume: 119 start-page: 405 year: 1972 ident: b0360 article-title: A theory for the propagation of stress corrosion cracks in metals publication-title: J. Electrochem. Soc. – year: 1956 ident: b0465 article-title: Stress, Corrosion Cracking and Embrittlement: A Symposium Arranged by the Corrosion Division of the Electrochemical Society – volume: 52 start-page: 769 year: 2010 end-page: 779 ident: b0355 article-title: Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics publication-title: Corros. Sci. – year: 2011 ident: b0305 article-title: Data mining: concepts and techniques – volume: 88 start-page: 801 year: 2010 end-page: 807 ident: b0180 article-title: Simulation of hydrodesulfurization using artificial neural network publication-title: Can. J. Chem. Eng. – year: 2010 ident: b0260 article-title: The elements of statistical learning: data mining, inference, and prediction publication-title: Wiley Online Library – volume: 5 start-page: 1 year: 2019 end-page: 12 ident: b0330 article-title: Evaluating the effect of blending ratio on the co-gasification of high ash coal and biomass in a fluidized bed gasifier using machine learning publication-title: Mugla J. Sci. Technol. – volume: 41 start-page: 531 year: 2020 end-page: 548 ident: b0025 article-title: A machine learning-based data fusion approach for improved corrosion testing publication-title: Surv. Geophys. – volume: 139 start-page: 249 year: 2001 end-page: 253 ident: b0105 article-title: Risk assessment and evaluation of materials commonly used in desalination plants subjected to pollution impact of the oil spill and oil fires in marine environment publication-title: Desalination – volume: 26 start-page: 197 year: 2013 end-page: 208 ident: b0145 article-title: Developing a new fuzzy inference system for pipeline risk assessment publication-title: J. Loss Prev. Process Ind. – volume: 34 start-page: 293 year: 2018 end-page: 304 ident: b0125 article-title: Risk assessment of failure of rock bolts in underground coal mines using support vector machines publication-title: Appl. Stochastic Models Bus. Ind. – volume: 58 start-page: 11338 year: 2019 end-page: 11351 ident: b0040 article-title: Applications of advanced analytics at Saudi Aramco: A practitioners’ perspective publication-title: Ind. Eng. Chem. Res. – year: 2011 ident: b0345 article-title: Stress corrosion cracking: theory and practice – volume: 215 start-page: 670 year: 2019 end-page: 685 ident: b0095 article-title: A novel study for the estimation of crack propagation in concrete using machine learning algorithms publication-title: Constr. Build. Mater. – volume: 20 start-page: 3329 year: 1985 end-page: 3338 ident: b0455 article-title: Mechanisms of stress-corrosion cracking and liquid-metal embrittlement in Al-Zn-Mg bicrystals publication-title: J. Mater. Sci. – year: 1993 ident: b0350 article-title: Computer simulation of stress corrosion cracking, International Conference on Corrosion-Deformation Interactions CDI'92 – volume: 2 start-page: 113 year: 2016 end-page: 123 ident: b0435 article-title: A recommendation system based on hierarchical clustering of an article-level citation network publication-title: IEEE Trans. Big Data – volume: 71 year: 2019 ident: b0115 article-title: A comprehensive review on internal corrosion and cracking of oil and gas pipelines publication-title: J. Nat. Gas Sci. Eng. – volume: 139 start-page: 249 year: 2001 ident: 10.1016/j.ejpe.2022.09.001_b0105 article-title: Risk assessment and evaluation of materials commonly used in desalination plants subjected to pollution impact of the oil spill and oil fires in marine environment publication-title: Desalination doi: 10.1016/S0011-9164(01)00316-2 – volume: 160 year: 2022 ident: 10.1016/j.ejpe.2022.09.001_b0015 article-title: Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2021.110341 – volume: 42 start-page: 1830 year: 2022 ident: 10.1016/j.ejpe.2022.09.001_b0295 article-title: Application of metaheuristic based artificial neural network and multilinear regression