Application of machine learning to stress corrosion cracking risk assessment

•The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on the use of machine learning in stress corrosion cracking were summarized.•Knowledge gaps and challenges of using machine learning in SCC were...

Full description

Saved in:
Bibliographic Details
Published inEgyptian journal of petroleum Vol. 31; no. 4; pp. 11 - 21
Main Author Alamri, Aeshah H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Egyptian Petroleum Research Institute
Subjects
Online AccessGet full text
ISSN1110-0621
DOI10.1016/j.ejpe.2022.09.001

Cover

Abstract •The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on the use of machine learning in stress corrosion cracking were summarized.•Knowledge gaps and challenges of using machine learning in SCC were discussed.•Future perspectives were highlighted. One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings highest forms of risks to the industry. Performing risk assessment of stress corrosion cracking is critical to ensure that industrial equipment failure is avoided by employing proper maintenance techniques. With the advancement of digital technology and the fourth industrial revolution called Industrial Internet of Things (IIOT), coupled with the availability of computing power and data, advanced analytical tools like artificial intelligence and machine learning bring powerful algorithms for performing advanced corrosion risk assessment. A perusal of the literature reveals that a review focused on the use of machine learning in corrosion risk assessment of stress corrosion cracking is scarce. So, a comprehensive and up-to-date review on this subject is timely. In this work review we present an overview on the machine learning application in the risk assessment of stress corrosion cracking. First, the current state of the art is briefly summarized. The fundamentals of machine learning algorithms and stress corrosion cracking were presented. Existing knowledge gaps were identified and discussed while the challenges and the future perspectives on the employ of machine learning in corrosion risks assessment of stress corrosion cracking were outlined.
AbstractList •The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on the use of machine learning in stress corrosion cracking were summarized.•Knowledge gaps and challenges of using machine learning in SCC were discussed.•Future perspectives were highlighted. One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings highest forms of risks to the industry. Performing risk assessment of stress corrosion cracking is critical to ensure that industrial equipment failure is avoided by employing proper maintenance techniques. With the advancement of digital technology and the fourth industrial revolution called Industrial Internet of Things (IIOT), coupled with the availability of computing power and data, advanced analytical tools like artificial intelligence and machine learning bring powerful algorithms for performing advanced corrosion risk assessment. A perusal of the literature reveals that a review focused on the use of machine learning in corrosion risk assessment of stress corrosion cracking is scarce. So, a comprehensive and up-to-date review on this subject is timely. In this work review we present an overview on the machine learning application in the risk assessment of stress corrosion cracking. First, the current state of the art is briefly summarized. The fundamentals of machine learning algorithms and stress corrosion cracking were presented. Existing knowledge gaps were identified and discussed while the challenges and the future perspectives on the employ of machine learning in corrosion risks assessment of stress corrosion cracking were outlined.
One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings highest forms of risks to the industry. Performing risk assessment of stress corrosion cracking is critical to ensure that industrial equipment failure is avoided by employing proper maintenance techniques. With the advancement of digital technology and the fourth industrial revolution called Industrial Internet of Things (IIOT), coupled with the availability of computing power and data, advanced analytical tools like artificial intelligence and machine learning bring powerful algorithms for performing advanced corrosion risk assessment. A perusal of the literature reveals that a review focused on the use of machine learning in corrosion risk assessment of stress corrosion cracking is scarce. So, a comprehensive and up-to-date review on this subject is timely. In this work review we present an overview on the machine learning application in the risk assessment of stress corrosion cracking. First, the current state of the art is briefly summarized. The fundamentals of machine learning algorithms and stress corrosion cracking were presented. Existing knowledge gaps were identified and discussed while the challenges and the future perspectives on the employ of machine learning in corrosion risks assessment of stress corrosion cracking were outlined.
Author Alamri, Aeshah H.
Author_xml – sequence: 1
  givenname: Aeshah H.
  surname: Alamri
  fullname: Alamri, Aeshah H.
  email: ahalamri@iau.edu.sa
  organization: Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
BookMark eNp9kMtOwzAQRb0oEqX0B1jlBxrGztMSm6riUakSG1hb9mRSnKZxZUdI_D0ORSxY1BtLHp87M-eGzQY3EGN3HFIOvLzvUupOlAoQIgWZAvAZm3POYQWl4NdsGUIH8ZQFz4t6znbr06m3qEfrhsS1yVHjhx0o6Un7wQ77ZHRJGD2FkKDz3oXpH3qNh6nobTgkOoRYPtIw3rKrVveBlr_3gr0_Pb5tXla71-ftZr1boSgKvmq4rsosN5TlVGHdGF4a4CYOlWdQC1k0RnAQoIFMBi1mxsgWtCxbIzlCmy3Y9pzbON2pk7dH7b-U01b9PDi_V9qPFntSGoWpUNam1UVeAEqssiKv6thf1qUxMUucszAuFzy1f3kc1KRUdWpSqialCqSKSiNU_4PQjj8OR69tfxl9OKMUBX1a8iqgpQGpsZ5wjBvYS_g3aWKWLg
CitedBy_id crossref_primary_10_1007_s13349_024_00777_x
crossref_primary_10_1016_j_eswa_2024_123631
crossref_primary_10_1080_19942060_2024_2302906
crossref_primary_10_1016_j_oceaneng_2024_116796
crossref_primary_10_1016_j_engfailanal_2023_107747
crossref_primary_10_3724_j_GTER_20240002
crossref_primary_10_3390_met14040409
crossref_primary_10_1016_j_corcom_2024_07_002
crossref_primary_10_1016_j_array_2024_100351
crossref_primary_10_1016_j_jpse_2024_100178
crossref_primary_10_1016_j_advengsoft_2024_103721
crossref_primary_10_1016_j_egyr_2023_08_009
crossref_primary_10_1016_j_mtcomm_2024_108591
crossref_primary_10_1007_s43938_024_00065_6
crossref_primary_10_3390_machines12010042
crossref_primary_10_1108_ACMM_07_2023_2854
crossref_primary_10_3390_toxics11040350
crossref_primary_10_1016_j_engfailanal_2023_107097
crossref_primary_10_1016_j_crgsc_2024_100402
crossref_primary_10_3390_buildings13102403
crossref_primary_10_1007_s13369_024_09241_w
crossref_primary_10_1016_j_heliyon_2024_e25276
crossref_primary_10_1177_1478422X241276727
crossref_primary_10_1016_j_oceaneng_2024_119600
crossref_primary_10_1016_j_sna_2024_115383
crossref_primary_10_1038_s41529_024_00529_8
crossref_primary_10_1016_j_corsci_2023_111779
Cites_doi 10.1016/S0011-9164(01)00316-2
10.1016/j.jpcs.2021.110341
10.1080/19392699.2020.1768080
10.1016/j.autcon.2017.01.016
10.1016/j.neunet.2015.04.007
10.1016/j.dsp.2009.10.004
10.1016/0022-3697(87)90120-X
10.1002/maco.202011902
10.3390/bdcc3020028
10.1007/BF00545203
10.1002/cjce.20342
10.1109/TBDATA.2016.2541167
10.1016/j.psep.2018.08.021
10.5516/NET.2007.39.4.337
10.1016/j.seps.2006.11.002
