Dimensional Reduction of Underwater Shrimp Digital Image Using the Principal Component Analysis Algorithm

Shrimps are aquaculture products highly needed by the people and this is the reason their growth needs to be monitored using underwater digital images. However, the large dimensions of the shrimp digital images usually make the processing difficult. Therefore, this research focuses on reducing the d...

Full description

Saved in:
Bibliographic Details
Published inE3S web of conferences Vol. 448; p. 2061
Main Authors Setiawan, Arif, Hadiyanto, Hadiyanto, Widodo, Catur Edi
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2023
Subjects
Online AccessGet full text
ISSN2267-1242
2555-0403
2267-1242
DOI10.1051/e3sconf/202344802061

Cover

Abstract Shrimps are aquaculture products highly needed by the people and this is the reason their growth needs to be monitored using underwater digital images. However, the large dimensions of the shrimp digital images usually make the processing difficult. Therefore, this research focuses on reducing the dimensions of underwater shrimp digital images without reducing their information through the application of the Principal Component Analysis (PCA) algorithm. This was achieved using 4 digital shrimp images extracted from video data with the number of columns 398 for each image. The results showed that 12 PCs were produced and this means the reduced digital images with new dimensions have 12 variable columns with data diversity distributed based on a total variance of 95.61%. Moreover, the original and reduced digital images were compared and the lowest value of MSE produced was 94.12, the minimum value of RMSE was 9.54, and the highest value of PSNR was 8.06 db, and they were obtained in the 4th digital image. The experiment was conducted using 3 devices which include I3, I7, and Google Colab processor computers and the fastest computational result was produced at 2.1 seconds by the Google Colab processor. This means the PCA algorithm is good for the reduction of digital image dimensions as indicated by the production of 12 PC as the new variable dimensions for the reduced underwater image of shrimps.
AbstractList Shrimps are aquaculture products highly needed by the people and this is the reason their growth needs to be monitored using underwater digital images. However, the large dimensions of the shrimp digital images usually make the processing difficult. Therefore, this research focuses on reducing the dimensions of underwater shrimp digital images without reducing their information through the application of the Principal Component Analysis (PCA) algorithm. This was achieved using 4 digital shrimp images extracted from video data with the number of columns 398 for each image. The results showed that 12 PCs were produced and this means the reduced digital images with new dimensions have 12 variable columns with data diversity distributed based on a total variance of 95.61%. Moreover, the original and reduced digital images were compared and the lowest value of MSE produced was 94.12, the minimum value of RMSE was 9.54, and the highest value of PSNR was 8.06 db, and they were obtained in the 4th digital image. The experiment was conducted using 3 devices which include I3, I7, and Google Colab processor computers and the fastest computational result was produced at 2.1 seconds by the Google Colab processor. This means the PCA algorithm is good for the reduction of digital image dimensions as indicated by the production of 12 PC as the new variable dimensions for the reduced underwater image of shrimps.
Author Hadiyanto, Hadiyanto
Setiawan, Arif
Widodo, Catur Edi