for the prediction of higher heating values of fuels publication-title: Int. J. Coal Preparation Util. doi: 10.1080/19392699.2020.1768080 – start-page: 1097 year: 2017 ident: 10.1016/j.ejpe.2022.09.001_b0315 article-title: A study of SVM kernel functions for sensitivity classification ensembles with POS sequences – start-page: 1 year: 2017 ident: 10.1016/j.ejpe.2022.09.001_b0485 article-title: Risk management of stress corrosion cracking of buried pipelines publication-title: Rio Pipeline Conf. Exhibition – year: 2007 ident: 10.1016/j.ejpe.2022.09.001_b0160 – volume: 77 start-page: 1 year: 2017 ident: 10.1016/j.ejpe.2022.09.001_b0165 article-title: Machine learning for durability and service-life assessment of reinforced concrete structures: recent advances and future directions publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.01.016 – volume: 70 start-page: 18 year: 2015 ident: 10.1016/j.ejpe.2022.09.001_b0195 article-title: Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series publication-title: Neural Networks doi: 10.1016/j.neunet.2015.04.007 – volume: 20 start-page: 763 year: 2010 ident: 10.1016/j.ejpe.2022.09.001_b0230 article-title: Speech recognition with artificial neural networks publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2009.10.004 – year: 2012 ident: 10.1016/j.ejpe.2022.09.001_b0250 – year: 2018 ident: 10.1016/j.ejpe.2022.09.001_b0135 – volume: 48 start-page: 1101 year: 1987 ident: 10.1016/j.ejpe.2022.09.001_b0380 article-title: Stress-corrosion cracking publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(87)90120-X – volume: 72 start-page: 517 year: 2021 ident: 10.1016/j.ejpe.2022.09.001_b0060 article-title: New insights into the stress corrosion cracking of carbon steel in ethanolic media publication-title: Mater. Corros. doi: 10.1002/maco.202011902 – volume: 29 start-page: 186 year: 2016 ident: 10.1016/j.ejpe.2022.09.001_b0170 article-title: Machine learning in materials science: Recent progress and emerging applications publication-title: Rev. Comput. Chem. – volume: 3 start-page: 28 year: 2019 ident: 10.1016/j.ejpe.2022.09.001_b0055 article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study publication-title: Big Data Cogn. Comput. doi: 10.3390/bdcc3020028 – volume: 20 start-page: 3329 year: 1985 ident: 10.1016/j.ejpe.2022.09.001_b0455 article-title: Mechanisms of stress-corrosion cracking and liquid-metal embrittlement in Al-Zn-Mg bicrystals publication-title: J. Mater. Sci. doi: 10.1007/BF00545203 – volume: 88 start-page: 801 year: 2010 ident: 10.1016/j.ejpe.2022.09.001_b0180 article-title: Simulation of hydrodesulfurization using artificial neural network publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.20342 – volume: 2 start-page: 113 year: 2016 ident: 10.1016/j.ejpe.2022.09.001_b0435 article-title: A recommendation system based on hierarchical clustering of an article-level citation network publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2016.2541167 – volume: 120 start-page: 57 year: 2018 ident: 10.1016/j.ejpe.2022.09.001_b0275 article-title: Supervised machine learning techniques in the desulfurization of oil products for environmental protection: a review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2018.08.021 – volume: 39 start-page: 337 year: 2007 ident: 10.1016/j.ejpe.2022.09.001_b0065 article-title: Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models publication-title: Nucl. Eng. Technol. doi: 10.5516/NET.2007.39.4.337 – volume: 42 start-page: 206 year: 2008 ident: 10.1016/j.ejpe.2022.09.001_b0410 article-title: Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis publication-title: Socio-Econ. Plann. Sci. doi: 10.1016/j.seps.2006.11.002 – ident: 10.1016/j.ejpe.2022.09.001_b0050 – volume: 5 year: 2020 ident: 10.1016/j.ejpe.2022.09.001_b0365 article-title: Stokes theory of thin-film rupture publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.014002 – volume: 105 start-page: 238 year: 2022 ident: 10.1016/j.ejpe.2022.09.001_b0010 article-title: The novel polythiadiazole polymer and its composite with α-Al (OH) 3 as inhibitors for steel alloy corrosion in molar H2SO4: Experimental and computational evaluations publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2021.09.022 – ident: 10.1016/j.ejpe.2022.09.001_b0155 doi: 10.1017/CBO9781139042918.002 – year: 2017 ident: 10.1016/j.ejpe.2022.09.001_b0270 article-title: An introduction to machine learning publication-title: DigitalOcean – year: 1993 ident: 10.1016/j.ejpe.2022.09.001_b0350 – ident: 10.1016/j.ejpe.2022.09.001_b0385 – volume: 19 start-page: 369t year: 1963 ident: 10.1016/j.ejpe.2022.09.001_b0450 article-title: Implications of the stress aging yield phenomenon with regard to stress corrosion cracking publication-title: Corrosion doi: 10.5006/0010-9312-19.11.369 – volume: 77 start-page: 484 year: 2021 ident: 10.1016/j.ejpe.2022.09.001_b0005 article-title: Corrosion of additively manufactured stainless steels—process, structure, performance: A review publication-title: Corrosion doi: 10.5006/3741 – ident: 10.1016/j.ejpe.2022.09.001_b0325 – volume: 34 start-page: 263 year: 2006 ident: 10.1016/j.ejpe.2022.09.001_b0395 article-title: An introduction to ensemble methods for data analysis publication-title: Sociol. Methods Res. doi: 10.1177/0049124105283119 – volume: 512 year: 2020 ident: 10.1016/j.ejpe.2022.09.001_b0035 article-title: Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145612 – start-page: 144 year: 1999 ident: 10.1016/j.ejpe.2022.09.001_b0075 article-title: A comparison between neural networks and decision trees – volume: 57 start-page: 29 year: 2014 ident: 10.1016/j.ejpe.2022.09.001_b0235 article-title: Using financial risk measures for analyzing generalization performance of machine learning models publication-title: Neural networks doi: 10.1016/j.neunet.2014.05.006 – volume: 12 start-page: 295 year: 1997 ident: 10.1016/j.ejpe.2022.09.001_b0245 article-title: Machine learning techniques for civil engineering problems publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/0885-9507.00065 – volume: 54 start-page: 2419 year: 2014 ident: 10.1016/j.ejpe.2022.09.001_b0225 article-title: A machine learning approach to crater detection from topographic data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2014.08.018 – ident: 10.1016/j.ejpe.2022.09.001_b0210 doi: 10.1007/978-3-642-04070-2_100 – ident: 10.1016/j.ejpe.2022.09.001_b0090 – year: 2010 ident: 10.1016/j.ejpe.2022.09.001_b0260 article-title: The elements of statistical learning: data mining, inference, and prediction publication-title: Wiley Online Library – volume: 37 start-page: 3373 year: 2010 ident: 10.1016/j.ejpe.2022.09.001_b0240 article-title: Ensemble with neural networks for bankruptcy prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.10.012 – year: 2005 ident: 10.1016/j.ejpe.2022.09.001_b0290 – volume: 7 start-page: 317 year: 2013 ident: 10.1016/j.ejpe.2022.09.001_b0280 article-title: Machine learning approaches for predicting software maintainability: a fuzzy-based transparent model publication-title: IET Software doi: 10.1049/iet-sen.2013.0046 – volume: 52 start-page: 769 year: 2010 ident: 10.1016/j.ejpe.2022.09.001_b0355 article-title: Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.10.041 – ident: 10.1016/j.ejpe.2022.09.001_b0205 doi: 10.1007/978-1-4419-7046-6_19 – year: 1956 ident: 10.1016/j.ejpe.2022.09.001_b0465 – volume: 53 year: 1997 ident: 10.1016/j.ejpe.2022.09.001_b0100 article-title: Empirical learning investigations of the stress corrosion cracking of austenitic stainless steels in high-temperature aqueous environments publication-title: Corrosion doi: 10.5006/1.3280476 – volume: 119 start-page: 405 year: 1972 ident: 10.1016/j.ejpe.2022.09.001_b0360 article-title: A theory for the propagation of stress corrosion cracks in metals publication-title: J. Electrochem. Soc. doi: 10.1149/1.2404217 – start-page: 13 year: 2013 ident: 10.1016/j.ejpe.2022.09.001_b0415 – volume: 187 year: 2020 ident: 10.1016/j.ejpe.2022.09.001_b0445 