10.1103/PhysRevFluids.5.014002
10.1016/j.jiec.2021.09.022
10.1017/CBO9781139042918.002
10.5006/0010-9312-19.11.369
10.5006/3741
10.1177/0049124105283119
10.1016/j.apsusc.2020.145612
10.1016/j.neunet.2014.05.006
10.1111/0885-9507.00065
10.1016/j.asr.2014.08.018
10.1007/978-3-642-04070-2_100
10.1016/j.eswa.2009.10.012
10.1049/iet-sen.2013.0046
10.1016/j.corsci.2009.10.041
10.1007/978-1-4419-7046-6_19
10.5006/1.3280476
10.1149/1.2404217
10.1016/j.matdes.2019.108368
10.22531/muglajsci.471538
10.1016/j.jngse.2019.102971
10.1016/j.conbuildmat.2019.04.227
10.1007/s10712-019-09558-4
10.1007/s11661-010-0384-2
10.1080/14786436308211122
10.1096/fasebj.1.5.3315805
10.1016/j.psep.2018.07.006
10.1023/A:1023760326768
10.1016/j.eswa.2010.08.022
10.3390/ma10050543
10.1016/j.neuroimage.2021.117923
10.2166/hydro.2010.032
10.1016/0010-938X(93)90175-G
10.1016/j.jhydrol.2006.09.020
10.1016/j.elecom.2021.107124
10.1179/174328409X411727
10.5006/1.3292123
10.1021/acs.jctc.5b00141
10.1002/asmb.2273
10.1021/acs.iecr.8b06205
10.1021/acs.jpcc.9b09538
10.1016/j.commatsci.2019.109259
10.1016/S0031-3203(02)00060-2
10.1016/j.sbspro.2013.12.027
10.1016/j.corsci.2013.03.032
10.1533/9781845696825.1.177
10.1016/j.proeng.2014.11.085
10.1002/stc.2230
10.3390/ma9060483
10.1016/j.ijhydene.2019.02.108
10.1016/j.jlp.2012.10.010
10.1007/978-1-4899-1724-9_3
10.1016/j.energy.2014.08.072
ContentType Journal Article
Copyright 2022 Egyptian Petroleum Research Institute
Copyright_xml – notice: 2022 Egyptian Petroleum Research Institute
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ejpe.2022.09.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 21
ExternalDocumentID oai_doaj_org_article_ac2b7c98bfa5450c9c735478634986bb
10_1016_j_ejpe_2022_09_001
S1110062122000642
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
RIG
ROL
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c2551-d1a7634be34e7c8db16b01b0064308295db21020a0eb30fc3bb9f0a96fb91c0f3
IEDL.DBID DOA
ISSN 1110-0621
IngestDate Wed Aug 27 01:28:18 EDT 2025
Thu Apr 24 22:58:01 EDT 2025
Tue Jul 01 01:44:24 EDT 2025
Thu Jul 20 20:09:40 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Machine learning (ML)
Industrial internet of things (IIOT)
Forms of corrosion
Stress corrosion cracking (SCC)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2551-d1a7634be34e7c8db16b01b0064308295db21020a0eb30fc3bb9f0a96fb91c0f3
OpenAccessLink https://doaj.org/article/ac2b7c98bfa5450c9c735478634986bb
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ac2b7c98bfa5450c9c735478634986bb
crossref_primary_10_1016_j_ejpe_2022_09_001
crossref_citationtrail_10_1016_j_ejpe_2022_09_001
elsevier_sciencedirect_doi_10_1016_j_ejpe_2022_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Egyptian journal of petroleum
PublicationYear 2022
Publisher Elsevier B.V
Egyptian Petroleum Research Institute
Publisher_xml – name: Elsevier B.V
– name: Egyptian Petroleum Research Institute
References Kramer (b0415) 2013
Shoji, Lu, Murakami (b0355) 2010; 52
Al-Jamimi, Al-Azani, Saleh (b0275) 2018; 120
Patwardhan, Hamadah, Patel, Hafiz, Al-Gwaiz (b0040) 2019; 58
Wang, Zhang, Sun, Zhang (b0070) 2017; 10
Galvele (b0475) 1993; 35
Chau, Wu (b0215) 2010; 12
Cheng (b0375) 2013
Jones (b0470) 1996; 52
Zhang, Tsai (b0290) 2005
Jiang, Craig, Crosky, Maghrebi, Canbulat, Saydam (b0125) 2018; 34
Moreno-Boza, Martínez-Calvo, Sevilla (b0365) 2020; 5
Völker, Kruschwitz, Ebell (b0025) 2020; 41
Saraswat, Kumari, Yadav (b0015) 2022; 160
Chen (b0220) 2007; 333
Zong, Song, Min, Cheng, Lumezanu, Cho, Chen (b0425) 2018
Likas, Vlassis, Verbeek (b0420) 2003; 36
Mueller, Kusne, Ramprasad (b0170) 2016; 29
Ozbas, Aksu, Ongen, Aydin, Ozcan (b0335) 2019; 44
Dede, Sazlı (b0230) 2010; 20
R. Olivas, Decision Trees, A Primer for Decision-making Professionals, 2007.
Ahmed, Al-Jamimi (b0280) 2013; 7
Dral, von Lilienfeld, Thiel (b0030) 2015; 11
Catal, Sevim, Diri (b0405) 2011; 38
Shoji (b0350) 1993
Jacobsen, Zscherpel, Perner (b0075) 1999
Motulsky, Ransnas (b0400) 1987; 1
Schindelholz, Melia, Rodelas (b0005) 2021; 77
Na, Kim, Lim (b0065) 2007; 39
Rahimi, Marrow (b0445) 2020; 187
McDonald, García-Pedrajas, Macdonald, Ounis (b0315) 2017
Modarres, Astorga, Droguett, Meruane (b0085) 2018; 25
Ser, Žuvela, Wong (b0035) 2020; 512
Abd El-Lateef, Shalabi, Sayed, Gomha, Bakir (b0010) 2022; 105
Berk (b0395) 2006; 34
Takeda, Kanamori (b0235) 2014; 57
Tagliaferri (b0270) 2017
Forty, Humble (b0460) 1963; 8
P. Rudling, A. Strasser, F. Garzarolli, L. van Swam, Welding of Zirconium alloys, IZNA7 special topic report Welding of Zirconium Alloys2007.
John Lu (b0260) 2010
Robertson (b0465) 1956
Wright, Guillen, Soltis (b0485) 2017
Choi, Chudnovsky (b0110) 2011; 42
D. Che, Q. Liu, K. Rasheed, X. Tao, Decision tree and ensemble learning algorithms with their applications in bioinformatics, Software tools and algorithms for biological systems2011, pp. 191-199.
Elmaz, Yücel, Mutlu (b0330) 2019; 5
V. Karbhari, L.S.-W. Lee, Vibration-based damage detection techniques for structural health monitoring of civil infrastructure systems, Structural health monitoring of civil infrastructure systems, Elsevier 2009, pp. 177-212.
Kim, Kang (b0240) 2010; 37
Ossai (b0055) 2019; 3
Calabrese, Campanella, Proverbio (b0130) 2013; 73
Sieradzki, Newman (b0380) 1987; 48
C. Venkatesh, P. Farinha, Corrosion Risk Assessment (CRA) in the oil and gas industry-An overview and its holistic approach, 2006.
Perumal (b0480) 2014; 86
R. Bekkerman, M. Bilenko, J. Langford, Scaling up machine learning: Introduction, Scaling up Machine Learning: Parallel and Distributed Approaches; Bekkerman, R., Bilenko, M., Langford, J., Eds, DOI (2012) 1-22.
Taffese, Sistonen (b0165) 2017; 77
P. Jiang, Machine learning methods for corrosion and stress corrosion cracking risk analysis of engineered systems, Doctoral dissertation). University of New South Wales, 2018.
Uyanık, Güler (b0300) 2013; 106
Galvele (b0390) 1995
Han, Pei, Kamber (b0305) 2011
J.X. Lu, C. Tupper, J. Murray, Biochemistry, Dissolution and Solubility, StatPearls Publishing, Treasure Island (FL), 2021.
Sturrock, Bogaerts (b0100) 1997; 53
Murphy (b0250) 2012
Tan, Goh, Chua, Chen (b0140) 2018
Abbas, Norman, Charles (b0185) 2018; 119
Cherkassky, Mulier (b0160) 2007
Bayar, Bilir (b0095) 2019; 215
W. Zewdu Taffese, Data-Driven Method for Enhanced Corrosion Assessment of Reinforced Concrete Structures, arXiv e-prints, DOI (2020) arXiv: 2007.01164.
Swann, Pickering (b0450) 1963; 19
Di, Li, Yue, Sun, Liu (b0225) 2014; 54
Popov (b0340) 2015
Reich (b0245) 1997; 12
Vermilyea (b0360) 1972; 119
Nasrabadi (b0265) 2007; 16
Vaughan, Bohac (b0195) 2015; 70
Zhang, Cao, Quinn, Vivekananda, Zhan, Liu, Sun, Woolrich, Lu, Litvak (b0430) 2021; 233
Ashrafriahi, Ebrahimy, Ramsundar, Korinek, Newman (b0060) 2021; 72
Wang, Zhang, Zhou, Wei, Ding, Li (b0080) 2020; 171
S. Zhang, K.-W. Chau, Dimension reduction using semi-supervised locally linear embedding for plant leaf classification, International conference on intelligent computing, Springer, 2009, pp. 948-955.
Bai, Li, Liu, Ma (b0320) 2017
Galvão, Novell-Leruth, Kuznetsova, Tedim, Gomes (b0020) 2020; 124
T. Papamarkou, H. Guy, B. Kroencke, J. Miller, P. Robinette, D. Schultz, J. Hinkle, L. Pullum, C. Schuman, J. Renshaw, Automated detection of pitting and stress corrosion cracks in used nuclear fuel dry storage canisters using residual neural networks, arXiv preprint arXiv:2003.032412020.