Author_xml – sequence: 1
  givenname: Arif
  surname: Setiawan
  fullname: Setiawan, Arif
– sequence: 2
  givenname: Hadiyanto
  surname: Hadiyanto
  fullname: Hadiyanto, Hadiyanto
– sequence: 3
  givenname: Catur Edi
  surname: Widodo
  fullname: Widodo, Catur Edi
BookMark eNqNkEtrGzEURkVJoWmaf9CFoGs3unqM5KVx-jAEWtp6Le5oNGOZGWkqjQn-91XqULLs6n7cx-Fy3pKrmKIn5D2wj8AU3HlRXIr9HWdcSGkYZw28ItecN3oFXPKrF_kNuS3lyBgDroxk8pqE-zD5WEKKONIfvju5pWaaerqPnc-PuPhMfx5ymGZ6H4aw1LXdhIOn-xLiQJeDp99ziC7MdbJN01y_iwvdVN65hEI345ByWA7TO_K6x7H42-d6Q_afP_3afl09fPuy224eVo4rBSsQQjlhmNFeomqFa7GTpuO9wRaY1kY4FLoHrRmsZds6xRDXHdNr3RnQrbghuwu3S3i0c_0c89kmDPZvI-XBYl6CG71V3infqGrHoHROtQAIHF3X9MxjoytLXVinOOP5EcfxHxCYfdJvn_Xbl_rr3YfL3ZzT75Mviz2mU65KihVcAG8AzBNdXrZcTqVk3_8f_A-7b5jA
Cites_doi 10.1016/j.aqrep.2021.100708
10.1016/j.aquaeng.2021.102178
10.1016/j.compag.2021.106316
10.1016/j.aquaeng.2019.102014
10.1016/j.mlwa.2021.100044
10.1016/j.measurement.2022.111340
10.1007/s10811-021-02501-4
10.1016/j.trf.2020.01.003
10.1016/j.envres.2020.109587
10.1016/j.edumed.2020.09.013
10.1016/j.measurement.2020.108708
10.1016/j.ijgfs.2022.100518
10.1016/j.measurement.2021.110498
10.1016/j.jvcir.2019.102578
10.1016/j.ecoinf.2021.101367
10.1016/j.jvcir.2021.103426
10.1007/s10586-021-03282-8
10.1016/j.compag.2021.106351
10.1016/j.microc.2021.106608
10.1016/j.ins.2021.07.052
ContentType Journal Article
Conference Proceeding
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
KR7
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
ADTOC
UNPAY
DOA
DOI 10.1051/e3sconf/202344802061
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database (Proquest)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2267-1242
ExternalDocumentID oai_doaj_org_article_5ec5e652678a4cc5b11a12acd6f0ea67
10.1051/e3sconf/202344802061
10_1051_e3sconf_202344802061
Genre Conference Proceeding
GroupedDBID 5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PUEGO
PYCSY
RIG
7ST
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
H8D
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ADTOC
UNPAY
ID FETCH-LOGICAL-c2551-1335c38087e4a5b3cbad48d2f8ab107783ca37f1770194bbc50aa9d0797d817b3
IEDL.DBID BENPR
ISSN 2267-1242
2555-0403
IngestDate Fri Oct 03 12:53:23 EDT 2025
Sun Sep 07 11:28:37 EDT 2025
Fri Jul 18 20:50:54 EDT 2025
Wed Oct 01 03:55:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2551-1335c38087e4a5b3cbad48d2f8ab107783ca37f1770194bbc50aa9d0797d817b3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://www.proquest.com/docview/3231261187?pq-origsite=%requestingapplication%&accountid=15518
PQID 3231261187
PQPubID 2040555
ParticipantIDs doaj_primary_oai_doaj_org_article_5ec5e652678a4cc5b11a12acd6f0ea67
unpaywall_primary_10_1051_e3sconf_202344802061
proquest_journals_3231261187
crossref_primary_10_1051_e3sconf_202344802061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle E3S web of conferences
PublicationYear 2023
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Chaikaew (R4) 2019; 1
Nasution (R18) 2020; 3
Priadana (R2) 2020; 8
Peretti (R21) 2021; 30
Ray (R1) 2021; 20
Huancahuire-vega (R26) 2021; 22
Islam (R20) 2021; 5
R25
Chuen (R14) 2021; 169
R27
Wang (R23) 2021; 189
R29
Shen (R24) 2021; 170
R (R9) 2022; 83
Osornio-rios (R12) 2022; 197
R7
Yang (R5) 2021; 187
Cao (R22) 2021; 574
Itkonen (R16) 2020; 69
Shrestha (R28) 2021; 9
Basin (R32) 2019; 22
Padoan (R15) 2020; 186
Anh (R3) 2021; 33
Khaing (R10) 2020; 3
R31
Mustaqeem (R19) 2021; 24
R11
Chen (R6) 2019; 87
R13
R17
Liu (R8) 2021; 64
Jian (R30) 2022; 189
References_xml – volume: 20
  start-page: 100708
  year: 2021
  ident: R1
  publication-title: Aquac. Reports,
  doi: 10.1016/j.aqrep.2021.100708
– ident: R7