article-title: A new method for predicting susceptibility of austenitic stainless steels to intergranular stress corrosion cracking publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108368 – volume: 5 start-page: 1 year: 2019 ident: 10.1016/j.ejpe.2022.09.001_b0330 article-title: Evaluating the effect of blending ratio on the co-gasification of high ash coal and biomass in a fluidized bed gasifier using machine learning publication-title: Mugla J. Sci. Technol. doi: 10.22531/muglajsci.471538 – ident: 10.1016/j.ejpe.2022.09.001_b0045 – volume: 71 year: 2019 ident: 10.1016/j.ejpe.2022.09.001_b0115 article-title: A comprehensive review on internal corrosion and cracking of oil and gas pipelines publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2019.102971 – year: 2011 ident: 10.1016/j.ejpe.2022.09.001_b0305 – volume: 215 start-page: 670 year: 2019 ident: 10.1016/j.ejpe.2022.09.001_b0095 article-title: A novel study for the estimation of crack propagation in concrete using machine learning algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.04.227 – volume: 41 start-page: 531 year: 2020 ident: 10.1016/j.ejpe.2022.09.001_b0025 article-title: A machine learning-based data fusion approach for improved corrosion testing publication-title: Surv. Geophys. doi: 10.1007/s10712-019-09558-4 – volume: 42 start-page: 383 year: 2011 ident: 10.1016/j.ejpe.2022.09.001_b0110 article-title: Observation and modeling of stress corrosion cracking in high pressure gas pipe steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-010-0384-2 – volume: 8 start-page: 247 year: 1963 ident: 10.1016/j.ejpe.2022.09.001_b0460 article-title: The influence of surface tarnish on the stress-corrosion of α-brass publication-title: Phil. Mag. doi: 10.1080/14786436308211122 – start-page: 1 year: 2013 ident: 10.1016/j.ejpe.2022.09.001_b0285 article-title: Machine learning-based software quality prediction models: state of the art – start-page: 481 year: 1983 ident: 10.1016/j.ejpe.2022.09.001_b0370 article-title: Lifetime prediction for parts in corrosive environments publication-title: Corros. Power Generat. Equip. – volume: 1 start-page: 365 year: 1987 ident: 10.1016/j.ejpe.2022.09.001_b0400 article-title: Fitting curves to data using nonlinear regression: a practical and nonmathematical review publication-title: FASEB J. doi: 10.1096/fasebj.1.5.3315805 – volume: 119 start-page: 36 year: 2018 ident: 10.1016/j.ejpe.2022.09.001_b0185 article-title: Neural network modelling of high pressure CO2 corrosion in pipeline steels publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2018.07.006 – volume: 11 start-page: 87 year: 2003 ident: 10.1016/j.ejpe.2022.09.001_b0175 article-title: Machine learning and software engineering publication-title: Software Qual. J. doi: 10.1023/A:1023760326768 – volume: 38 start-page: 2347 year: 2011 ident: 10.1016/j.ejpe.2022.09.001_b0405 article-title: Practical development of an Eclipse-based software fault prediction tool using Naive Bayes algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.022 – volume: 10 start-page: 543 year: 2017 ident: 10.1016/j.ejpe.2022.09.001_b0070 article-title: A comparison study of machine learning based algorithms for fatigue crack growth calculation publication-title: Materials doi: 10.3390/ma10050543 – volume: 233 year: 2021 ident: 10.1016/j.ejpe.2022.09.001_b0430 article-title: Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117923 – year: 2013 ident: 10.1016/j.ejpe.2022.09.001_b0375 – volume: 12 start-page: 458 year: 2010 ident: 10.1016/j.ejpe.2022.09.001_b0215 article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction publication-title: J. Hydroinformatics doi: 10.2166/hydro.2010.032 – volume: 35 start-page: 419 year: 1993 ident: 10.1016/j.ejpe.2022.09.001_b0475 article-title: Surface mobility mechanism of stress-corrosion cracking publication-title: Corros. Sci. doi: 10.1016/0010-938X(93)90175-G – start-page: 1290 year: 2018 ident: 10.1016/j.ejpe.2022.09.001_b0140 article-title: Learning with corrosion