Wu, Liang, Yang (b0410) 2008; 42
Chen, Chen, Yang, Su, Qiao (b0440) 2021; 131
Wang, Zhang, Ding, Zheng (b0180) 2010; 88
Al-Jamimi, Ahmed (b0285) 2013
Hagn (b0370) 1983
Zukhrufany (b0135) 2018
Askari, Aliofkhazraei, Afroukhteh (b0115) 2019; 71
Zhang, Tsai (b0175) 2003; 11
Reed, Starink, Gunn, Sinclair (b0120) 2009; 25
Aladejare, Onifade, Lawal (b0295) 2022; 42
Jamshidi, Yazdani-Chamzini, Yakhchali, Khaleghi (b0145) 2013; 26
Zhang, Bao, Jiang, He (b0150) 2016; 9
Kialashaki, Reisel (b0200) 2014; 76
Lynch (b0455) 1985; 20
Habib, Fakhral-Deen (b0105) 2001; 139
C. Nicholson, A Beginner's Guide to Neural Networks and Deep Learning, Retrieved January, 30 (2019) 2020.
Raja, Shoji (b0345) 2011
West, Wesley-Smith, Bergstrom (b0435) 2016; 2
Zhang (10.1016/j.ejpe.2022.09.001_b0150) 2016; 9
Hagn (10.1016/j.ejpe.2022.09.001_b0370) 1983
Dede (10.1016/j.ejpe.2022.09.001_b0230) 2010; 20
Abd El-Lateef (10.1016/j.ejpe.2022.09.001_b0010) 2022; 105
Perumal (10.1016/j.ejpe.2022.09.001_b0480) 2014; 86
Calabrese (10.1016/j.ejpe.2022.09.001_b0130) 2013; 73
Ser (10.1016/j.ejpe.2022.09.001_b0035) 2020; 512
West (10.1016/j.ejpe.2022.09.001_b0435) 2016; 2
Chen (10.1016/j.ejpe.2022.09.001_b0440) 2021; 131
10.1016/j.ejpe.2022.09.001_b0050
Zukhrufany (10.1016/j.ejpe.2022.09.001_b0135) 2018
McDonald (10.1016/j.ejpe.2022.09.001_b0315) 2017
Cheng (10.1016/j.ejpe.2022.09.001_b0375) 2013
Moreno-Boza (10.1016/j.ejpe.2022.09.001_b0365) 2020; 5
10.1016/j.ejpe.2022.09.001_b0210
Na (10.1016/j.ejpe.2022.09.001_b0065) 2007; 39
Chen (10.1016/j.ejpe.2022.09.001_b0220) 2007; 333
Ashrafriahi (10.1016/j.ejpe.2022.09.001_b0060) 2021; 72
Dral (10.1016/j.ejpe.2022.09.001_b0030) 2015; 11
Bayar (10.1016/j.ejpe.2022.09.001_b0095) 2019; 215
Reich (10.1016/j.ejpe.2022.09.001_b0245) 1997; 12
Kialashaki (10.1016/j.ejpe.2022.09.001_b0200) 2014; 76
Wang (10.1016/j.ejpe.2022.09.001_b0080) 2020; 171
Völker (10.1016/j.ejpe.2022.09.001_b0025) 2020; 41
Forty (10.1016/j.ejpe.2022.09.001_b0460) 1963; 8
Vermilyea (10.1016/j.ejpe.2022.09.001_b0360) 1972; 119
10.1016/j.ejpe.2022.09.001_b0045
Reed (10.1016/j.ejpe.2022.09.001_b0120) 2009; 25
Taffese (10.1016/j.ejpe.2022.09.001_b0165) 2017; 77
Wright (10.1016/j.ejpe.2022.09.001_b0485) 2017
Wang (10.1016/j.ejpe.2022.09.001_b0180) 2010; 88
Shoji (10.1016/j.ejpe.2022.09.001_b0355) 2010; 52
Motulsky (10.1016/j.ejpe.2022.09.001_b0400) 1987; 1
Raja (10.1016/j.ejpe.2022.09.001_b0345) 2011
Bai (10.1016/j.ejpe.2022.09.001_b0320) 2017
Vaughan (10.1016/j.ejpe.2022.09.001_b0195) 2015; 70
Tan (10.1016/j.ejpe.2022.09.001_b0140) 2018
Elmaz (10.1016/j.ejpe.2022.09.001_b0330) 2019; 5
10.1016/j.ejpe.2022.09.001_b0325
10.1016/j.ejpe.2022.09.001_b0205
Cherkassky (10.1016/j.ejpe.2022.09.001_b0160) 2007
10.1016/j.ejpe.2022.09.001_b0155
10.1016/j.ejpe.2022.09.001_b0310
Galvele (10.1016/j.ejpe.2022.09.001_b0475) 1993; 35
Galvão (10.1016/j.ejpe.2022.09.001_b0020) 2020; 124
John Lu (10.1016/j.ejpe.2022.09.001_b0260) 2010
Saraswat (10.1016/j.ejpe.2022.09.001_b0015) 2022; 160
Likas (10.1016/j.ejpe.2022.09.001_b0420) 2003; 36
Zhang (10.1016/j.ejpe.2022.09.001_b0290) 2005
Jacobsen (10.1016/j.ejpe.2022.09.001_b0075) 1999
Lynch (10.1016/j.ejpe.2022.09.001_b0455) 1985; 20
10.1016/j.ejpe.2022.09.001_b0385
Berk (10.1016/j.ejpe.2022.09.001_b0395) 2006; 34
Han (10.1016/j.ejpe.2022.09.001_b0305) 2011
Sieradzki (10.1016/j.ejpe.2022.09.001_b0380) 1987; 48
Jamshidi (10.1016/j.ejpe.2022.09.001_b0145) 2013; 26
10.1016/j.ejpe.2022.09.001_b0490
Shoji (10.1016/j.ejpe.2022.09.001_b0350) 1993
10.1016/j.ejpe.2022.09.001_b0090
Wu (10.1016/j.ejpe.2022.09.001_b0410) 2008; 42
Catal (10.1016/j.ejpe.2022.09.001_b0405) 2011; 38
10.1016/j.ejpe.2022.09.001_b0255
Al-Jamimi (10.1016/j.ejpe.2022.09.001_b0275) 2018; 120
Swann (10.1016/j.ejpe.2022.09.001_b0450) 1963; 19
Chau (10.1016/j.ejpe.2022.09.001_b0215) 2010; 12
Zhang (10.1016/j.ejpe.2022.09.001_b0430) 2021; 233
Habib (10.1016/j.ejpe.2022.09.001_b0105) 2001; 139
Abbas (10.1016/j.ejpe.2022.09.001_b0185) 2018; 119
Schindelholz (10.1016/j.ejpe.2022.09.001_b0005) 2021; 77
Murphy (10.1016/j.ejpe.2022.09.001_b0250) 2012
Rahimi (10.1016/j.ejpe.2022.09.001_b0445) 2020; 187
Mueller (10.1016/j.ejpe.2022.09.001_b0170) 2016; 29
Aladejare (10.1016/j.ejpe.2022.09.001_b0295) 2022; 42
Jones (10.1016/j.ejpe.2022.09.001_b0470) 1996; 52
Wang (10.1016/j.ejpe.2022.09.001_b0070) 2017; 10
Sturrock (10.1016/j.ejpe.2022.09.001_b0100) 1997; 53
Takeda (10.1016/j.ejpe.2022.09.001_b0235) 2014; 57
Zhang (10.1016/j.ejpe.2022.09.001_b0175) 2003; 11
Zong (10.1016/j.ejpe.2022.09.001_b0425) 2018
Uyanık (10.1016/j.ejpe.2022.09.001_b0300) 2013; 106
Robertson (10.1016/j.ejpe.2022.09.001_b0465) 1956
Nasrabadi (10.1016/j.ejpe.2022.09.001_b0265) 2007; 16
Choi (10.1016/j.ejpe.2022.09.001_b0110) 2011; 42
Tagliaferri (10.1016/j.ejpe.2022.09.001_b0270) 2017
Ozbas (10.1016/j.ejpe.2022.09.001_b0335) 2019; 44
Kramer (10.1016/j.ejpe.2022.09.001_b0415) 2013
Askari (10.1016/j.ejpe.2022.09.001_b0115) 2019; 71
10.1016/j.ejpe.2022.09.001_b0190
Patwardhan (10.1016/j.ejpe.2022.09.001_b0040) 2019; 58
Kim (10.1016/j.ejpe.2022.09.001_b0240) 2010; 37
Al-Jamimi (10.1016/j.ejpe.2022.09.001_b0285) 2013
Jiang (10.1016/j.ejpe.2022.09.001_b0125) 2018; 34
Di (10.1016/j.ejpe.2022.09.001_b0225) 2014; 54
Popov (10.1016/j.ejpe.2022.09.001_b0340) 2015
Ossai (10.1016/j.ejpe.2022.09.001_b0055) 2019; 3
Galvele (10.1016/j.ejpe.2022.09.001_b0390) 1995
Modarres (10.1016/j.ejpe.2022.09.001_b0085) 2018; 25
Ahmed (10.1016/j.ejpe.2022.09.001_b0280) 2013; 7
References_xml – volume: 35
  start-page: 419
  year: 1993
  end-page: 434
  ident: b0475
  article-title: Surface mobility mechanism of stress-corrosion cracking
  publication-title: Corros. Sci.