  doi: 10.1016/j.aquaeng.2021.102178
– volume: 1
  start-page: 1
  issue: 1
  year: 2019
  ident: R4
  publication-title: Sustain. Environ. Res.,
– volume: 3
  start-page: 39
  issue: 11
  year: 2020
  ident: R10
  publication-title: Dimension Reduction of Images Using Principal Component Analysis Algorithm,
– volume: 9
  start-page: 4
  issue: 1
  year: 2021
  ident: R28
  publication-title: Factor Analysis as a Tool for Survey Analysis,
– volume: 22
  start-page: 25
  issue: 1
  year: 2019
  ident: R32
  publication-title: Egypt. J. Remote Sens. SSci.,
– volume: 187
  start-page: 106316
  year: 2021
  ident: R5
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106316
– volume: 87
  start-page: 102014
  year: 2019
  ident: R6
  publication-title: Aquac. Eng.,
  doi: 10.1016/j.aquaeng.2019.102014
– volume: 5
  start-page: 100044
  year: 2021
  ident: R20
  publication-title: Mach. Learn. with Appl.,
  doi: 10.1016/j.mlwa.2021.100044
– volume: 197
  start-page: 111340
  year: 2022
  ident: R12
  publication-title: Measurement,
  doi: 10.1016/j.measurement.2022.111340
– volume: 33
  start-page: 3331
  issue: 5
  year: 2021
  ident: R3
  publication-title: J. Appl. Phycol.,
  doi: 10.1007/s10811-021-02501-4
– volume: 69
  start-page: 72
  year: 2020
  ident: R16
  publication-title: TransRes. Part F Psychol. Behav.,
  doi: 10.1016/j.trf.2020.01.003
– volume: 30
  start-page: 1
  year: 2021
  ident: R21
  publication-title: NeuroImage : Clinical Feasibility of pharmacokinetic parametric PET images in scaled subprofile modelling using principal component analysis
– ident: R31
– volume: 186
  start-page: 109587
  year: 2020
  ident: R15
  publication-title: Environ. Res.,
  doi: 10.1016/j.envres.2020.109587
– volume: 22
  start-page: 144
  issue: 3
  year: 2021
  ident: R26
  publication-title: EducaciónMédica, Educ. Médica
  doi: 10.1016/j.edumed.2020.09.013
– volume: 170
  start-page: 108708
  year: 2021
  ident: R24
  publication-title: Measurement,
  doi: 10.1016/j.measurement.2020.108708
– ident: R29
– ident: R25
  doi: 10.1016/j.ijgfs.2022.100518
– ident: R27
– volume: 189
  start-page: 110498
  year: 2022
  ident: R30
  publication-title: Measurement,
  doi: 10.1016/j.measurement.2021.110498
– ident: R13
  doi: 10.1016/j.jvcir.2019.102578
– volume: 64
  start-page: 101367
  year: 2021
  ident: R8
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101367
– volume: 8
  start-page: 106
  year: 2020
  ident: R2
  publication-title: Shrimps clusterization by size using digital image processing with CCA and DBSCAN,
– volume: 83
  start-page: 103426
  year: 2022
  ident: R9
  publication-title: J. Vis. Commun. Image Represent.,
  doi: 10.1016/j.jvcir.2021.103426
– volume: 3
  start-page: 182
  issue: 2
  year: 2020
  ident: R18
  publication-title: JITE ( Journal of Informatics and Telecommunication Engineering ) Face Recognition based Feature Extraction using Principal Component Analysis ( PCA ),
– volume: 24
  start-page: 2581
  issue: 3
  year: 2021
  ident: R19
  publication-title: Cluster Comput.,
  doi: 10.1007/s10586-021-03282-8
– volume: 189
  start-page: 106351
  year: 2021
  ident: R23
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106351
– volume: 169
  start-page: 106608
  year: 2021
  ident: R14
  publication-title: Microchem. J.,
  doi: 10.1016/j.microc.2021.106608
– ident: R11
– volume: 574
  start-page: 640
  year: 2021
  ident: R22
  publication-title: Inf. Sci. (Ny).,
  doi: 10.1016/j.ins.2021.07.052
– ident: R17
SSID ssj0001258404
Score 2.208293
Snippet Shrimps are aquaculture products highly needed by the people and this is the reason their growth needs to be monitored using underwater digital images....