feature: For automated quantitative risk analysis of corrosion mechanism – volume: 333 start-page: 554 year: 2007 ident: 10.1016/j.ejpe.2022.09.001_b0220 article-title: Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley, Nebraska publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.09.020 – volume: 16 year: 2007 ident: 10.1016/j.ejpe.2022.09.001_b0265 article-title: Pattern recognition and machine learning publication-title: J. Electron. Imaging – start-page: 1421 year: 2017 ident: 10.1016/j.ejpe.2022.09.001_b0320 article-title: Short-term prediction of distribution network faults based on support vector machine – volume: 131 year: 2021 ident: 10.1016/j.ejpe.2022.09.001_b0440 article-title: Study of the relationship between intergranular stress corrosion cracking and grain boundary characteristics in brass publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2021.107124 – volume: 25 start-page: 488 year: 2009 ident: 10.1016/j.ejpe.2022.09.001_b0120 article-title: Invited review: Adaptive numerical modelling and hybrid physically based ANM approaches in materials engineering–a survey publication-title: Mater. Sci. Technol. doi: 10.1179/174328409X411727 – ident: 10.1016/j.ejpe.2022.09.001_b0490 – volume: 52 year: 1996 ident: 10.1016/j.ejpe.2022.09.001_b0470 article-title: Localized surface plasticity during stress corrosion cracking publication-title: Corrosion doi: 10.5006/1.3292123 – volume: 11 start-page: 2120 year: 2015 ident: 10.1016/j.ejpe.2022.09.001_b0030 article-title: Machine learning of parameters for accurate semiempirical quantum chemical calculations publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00141 – year: 2015 ident: 10.1016/j.ejpe.2022.09.001_b0340 – volume: 34 start-page: 293 year: 2018 ident: 10.1016/j.ejpe.2022.09.001_b0125 article-title: Risk assessment of failure of rock bolts in underground coal mines using support vector machines publication-title: Appl. Stochastic Models Bus. Ind. doi: 10.1002/asmb.2273 – ident: 10.1016/j.ejpe.2022.09.001_b0255 – volume: 58 start-page: 11338 year: 2019 ident: 10.1016/j.ejpe.2022.09.001_b0040 article-title: Applications of advanced analytics at Saudi Aramco: A practitioners’ perspective publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b06205 – volume: 124 start-page: 5624 year: 2020 ident: 10.1016/j.ejpe.2022.09.001_b0020 article-title: Elucidating structure-property relationships in aluminum alloy corrosion inhibitors by machine learning publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09538 – volume: 171 year: 2020 ident: 10.1016/j.ejpe.2022.09.001_b0080 article-title: A computer vision based machine learning approach for fatigue crack initiation sites recognition publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.109259 – volume: 36 start-page: 451 year: 2003 ident: 10.1016/j.ejpe.2022.09.001_b0420 article-title: The global k-means clustering algorithm publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(02)00060-2 – volume: 106 start-page: 234 year: 2013 ident: 10.1016/j.ejpe.2022.09.001_b0300 article-title: A study on multiple linear regression analysis publication-title: Proc.-Social Behav. Sci. doi: 10.1016/j.sbspro.2013.12.027 – volume: 73 start-page: 161 year: 2013 ident: 10.1016/j.ejpe.2022.09.001_b0130 article-title: Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.03.032 – ident: 10.1016/j.ejpe.2022.09.001_b0190 doi: 10.1533/9781845696825.1.177 – volume: 86 start-page: 597 year: 2014 ident: 10.1016/j.ejpe.2022.09.001_b0480 article-title: Corrosion risk analysis, risk based inspection and a case study concerning a condensate pipeline publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.11.085 – year: 2018 ident: 10.1016/j.ejpe.2022.09.001_b0425 article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection – volume: 25 start-page: e2230 year: 2018 ident: 10.1016/j.ejpe.2022.09.001_b0085 article-title: Convolutional neural networks for automated damage recognition and damage type identification publication-title: Struct. Control Health Monitor. doi: 10.1002/stc.2230 – year: 2011 ident: 10.1016/j.ejpe.2022.09.001_b0345 – volume: 9 start-page: 483 year: 2016 ident: 10.1016/j.ejpe.2022.09.001_b0150 article-title: An artificial neural network-based algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation publication-title: Materials doi: 10.3390/ma9060483 – volume: 44 start-page: 17260 year: 2019 ident: 10.1016/j.ejpe.2022.09.001_b0335 article-title: Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.108 – volume: 26 start-page: 197 year: 2013 ident: 10.1016/j.ejpe.2022.09.001_b0145 article-title: Developing a new fuzzy inference system for pipeline risk assessment publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2012.10.010 – start-page: 233 year: 1995 ident: 10.1016/j.ejpe.2022.09.001_b0390 doi: 10.1007/978-1-4899-1724-9_3 – ident: 10.1016/j.ejpe.2022.09.001_b0310 – volume: 76 start-page: 749 year: 2014 ident: 10.1016/j.ejpe.2022.09.001_b0200 article-title: Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States publication-title: Energy doi: 10.1016/j.energy.2014.08.072 |
SSID | ssj0000651458 |
Score | 2.2066147 |
SecondaryResourceType | review_article |
Snippet | •The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on... One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Forms of corrosion Industrial internet of things (IIOT) Machine learning (ML) Stress corrosion cracking (SCC) |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQUztUfar0JQ_dqhQ7Dkk8AipCVdupSGyWbRwEaglC9P_3znFSWBg6xvIl0cW-h3Pfd4Q8usxCUKyLaKYNJCiWZZGWLo5SpM_P4yRPBIKT3z_S8SR5nfamLTKssTBYVhlsf2XTvbUOI92gze56sejCPuSIAOSxR5skaIcRVYogvumgOWcBF8sT36YT50coELAzVZmXW66RLTOOnyvmyj3_5Gn8d9zUjusZnZKTEDPSfvVaZ6TlVufkeIdJ8IK89f9-RNOyoN--RtLR0BRiTrclrWAhFNJNeDLOsxtt8aScYn051Q1H5yWZjF4-h-MoNEqILGQEPJpxDWYiMU4koPt8ZnhqGDc-3EDsbG9mMLNjmkHqzAorjJEF0zItjOSWFeKKtFflyl0Tqp2DqItJASK4vbXTYAaE4DrVaa7zDuG1epQNLOLYzOJL1eViS4UqVahSxSTWzHXIUyOzrjg0Ds4eoNabmch_7QfKzVyFBaC0jU1mZW4KDSEgs9JmApnJQAsyT43pkF79zdTecoJbLQ48_OafcrfkCK-qOpc70t5uftw9RCtb8-CX4y-iquXy priority: 102 providerName: Elsevier |
Title | Application of machine learning to stress corrosion cracking risk assessment |
URI | https://dx.doi.org/10.1016/j.ejpe.2022.09.001 https://doaj.org/article/ac2b7c98bfa5450c9c735478634986bb |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCGAnacOvbYIqrylJCo1M2yHQdRQVtV5f9zF6clLGVh8RD5EV3Ovu-cu-8IuQi5B1Bsy6SwDhwUz_LE6pAmEunzVZqpTGBy8tOzHAyz-1Fn1Cj1hTFhkR44Cu7a-tTlXitXWjD2zGufC-SgkiLTSjqHpy_TrOFMxTMYgEBVnBP2MlZWSXmdMRODu8J4hhyZaXoV-Sp_WaWKvL9hnBoGp79DtmukSLvxDXfJRpjska0Gf-A-eez-_H6m05J-VpGRgdalIN7oYkpjMggFJxNWxn5-bj3ej1OMKqd2xcx5QIb929ebQVKXR0g8-AE8KbiFwyFzQWQgcVU4Lh3jrgIZmDHbKRz6c8wycJhZ6YVzumRWy9Jp7lkpDklrMp2EI0JtCIC1mBYwBDe1DRY2vxDcSiuVVW3Cl-IxvuYOxxIWH2YZJDY2KFKDIjVMY6Rcm1yuxswic8ba3j2U-qonsl5XD0AXTK0L5i9daJPO8puZGkBEYABTva9Z_Pg_Fj8hmzhlDHU5Ja3F_CucAWBZuPNKN6G9G_WgfXhR36Rf54g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQHdoOVZ8qfXroVqXYSUjiEVARtMAEEptlGweBWkCI_v_eJU4KC0NXxxdHl_M97LvvCHmxsQGnWKXeVGkIUAyLPSWs70UIn5_4YRIGWJw8GEbdcfgxaUwqpF3UwmBapdP9uU7PtLUbqTtu1tfzeR32IccKQO5n1SYh6OEj8AYYinZv0ioPWsDG8jDr04kEHlK44pk8z8su1giX6ftvOXTlnoHKcPx37NSO7emckzPnNNJm_l0XpGKXl-R0B0rwivSbfzfRdJXS7yxJ0lLXFWJGtyua14VQiDdhZZxnNsrgUTnFBHOqSpDOazLuvI_aXc91SvAMhATcm3IFeiLUNgiB-clU80gzrjN_A4tnG1ONoR1TDGJnlppAa5EyJaJUC25YGtyQ6nK1tLeEKmvB7WIiABLc38oq0ANBwFWkokQlNcIL9kjjYMSxm8WXLPLFFhJZKpGlkglMmquR15JmnYNoHJzdQq6XMxEAOxtYbWbSSYBUxtexEYlOFfiAzAgTBwhNBlwQSaR1jTSKfyb35AleNT-w-N0_6Z7JcXc06Mt-b_h5T07wSZ708kCq282PfQTXZaufMtH8BUVF6RU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+to+stress+corrosion+cracking+risk+assessment&rft.jtitle=Egyptian+journal+of+petroleum&rft.au=Aeshah+H.+Alamri&rft.date=2022-12-01&rft.pub=Egyptian+Petroleum+Research+Institute&rft.issn=1110-0621&rft.volume=31&rft.issue=4&rft.spage=11&rft.epage=21&rft_id=info:doi/10.1016%2Fj.ejpe.2022.09.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ac2b7c98bfa5450c9c735478634986bb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0621&client=summon |