– volume: 86
  start-page: 597
  year: 2014
  end-page: 605
  ident: b0480
  article-title: Corrosion risk analysis, risk based inspection and a case study concerning a condensate pipeline
  publication-title: Procedia Eng.
– volume: 119
  start-page: 36
  year: 2018
  end-page: 45
  ident: b0185
  article-title: Neural network modelling of high pressure CO2 corrosion in pipeline steels
  publication-title: Process Saf. Environ. Prot.
– volume: 53
  year: 1997
  ident: b0100
  article-title: Empirical learning investigations of the stress corrosion cracking of austenitic stainless steels in high-temperature aqueous environments
  publication-title: Corrosion
– volume: 1
  start-page: 365
  year: 1987
  end-page: 374
  ident: b0400
  article-title: Fitting curves to data using nonlinear regression: a practical and nonmathematical review
  publication-title: FASEB J.
– volume: 77
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0165
  article-title: Machine learning for durability and service-life assessment of reinforced concrete structures: recent advances and future directions
  publication-title: Autom. Constr.
– volume: 124
  start-page: 5624
  year: 2020
  end-page: 5635
  ident: b0020
  article-title: Elucidating structure-property relationships in aluminum alloy corrosion inhibitors by machine learning
  publication-title: J. Phys. Chem. C
– reference: J.X. Lu, C. Tupper, J. Murray, Biochemistry, Dissolution and Solubility, StatPearls Publishing, Treasure Island (FL), 2021.
– volume: 12
  start-page: 295
  year: 1997
  end-page: 310
  ident: b0245
  article-title: Machine learning techniques for civil engineering problems
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 34
  start-page: 263
  year: 2006
  end-page: 295
  ident: b0395
  article-title: An introduction to ensemble methods for data analysis
  publication-title: Sociol. Methods Res.
– volume: 16
  year: 2007
  ident: b0265
  article-title: Pattern recognition and machine learning
  publication-title: J. Electron. Imaging
– start-page: 1
  year: 2013
  end-page: 4
  ident: b0285
  article-title: Machine learning-based software quality prediction models: state of the art
  publication-title: 2013 International Conference on Information Science and Applications (ICISA)
– year: 2015
  ident: b0340
  article-title: Corrosion Engineering: Principles and Solved Problems
– volume: 39
  start-page: 337
  year: 2007
  end-page: 348
  ident: b0065
  article-title: Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models
  publication-title: Nucl. Eng. Technol.
– volume: 19
  start-page: 369t
  year: 1963
  end-page: 372t
  ident: b0450
  article-title: Implications of the stress aging yield phenomenon with regard to stress corrosion cracking
  publication-title: Corrosion
– reference: C. Venkatesh, P. Farinha, Corrosion Risk Assessment (CRA) in the oil and gas industry-An overview and its holistic approach, 2006.
– year: 2018
  ident: b0135
  article-title: The utilization of supervised machine learning in predicting corrosion to support preventing pipelines leakage in oil and gas industry
– start-page: 1290
  year: 2018
  end-page: 1295
  ident: b0140
  article-title: Learning with corrosion feature: For automated quantitative risk analysis of corrosion mechanism
  publication-title: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
– volume: 11
  start-page: 87
  year: 2003
  end-page: 119
  ident: b0175
  article-title: Machine learning and software engineering
  publication-title: Software Qual. J.
– reference: D. Che, Q. Liu, K. Rasheed, X. Tao, Decision tree and ensemble learning algorithms with their applications in bioinformatics, Software tools and algorithms for biological systems2011, pp. 191-199.
– volume: 187
  year: 2020
  ident: b0445
  article-title: A new method for predicting susceptibility of austenitic stainless steels to intergranular stress corrosion cracking
  publication-title: Mater. Des.
– volume: 131
  year: 2021
  ident: b0440
  article-title: Study of the relationship between intergranular stress corrosion cracking and grain boundary characteristics in brass
  publication-title: Electrochem. Commun.
– reference: V. Karbhari, L.S.-W. Lee, Vibration-based damage detection techniques for structural health monitoring of civil infrastructure systems, Structural health monitoring of civil infrastructure systems, Elsevier 2009, pp. 177-212.
– start-page: 1
  year: 2017
  end-page: 7
  ident: b0485
  article-title: Risk management of stress corrosion cracking of buried pipelines
  publication-title: Rio Pipeline Conf. Exhibition
– reference: R. Olivas, Decision Trees, A Primer for Decision-making Professionals, 2007.
– volume: 11
  start-page: 2120
  year: 2015
  end-page: 2125
  ident: b0030
  article-title: Machine learning of parameters for accurate semiempirical quantum chemical calculations
  publication-title: J. Chem. Theory Comput.
– start-page: 144
  year: 1999
  end-page: 158
  ident: b0075
  article-title: A comparison between neural networks and decision trees
  publication-title: Machine Learning and Data Mining in Pattern Recognition
– volume: 120
  start-page: 57
  year: 2018
  end-page: 71
  ident: b0275
  article-title: Supervised machine learning techniques in the desulfurization of oil products for environmental protection: a review
  publication-title: Process Saf. Environ. Prot.
– volume: 20
  start-page: 763
  year: 2010
  end-page: 768
  ident: b0230
  article-title: Speech recognition with artificial neural networks
  publication-title: Digital Signal Process.
– reference: S. Zhang, K.-W. Chau, Dimension reduction using semi-supervised locally linear embedding for plant leaf classification, International conference on intelligent computing, Springer, 2009, pp. 948-955.
– volume: 333
  start-page: 554
  year: 2007
  end-page: 568
  ident: b0220
  article-title: Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley, Nebraska
  publication-title: J. Hydrol.
– volume: 5
  year: 2020
  ident: b0365
  article-title: Stokes theory of thin-film rupture
  publication-title: Phys. Rev. Fluids
– reference: P. Rudling, A. Strasser, F. Garzarolli, L. van Swam, Welding of Zirconium alloys, IZNA7 special topic report Welding of Zirconium Alloys2007.
– volume: 106
  start-page: 234
  year: 2013
  end-page: 240
  ident: b0300
  article-title: A study on multiple linear regression analysis
  publication-title: Proc.-Social Behav. Sci.
– volume: 42
  start-page: 1830
  year: 2022
  end-page: 1851
  ident: b0295
  article-title: Application of metaheuristic based artificial neural network and multilinear regression for the prediction of higher heating values of fuels
  publication-title: Int. J. Coal Preparation Util.
– volume: 7
  start-page: 317
  year: 2013
  end-page: 326
  ident: b0280
  article-title: Machine learning approaches for predicting software maintainability: a fuzzy-based transparent model
  publication-title: IET Software
– volume: 12
  start-page: 458
  year: 2010
  end-page: 473
  ident: b0215
  article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
  publication-title: J. Hydroinformatics
– volume: 8
  start-page: 247
  year: 1963
  end-page: 264
  ident: b0460
  article-title: The influence of surface tarnish on the stress-corrosion of α-brass
  publication-title: Phil. Mag.
– volume: 76
  start-page: 749
  year: 2014
  end-page: 760
  ident: b0200
  article-title: Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States
  publication-title: Energy
– volume: 72
  start-page: 517
  year: 2021
  end-page: 527
  ident: b0060
  article-title: New insights into the stress corrosion cracking of carbon steel in ethanolic media
  publication-title: Mater. Corros.
– volume: 38
  start-page: 2347
  year: 2011
  end-page: 2353
  ident: b0405
  article-title: Practical development of an Eclipse-based software fault prediction tool using Naive Bayes algorithm
  publication-title: Expert Syst. Appl.
– reference: R. Bekkerman, M. Bilenko, J. Langford, Scaling up machine learning: Introduction, Scaling up Machine Learning: Parallel and Distributed Approaches; Bekkerman, R., Bilenko, M., Langford, J., Eds, DOI (2012) 1-22.
– year: 2013
  ident: b0375
  article-title: Stress Corrosion Cracking of Pipelines
– year: 2005
  ident: b0290
  article-title: Machine learning applications in software engineering
– reference: C. Nicholson, A Beginner's Guide to Neural Networks and Deep Learning, Retrieved January, 30 (2019) 2020.
– volume: 25
  start-page: 488
  year: 2009
  end-page: 503
  ident: b0120
  article-title: Invited review: Adaptive numerical modelling and hybrid physically based ANM approaches in materials engineering–a survey
  publication-title: Mater. Sci. Technol.
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: b0420
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
– start-page: 13
  year: 2013
  end-page: 23
  ident: b0415
  article-title: K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors
– reference: T. Papamarkou, H. Guy, B. Kroencke, J. Miller, P. Robinette, D. Schultz, J. Hinkle, L. Pullum, C. Schuman, J. Renshaw, Automated detection of pitting and stress corrosion cracks in used nuclear fuel dry storage canisters using residual neural networks, arXiv preprint arXiv:2003.032412020.
– year: 2007
  ident: b0160
  article-title: Learning from data: concepts, theory, and methods
– volume: 48
  start-page: 1101
  year: 1987
  end-page: 1113
  ident: b0380
  article-title: Stress-corrosion cracking
  publication-title: J. Phys. Chem. Solids
– start-page: 1421
  year: 2017
  end-page: 1426
  ident: b0320
  article-title: Short-term prediction of distribution network faults based on support vector machine
  publication-title: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)
– volume: 9
  start-page: 483
  year: 2016
  ident: b0150
  article-title: An artificial neural network-based algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation
  publication-title: Materials
– year: 2017
  ident: b0270
  article-title: An introduction to machine learning
  publication-title: DigitalOcean
– volume: 44
  start-page: 17260
  year: 2019
  end-page: 17268
  ident: b0335
  article-title: Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms
  publication-title: Int. J. Hydrogen Energy
– volume: 105
  start-page: 238
  year: 2022
  end-page: 250
  ident: b0010
  article-title: The novel polythiadiazole polymer and its composite with α-Al (OH) 3 as inhibitors for steel alloy corrosion in molar H2SO4: Experimental and computational evaluations
  publication-title: J. Ind. Eng. Chem.
– volume: 25
  start-page: e2230
  year: 2018
  ident: b0085
  article-title: Convolutional neural networks for automated damage recognition and damage type identification
  publication-title: Struct. Control Health Monitor.
– volume: 37
  start-page: 3373
  year: 2010
  end-page: 3379
  ident: b0240
  article-title: Ensemble with neural networks for bankruptcy prediction
  publication-title: Expert Syst. Appl.
– volume: 57
  start-page: 29
  year: 2014
  end-page: 38
  ident: b0235
  article-title: Using financial risk measures for analyzing generalization performance of machine learning models
  publication-title: Neural networks
– volume: 77
  start-page: 484
  year: 2021
  end-page: 503
  ident: b0005
  article-title: Corrosion of additively manufactured stainless steels—process, structure, performance: A review
  publication-title: Corrosion
– volume: 3
  start-page: 28
  year: 2019
  ident: b0055
  article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study
  publication-title: Big Data Cogn. Comput.
– volume: 52
  year: 1996
  ident: b0470
  article-title: Localized surface plasticity during stress corrosion cracking
  publication-title: Corrosion
– volume: 54
  start-page: 2419
  year: 2014
  end-page: 2429
  ident: b0225
  article-title: A machine learning approach to crater detection from topographic data
  publication-title: Adv. Space Res.
– volume: 70
  start-page: 18
  year: 2015
  end-page: 26
  ident: b0195
  article-title: Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series
  publication-title: Neural Networks
– volume: 233
  year: 2021
  ident: b0430
  article-title: Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model
  publication-title: NeuroImage
– year: 2018
  ident: b0425
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
  publication-title: International Conference on Learning Representations
– start-page: 1097
  year: 2017
  end-page: 1100
  ident: b0315
  article-title: A study of SVM kernel functions for sensitivity classification ensembles with POS sequences
  publication-title: Proceedings of the 40th international ACM SIGIR Conference on Research and Development in Information Retrieval
– reference: W. Zewdu Taffese, Data-Driven Method for Enhanced Corrosion Assessment of Reinforced Concrete Structures, arXiv e-prints, DOI (2020) arXiv: 2007.01164.
– volume: 42
  start-page: 383
  year: 2011
  end-page: 395
  ident: b0110
  article-title: Observation and modeling of stress corrosion cracking in high pressure gas pipe steel
  publication-title: Metall. Mater. Trans. A
– year: 2012
  ident: b0250
  article-title: Machine learning: a probabilistic perspective
– volume: 42
  start-page: 206
  year: 2008
  end-page: 220
  ident: b0410
  article-title: Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis
  publication-title: Socio-Econ. Plann. Sci.
– volume: 160
  year: 2022
  ident: b0015
  article-title: Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies
  publication-title: J. Phys. Chem. Solids
– start-page: 481
  year: 1983
  end-page: 516
  ident: b0370
  article-title: Lifetime prediction for parts in corrosive environments
  publication-title: Corros. Power Generat. Equip.
– volume: 10
  start-page: 543
  year: 2017
  ident: b0070
  article-title: A comparison study of machine learning based algorithms for fatigue crack growth calculation
  publication-title: Materials
– reference: P. Jiang, Machine learning methods for corrosion and stress corrosion cracking risk analysis of engineered systems, Doctoral dissertation). University of New South Wales, 2018.
– start-page: 233
  year: 1995
  end-page: 358
  ident: b0390
  article-title: Electrochemical aspects of stress corrosion cracking, Modern aspects of electrochemistry
– volume: 29
  start-page: 186
  year: 2016
  end-page: 273
  ident: b0170
  article-title: Machine learning in materials science: Recent progress and emerging applications
  publication-title: Rev. Comput. Chem.
– volume: 512
  year: 2020
  ident: b0035
  article-title: Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships
  publication-title: Appl. Surf. Sci.
– volume: 73
  start-page: 161
  year: 2013
  end-page: 171
  ident: b0130
  article-title: Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam
  publication-title: Corros. Sci.
– volume: 171
  year: 2020
  ident: b0080
  article-title: A computer vision based machine learning approach for fatigue crack initiation sites recognition
  publication-title: Comput. Mater. Sci.
– volume: 119
  start-page: 405
  year: 1972
  ident: b0360
  article-title: A theory for the propagation of stress corrosion cracks in metals
  publication-title: J. Electrochem. Soc.
– year: 1956
  ident: b0465
  article-title: Stress, Corrosion Cracking and Embrittlement: A Symposium Arranged by the Corrosion Division of the Electrochemical Society
– volume: 52
  start-page: 769
  year: 2010
  end-page: 779
  ident: b0355
  article-title: Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics
  publication-title: Corros. Sci.
– year: 2011
  ident: b0305
  article-title: Data mining: concepts and techniques
– volume: 88
  start-page: 801
  year: 2010
  end-page: 807
  ident: b0180
  article-title: Simulation of hydrodesulfurization using artificial neural network
  publication-title: Can. J. Chem. Eng.
– year: 2010
  ident: b0260
  article-title: The elements of statistical learning: data mining, inference, and prediction
  publication-title: Wiley Online Library
– volume: 5
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0330
  article-title: Evaluating the effect of blending ratio on the co-gasification of high ash coal and biomass in a fluidized bed gasifier using machine learning
  publication-title: Mugla J. Sci. Technol.
– volume: 41
  start-page: 531
  year: 2020
  end-page: 548
  ident: b0025
  article-title: A machine learning-based data fusion approach for improved corrosion testing
  publication-title: Surv. Geophys.
– volume: 139
  start-page: 249
  year: 2001
  end-page: 253
  ident: b0105
  article-title: Risk assessment and evaluation of materials commonly used in desalination plants subjected to pollution impact of the oil spill and oil fires in marine environment
  publication-title: Desalination
– volume: 26
  start-page: 197
  year: 2013
  end-page: 208
  ident: b0145
  article-title: Developing a new fuzzy inference system for pipeline risk assessment
  publication-title: J. Loss Prev. Process Ind.
– volume: 34
  start-page: 293
  year: 2018
  end-page: 304
  ident: b0125
  article-title: Risk assessment of failure of rock bolts in underground coal mines using support vector machines
  publication-title: Appl. Stochastic Models Bus. Ind.
– volume: 58
  start-page: 11338
  year: 2019
  end-page: 11351
  ident: b0040
  article-title: Applications of advanced analytics at Saudi Aramco: A practitioners’ perspective
  publication-title: Ind. Eng. Chem. Res.
– year: 2011
  ident: b0345
  article-title: Stress corrosion cracking: theory and practice
– volume: 215
  start-page: 670
  year: 2019
  end-page: 685
  ident: b0095
  article-title: A novel study for the estimation of crack propagation in concrete using machine learning algorithms
  publication-title: Constr. Build. Mater.
– volume: 20
  start-page: 3329
  year: 1985
  end-page: 3338
  ident: b0455
  article-title: Mechanisms of stress-corrosion cracking and liquid-metal embrittlement in Al-Zn-Mg bicrystals
  publication-title: J. Mater. Sci.
– year: 1993
  ident: b0350
  article-title: Computer simulation of stress corrosion cracking, International Conference on Corrosion-Deformation Interactions CDI'92
– volume: 2
  start-page: 113
  year: 2016
  end-page: 123
  ident: b0435
  article-title: A recommendation system based on hierarchical clustering of an article-level citation network
  publication-title: IEEE Trans. Big Data
– volume: 71
  year: 2019
  ident: b0115
  article-title: A comprehensive review on internal corrosion and cracking of oil and gas pipelines
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 139
  start-page: 249
  year: 2001
  ident: 10.1016/j.ejpe.2022.09.001_b0105
  article-title: Risk assessment and evaluation of materials commonly used in desalination plants subjected to pollution impact of the oil spill and oil fires in marine environment
  publication-title: Desalination
  doi: 10.1016/S0011-9164(01)00316-2
– volume: 160
  year: 2022
  ident: 10.1016/j.ejpe.2022.09.001_b0015
  article-title: Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2021.110341
– volume: 42
  start-page: 1830
  year: 2022
  ident: 10.1016/j.ejpe.2022.09.001_b0295
  article-title: Application of metaheuristic based artificial neural network and multilinear regression for the prediction of higher heating values of fuels
  publication-title: Int. J. Coal Preparation Util.
  doi: 10.1080/19392699.2020.1768080
– start-page: 1097
  year: 2017
  ident: 10.1016/j.ejpe.2022.09.001_b0315
  article-title: A study of SVM kernel functions for sensitivity classification ensembles with POS sequences
– start-page: 1
  year: 2017
  ident: 10.1016/j.ejpe.2022.09.001_b0485
  article-title: Risk management of stress corrosion cracking of buried pipelines
  publication-title: Rio Pipeline Conf. Exhibition
– year: 2007
  ident: 10.1016/j.ejpe.2022.09.001_b0160
– volume: 77
  start-page: 1
  year: 2017
  ident: 10.1016/j.ejpe.2022.09.001_b0165
  article-title: Machine learning for durability and service-life assessment of reinforced concrete structures: recent advances and future directions
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.01.016
– volume: 70
  start-page: 18
  year: 2015
  ident: 10.1016/j.ejpe.2022.09.001_b0195
  article-title: Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.04.007
– volume: 20
  start-page: 763
  year: 2010
  ident: 10.1016/j.ejpe.2022.09.001_b0230
  article-title: Speech recognition with artificial neural networks
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2009.10.004
– year: 2012
  ident: 10.1016/j.ejpe.2022.09.001_b0250
– year: 2018
  ident: 10.1016/j.ejpe.2022.09.001_b0135
– volume: 48
  start-page: 1101
  year: 1987
  ident: 10.1016/j.ejpe.2022.09.001_b0380
  article-title: Stress-corrosion cracking
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(87)90120-X
– volume: 72
  start-page: 517
  year: 2021
  ident: 10.1016/j.ejpe.2022.09.001_b0060
  article-title: New insights into the stress corrosion cracking of carbon steel in ethanolic media
  publication-title: Mater. Corros.
  doi: 10.1002/maco.202011902
– volume: 29
  start-page: 186
  year: 2016
  ident: 10.1016/j.ejpe.2022.09.001_b0170
  article-title: Machine learning in materials science: Recent progress and emerging applications
  publication-title: Rev. Comput. Chem.
– volume: 3
  start-page: 28
  year: 2019
  ident: 10.1016/j.ejpe.2022.09.001_b0055
  article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study
  publication-title: Big Data Cogn. Comput.
  doi: 10.3390/bdcc3020028
– volume: 20
  start-page: 3329
  year: 1985
  ident: 10.1016/j.ejpe.2022.09.001_b0455
  article-title: Mechanisms of stress-corrosion cracking and liquid-metal embrittlement in Al-Zn-Mg bicrystals
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00545203
– volume: 88
  start-page: 801
  year: 2010
  ident: 10.1016/j.ejpe.2022.09.001_b0180
  article-title: Simulation of hydrodesulfurization using artificial neural network
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.20342
– volume: 2
  start-page: 113
  year: 2016
  ident: 10.1016/j.ejpe.2022.09.001_b0435
  article-title: A recommendation system based on hierarchical clustering of an article-level citation network
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2541167
– volume: 120
  start-page: 57
  year: 2018
  ident: 10.1016/j.ejpe.2022.09.001_b0275
  article-title: Supervised machine learning techniques in the desulfurization of oil products for environmental protection: a review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2018.08.021
– volume: 39
  start-page: 337
  year: 2007
  ident: 10.1016/j.ejpe.2022.09.001_b0065
  article-title: Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models
  publication-title: Nucl. Eng. Technol.
  doi: 10.5516/NET.2007.39.4.337
– volume: 42
  start-page: 206
  year: 2008
  ident: 10.1016/j.ejpe.2022.09.001_b0410
  article-title: Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis
  publication-title: Socio-Econ. Plann. Sci.
  doi: 10.1016/j.seps.2006.11.002
– ident: 10.1016/j.ejpe.2022.09.001_b0050
– volume: 5
  year: 2020
  ident: 10.1016/j.ejpe.2022.09.001_b0365
  article-title: Stokes theory of thin-film rupture
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.014002
– volume: 105
  start-page: 238
  year: 2022
  ident: 10.1016/j.ejpe.2022.09.001_b0010
  article-title: The novel polythiadiazole polymer and its composite with α-Al (OH) 3 as inhibitors for steel alloy corrosion in molar H2SO4: Experimental and computational evaluations
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2021.09.022
– ident: 10.1016/j.ejpe.2022.09.001_b0155
  doi: 10.1017/CBO9781139042918.002
– year: 2017
  ident: 10.1016/j.ejpe.2022.09.001_b0270
  article-title: An introduction to machine learning
  publication-title: DigitalOcean
– year: 1993
  ident: 10.1016/j.ejpe.2022.09.001_b0350
– ident: 10.1016/j.ejpe.2022.09.001_b0385
– volume: 19
  start-page: 369t
  year: 1963
  ident: 10.1016/j.ejpe.2022.09.001_b0450
  article-title: Implications of the stress aging yield phenomenon with regard to stress corrosion cracking
  publication-title: Corrosion
  doi: 10.5006/0010-9312-19.11.369
– volume: 77
  start-page: 484
  year: 2021
  ident: 10.1016/j.ejpe.2022.09.001_b0005
  article-title: Corrosion of additively manufactured stainless steels—process, structure, performance: A review
  publication-title: Corrosion
  doi: 10.5006/3741
– ident: 10.1016/j.ejpe.2022.09.001_b0325
– volume: 34
  start-page: 263
  year: 2006
  ident: 10.1016/j.ejpe.2022.09.001_b0395
  article-title: An introduction to ensemble methods for data analysis
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124105283119
– volume: 512
  year: 2020
  ident: 10.1016/j.ejpe.2022.09.001_b0035
  article-title: Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145612
– start-page: 144
  year: 1999
  ident: 10.1016/j.ejpe.2022.09.001_b0075
  article-title: A comparison between neural networks and decision trees
– volume: 57
  start-page: 29
  year: 2014
  ident: 10.1016/j.ejpe.2022.09.001_b0235
  article-title: Using financial risk measures for analyzing generalization performance of machine learning models
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2014.05.006
– volume: 12
  start-page: 295
  year: 1997
  ident: 10.1016/j.ejpe.2022.09.001_b0245
  article-title: Machine learning techniques for civil engineering problems
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/0885-9507.00065
– volume: 54
  start-page: 2419
  year: 2014
  ident: 10.1016/j.ejpe.2022.09.001_b0225
  article-title: A machine learning approach to crater detection from topographic data
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2014.08.018
– ident: 10.1016/j.ejpe.2022.09.001_b0210
  doi: 10.1007/978-3-642-04070-2_100
– ident: 10.1016/j.ejpe.2022.09.001_b0090
– year: 2010
  ident: 10.1016/j.ejpe.2022.09.001_b0260
  article-title: The elements of statistical learning: data mining, inference, and prediction
  publication-title: Wiley Online Library
– volume: 37
  start-page: 3373
  year: 2010
  ident: 10.1016/j.ejpe.2022.09.001_b0240
  article-title: Ensemble with neural networks for bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.10.012
– year: 2005
  ident: 10.1016/j.ejpe.2022.09.001_b0290
– volume: 7
  start-page: 317
  year: 2013
  ident: 10.1016/j.ejpe.2022.09.001_b0280
  article-title: Machine learning approaches for predicting software maintainability: a fuzzy-based transparent model
  publication-title: IET Software
  doi: 10.1049/iet-sen.2013.0046
– volume: 52
  start-page: 769
  year: 2010
  ident: 10.1016/j.ejpe.2022.09.001_b0355
  article-title: Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.10.041
– ident: 10.1016/j.ejpe.2022.09.001_b0205
  doi: 10.1007/978-1-4419-7046-6_19
– year: 1956
  ident: 10.1016/j.ejpe.2022.09.001_b0465
– volume: 53
  year: 1997
  ident: 10.1016/j.ejpe.2022.09.001_b0100
  article-title: Empirical learning investigations of the stress corrosion cracking of austenitic stainless steels in high-temperature aqueous environments
  publication-title: Corrosion
  doi: 10.5006/1.3280476
– volume: 119
  start-page: 405
  year: 1972
  ident: 10.1016/j.ejpe.2022.09.001_b0360
  article-title: A theory for the propagation of stress corrosion cracks in metals
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2404217
– start-page: 13
  year: 2013
  ident: 10.1016/j.ejpe.2022.09.001_b0415
– volume: 187
  year: 2020
  ident: 10.1016/j.ejpe.2022.09.001_b0445
  article-title: A new method for predicting susceptibility of austenitic stainless steels to intergranular stress corrosion cracking
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108368
– volume: 5
  start-page: 1
  year: 2019
  ident: 10.1016/j.ejpe.2022.09.001_b0330
  article-title: Evaluating the effect of blending ratio on the co-gasification of high ash coal and biomass in a fluidized bed gasifier using machine learning
  publication-title: Mugla J. Sci. Technol.
  doi: 10.22531/muglajsci.471538
– ident: 10.1016/j.ejpe.2022.09.001_b0045
– volume: 71
  year: 2019
  ident: 10.1016/j.ejpe.2022.09.001_b0115
  article-title: A comprehensive review on internal corrosion and cracking of oil and gas pipelines
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2019.102971
– year: 2011
  ident: 10.1016/j.ejpe.2022.09.001_b0305
– volume: 215
  start-page: 670
  year: 2019
  ident: 10.1016/j.ejpe.2022.09.001_b0095
  article-title: A novel study for the estimation of crack propagation in concrete using machine learning algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.04.227
– volume: 41
  start-page: 531
  year: 2020
  ident: 10.1016/j.ejpe.2022.09.001_b0025
  article-title: A machine learning-based data fusion approach for improved corrosion testing
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-019-09558-4
– volume: 42
  start-page: 383
  year: 2011
  ident: 10.1016/j.ejpe.2022.09.001_b0110
  article-title: Observation and modeling of stress corrosion cracking in high pressure gas pipe steel
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-010-0384-2
– volume: 8
  start-page: 247
  year: 1963
  ident: 10.1016/j.ejpe.2022.09.001_b0460
  article-title: The influence of surface tarnish on the stress-corrosion of α-brass
  publication-title: Phil. Mag.
  doi: 10.1080/14786436308211122
– start-page: 1
  year: 2013
  ident: 10.1016/j.ejpe.2022.09.001_b0285
  article-title: Machine learning-based software quality prediction models: state of the art
– start-page: 481
  year: 1983
  ident: 10.1016/j.ejpe.2022.09.001_b0370
  article-title: Lifetime prediction for parts in corrosive environments
  publication-title: Corros. Power Generat. Equip.
– volume: 1
  start-page: 365
  year: 1987
  ident: 10.1016/j.ejpe.2022.09.001_b0400
  article-title: Fitting curves to data using nonlinear regression: a practical and nonmathematical review
  publication-title: FASEB J.
  doi: 10.1096/fasebj.1.5.3315805
– volume: 119
  start-page: 36
  year: 2018
  ident: 10.1016/j.ejpe.2022.09.001_b0185
  article-title: Neural network modelling of high pressure CO2 corrosion in pipeline steels
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2018.07.006
– volume: 11
  start-page: 87
  year: 2003
  ident: 10.1016/j.ejpe.2022.09.001_b0175
  article-title: Machine learning and software engineering
  publication-title: Software Qual. J.
  doi: 10.1023/A:1023760326768
– volume: 38
  start-page: 2347
  year: 2011
  ident: 10.1016/j.ejpe.2022.09.001_b0405
  article-title: Practical development of an Eclipse-based software fault prediction tool using Naive Bayes algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.022
– volume: 10
  start-page: 543
  year: 2017
  ident: 10.1016/j.ejpe.2022.09.001_b0070
  article-title: A comparison study of machine learning based algorithms for fatigue crack growth calculation
  publication-title: Materials
  doi: 10.3390/ma10050543
– volume: 233
  year: 2021
  ident: 10.1016/j.ejpe.2022.09.001_b0430
  article-title: Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117923
– year: 2013
  ident: 10.1016/j.ejpe.2022.09.001_b0375
– volume: 12
  start-page: 458
  year: 2010
  ident: 10.1016/j.ejpe.2022.09.001_b0215
  article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2010.032
– volume: 35
  start-page: 419
  year: 1993
  ident: 10.1016/j.ejpe.2022.09.001_b0475
  article-title: Surface mobility mechanism of stress-corrosion cracking
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(93)90175-G
– start-page: 1290
  year: 2018
  ident: 10.1016/j.ejpe.2022.09.001_b0140
  article-title: Learning with corrosion feature: For automated quantitative risk analysis of corrosion mechanism
– volume: 333
  start-page: 554
  year: 2007
  ident: 10.1016/j.ejpe.2022.09.001_b0220
  article-title: Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley, Nebraska
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.09.020
– volume: 16
  year: 2007
  ident: 10.1016/j.ejpe.2022.09.001_b0265
  article-title: Pattern recognition and machine learning
  publication-title: J. Electron. Imaging
– start-page: 1421
  year: 2017
  ident: 10.1016/j.ejpe.2022.09.001_b0320
  article-title: Short-term prediction of distribution network faults based on support vector machine
– volume: 131
  year: 2021
  ident: 10.1016/j.ejpe.2022.09.001_b0440
  article-title: Study of the relationship between intergranular stress corrosion cracking and grain boundary characteristics in brass
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2021.107124
– volume: 25
  start-page: 488
  year: 2009
  ident: 10.1016/j.ejpe.2022.09.001_b0120
  article-title: Invited review: Adaptive numerical modelling and hybrid physically based ANM approaches in materials engineering–a survey
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/174328409X411727
– ident: 10.1016/j.ejpe.2022.09.001_b0490
– volume: 52
  year: 1996
  ident: 10.1016/j.ejpe.2022.09.001_b0470
  article-title: Localized surface plasticity during stress corrosion cracking
  publication-title: Corrosion
  doi: 10.5006/1.3292123
– volume: 11
  start-page: 2120
  year: 2015
  ident: 10.1016/j.ejpe.2022.09.001_b0030
  article-title: Machine learning of parameters for accurate semiempirical quantum chemical calculations
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00141
– year: 2015
  ident: 10.1016/j.ejpe.2022.09.001_b0340
– volume: 34
  start-page: 293
  year: 2018
  ident: 10.1016/j.ejpe.2022.09.001_b0125
  article-title: Risk assessment of failure of rock bolts in underground coal mines using support vector machines
  publication-title: Appl. Stochastic Models Bus. Ind.
  doi: 10.1002/asmb.2273
– ident: 10.1016/j.ejpe.2022.09.001_b0255
– volume: 58
  start-page: 11338
  year: 2019
  ident: 10.1016/j.ejpe.2022.09.001_b0040
  article-title: Applications of advanced analytics at Saudi Aramco: A practitioners’ perspective
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b06205
– volume: 124
  start-page: 5624
  year: 2020
  ident: 10.1016/j.ejpe.2022.09.001_b0020
  article-title: Elucidating structure-property relationships in aluminum alloy corrosion inhibitors by machine learning
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b09538
– volume: 171
  year: 2020
  ident: 10.1016/j.ejpe.2022.09.001_b0080
  article-title: A computer vision based machine learning approach for fatigue crack initiation sites recognition
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.109259
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.ejpe.2022.09.001_b0420
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 106
  start-page: 234
  year: 2013
  ident: 10.1016/j.ejpe.2022.09.001_b0300
  article-title: A study on multiple linear regression analysis
  publication-title: Proc.-Social Behav. Sci.
  doi: 10.1016/j.sbspro.2013.12.027
– volume: 73
  start-page: 161
  year: 2013
  ident: 10.1016/j.ejpe.2022.09.001_b0130
  article-title: Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2013.03.032
– ident: 10.1016/j.ejpe.2022.09.001_b0190
  doi: 10.1533/9781845696825.1.177
– volume: 86
  start-page: 597
  year: 2014
  ident: 10.1016/j.ejpe.2022.09.001_b0480
  article-title: Corrosion risk analysis, risk based inspection and a case study concerning a condensate pipeline
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.11.085
– year: 2018
  ident: 10.1016/j.ejpe.2022.09.001_b0425
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
– volume: 25
  start-page: e2230
  year: 2018
  ident: 10.1016/j.ejpe.2022.09.001_b0085
  article-title: Convolutional neural networks for automated damage recognition and damage type identification
  publication-title: Struct. Control Health Monitor.
  doi: 10.1002/stc.2230
– year: 2011
  ident: 10.1016/j.ejpe.2022.09.001_b0345
– volume: 9
  start-page: 483
  year: 2016
  ident: 10.1016/j.ejpe.2022.09.001_b0150
  article-title: An artificial neural network-based algorithm for evaluation of fatigue crack propagation considering nonlinear damage accumulation
  publication-title: Materials
  doi: 10.3390/ma9060483
– volume: 44
  start-page: 17260
  year: 2019
  ident: 10.1016/j.ejpe.2022.09.001_b0335
  article-title: Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.108
– volume: 26
  start-page: 197
  year: 2013
  ident: 10.1016/j.ejpe.2022.09.001_b0145
  article-title: Developing a new fuzzy inference system for pipeline risk assessment
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2012.10.010
– start-page: 233
  year: 1995
  ident: 10.1016/j.ejpe.2022.09.001_b0390
  doi: 10.1007/978-1-4899-1724-9_3
– ident: 10.1016/j.ejpe.2022.09.001_b0310
– volume: 76
  start-page: 749
  year: 2014
  ident: 10.1016/j.ejpe.2022.09.001_b0200
  article-title: Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.072
SSID ssj0000651458
Score 2.2066147
SecondaryResourceType review_article
Snippet •The fundamentals on the use of machine learning in stress corrosion crack (SCC) risk analysis or assessment was reviewed.•Current state of the literature on...
One of the greatest challenges faced by industries today is corrosion and of which, one of the most vital forms is stress corrosion cracking (SCC). It brings...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Forms of corrosion
Industrial internet of things (IIOT)
Machine learning (ML)
Stress corrosion cracking (SCC)
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQUztUfar0JQ_dqhQ7Dkk8AipCVdupSGyWbRwEaglC9P_3znFSWBg6xvIl0cW-h3Pfd4Q8usxCUKyLaKYNJCiWZZGWLo5SpM_P4yRPBIKT3z_S8SR5nfamLTKssTBYVhlsf2XTvbUOI92gze56sejCPuSIAOSxR5skaIcRVYogvumgOWcBF8sT36YT50coELAzVZmXW66RLTOOnyvmyj3_5Gn8d9zUjusZnZKTEDPSfvVaZ6TlVufkeIdJ8IK89f9-RNOyoN--RtLR0BRiTrclrWAhFNJNeDLOsxtt8aScYn051Q1H5yWZjF4-h-MoNEqILGQEPJpxDWYiMU4koPt8ZnhqGDc-3EDsbG9mMLNjmkHqzAorjJEF0zItjOSWFeKKtFflyl0Tqp2DqItJASK4vbXTYAaE4DrVaa7zDuG1epQNLOLYzOJL1eViS4UqVahSxSTWzHXIUyOzrjg0Ds4eoNabmch_7QfKzVyFBaC0jU1mZW4KDSEgs9JmApnJQAsyT43pkF79zdTecoJbLQ48_OafcrfkCK-qOpc70t5uftw9RCtb8-CX4y-iquXy
  priority: 102
  providerName: Elsevier
Title Application of machine learning to stress corrosion cracking risk assessment
URI https://dx.doi.org/10.1016/j.ejpe.2022.09.001
https://doaj.org/article/ac2b7c98bfa5450c9c735478634986bb
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCGAnacOvbYIqrylJCo1M2yHQdRQVtV5f9zF6clLGVh8RD5EV3Ovu-cu-8IuQi5B1Bsy6SwDhwUz_LE6pAmEunzVZqpTGBy8tOzHAyz-1Fn1Cj1hTFhkR44Cu7a-tTlXitXWjD2zGufC-SgkiLTSjqHpy_TrOFMxTMYgEBVnBP2MlZWSXmdMRODu8J4hhyZaXoV-Sp_WaWKvL9hnBoGp79DtmukSLvxDXfJRpjska0Gf-A-eez-_H6m05J-VpGRgdalIN7oYkpjMggFJxNWxn5-bj3ej1OMKqd2xcx5QIb929ebQVKXR0g8-AE8KbiFwyFzQWQgcVU4Lh3jrgIZmDHbKRz6c8wycJhZ6YVzumRWy9Jp7lkpDklrMp2EI0JtCIC1mBYwBDe1DRY2vxDcSiuVVW3Cl-IxvuYOxxIWH2YZJDY2KFKDIjVMY6Rcm1yuxswic8ba3j2U-qonsl5XD0AXTK0L5i9daJPO8puZGkBEYABTva9Z_Pg_Fj8hmzhlDHU5Ja3F_CucAWBZuPNKN6G9G_WgfXhR36Rf54g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQHdoOVZ8qfXroVqXYSUjiEVARtMAEEptlGweBWkCI_v_eJU4KC0NXxxdHl_M97LvvCHmxsQGnWKXeVGkIUAyLPSWs70UIn5_4YRIGWJw8GEbdcfgxaUwqpF3UwmBapdP9uU7PtLUbqTtu1tfzeR32IccKQO5n1SYh6OEj8AYYinZv0ioPWsDG8jDr04kEHlK44pk8z8su1giX6ftvOXTlnoHKcPx37NSO7emckzPnNNJm_l0XpGKXl-R0B0rwivSbfzfRdJXS7yxJ0lLXFWJGtyua14VQiDdhZZxnNsrgUTnFBHOqSpDOazLuvI_aXc91SvAMhATcm3IFeiLUNgiB-clU80gzrjN_A4tnG1ONoR1TDGJnlppAa5EyJaJUC25YGtyQ6nK1tLeEKmvB7WIiABLc38oq0ANBwFWkokQlNcIL9kjjYMSxm8WXLPLFFhJZKpGlkglMmquR15JmnYNoHJzdQq6XMxEAOxtYbWbSSYBUxtexEYlOFfiAzAgTBwhNBlwQSaR1jTSKfyb35AleNT-w-N0_6Z7JcXc06Mt-b_h5T07wSZ708kCq282PfQTXZaufMtH8BUVF6RU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+to+stress+corrosion+cracking+risk+assessment&rft.jtitle=Egyptian+journal+of+petroleum&rft.au=Aeshah+H.+Alamri&rft.date=2022-12-01&rft.pub=Egyptian+Petroleum+Research+Institute&rft.issn=1110-0621&rft.volume=31&rft.issue=4&rft.spage=11&rft.epage=21&rft_id=info:doi/10.1016%2Fj.ejpe.2022.09.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ac2b7c98bfa5450c9c735478634986bb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0621&client=summon