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2061
SubjectTerms Algorithms
Aquaculture
Aquaculture products
Computers
Digital imaging
Microprocessors
Principal components analysis
Shrimps
Underwater
Video data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCyyIV0WhIA-soXFsx85YaKvCgBBQqVtkO3ZbqS_1oYp_zzlJSzvBwJIhjhLr7uz7Psf-DqH7RDEqrY2DLIuTgDliAmm1CBSk25DaRBuTb5B9jTtd9tLjvZ1SX35PWCEPXBiuzq3hNuYRTKqKGcM1IYpEymSxC62K83PkoUx2yFSxugKJNWSbs3Kc1C1dAMF0nuxToCSAkmKyl4tyyf49nHm0mszU11qNRjspp32KTkqsiBtFH8_QgZ2co0rr52gaNJZjc3GBhk0v1F-IbOB3r8jqbY6nDue1jdYAKuf4YzAfjme4Oez7YiH4eQzTCc63DWBAgvitWHqHFj9PTCfwDbyRLcGNUX86Hy4H40vUbbc-nzpBWUghMMAYSAA8lBsqQyksU1xTo1XGZBY5qTTQPyGpUVQ4Irw2O9Pa8FCpJAtFIjJJhKYVdDiBb14hHGnJGDdwIY75ZBZKB5DKCWptxJyuomBj0nRW6GWk-X9uTtLSBemuC6ro0dt9-6xXu85vQAykZQykv8VAFdU2XkvLIbhIKSBXoIdEQvPD1pN_6tT1f3TqBh37dxbLNTV0uJyv7C0AmKW-y2P1G8uq7jI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQOcCFHVE2-cDVJY7t2DmWTcABIaASnCLbsaGim7qogq9nnKRAhZDgEilxEieeGc8bL28QOko1Z8q5hOR5khLuqSXKGUk0uNuIudRYWyyQvUkuW_z6UTx-8WzPTd8LeuzYCMJCH0J0BoEEYJsQ6iwmAoB3DS22bm6bTyF9XAzmDp4qzBkARhYEVJPNNsr98po5R1Tw9c-BzKVJb6DfprrT-eZvLlbLjdyjgqYwLDN5bUzGpmHff5I4_uVX1tBKhTtxs1SUdbTgehto-_xrmxsUVnY-2kTts0D6XxJ24LvA7hrkh_seF3mSpgBQh_j-ZdjuDvBZ-zkkHsFXXeiacLEEAQOqxLflMD6UhD6n34M68IwCBTc7z_1he_zS3UKti_OH00tSJWUgFlqWEohphWUqUtJxLQyzRudc5bFX2kAoKRWzmklPZeB558ZYEWmd5pFMZa6oNGwb1XpQ5w7CsVGcCwsH6nlwjJHyAM-8ZM7F3Js6IjMJZYOSeyMr5swFzarWzL63Zh2dBDF-3huYs4sLIIasMsRMOCtcIkBhlObWCkOpprG2eeIjpxNZR_szJcgqcx5lDFAwhJpUQXHjUzH-9FG7_31gDy2H03KYZx_VxsOJOwDgMzaHlcJ_ABrS-mw
  priority: 102
  providerName: Unpaywall
Title Dimensional Reduction of Underwater Shrimp Digital Image Using the Principal Component Analysis Algorithm
URI https://www.proquest.com/docview/3231261187
http://doi.org/10.1051/e3sconf/202344802061
https://doaj.org/article/5ec5e652678a4cc5b11a12acd6f0ea67
UnpaywallVersion publishedVersion
Volume 448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: ADMLS
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: GI~
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swECYSZ2i3PhLUaWpw6MpGFEmRGooiaewkHQwjrYF0Evh0DPhV20HQpb-9R1qynaXoooEiROGOvPt45H2H0MdSc6a8L4hzRUl4oJYobyTR4G4z5ktjbbog2y9uhvzbvbg_QP0mFyZeq2xsYjLUbm5jjPycARABtE-V_LL4RWLVqHi62pTQ0HVpBfc5UYwdoqM8MmO10NFltz-424u6gMNNNQUBSgsCM5g1-XSCnnu2gk1oiAEBBtsWQFIFfeavEq3_Myz64nG20L-f9GSy55Z6r9DxLmEPD7au6DU68LM36KS7S2LTE1yv4tVbNL6KlP4bOg58F7lbo3bwPOBUBekJ4OcSf39YjqcLfDUexbIi-HYKhgenCwYYMCOMloL08CZalPkMxsANwQm-mIxAdOuH6TEa9ro_vt6QuuQCsSAQSmDHKixTmZKea2GYNdpx5fKgtIGNolTMaiYDlZHFnRtjRaZ16TJZSqeoNOwEtWYw5juEc6M4FxYeNPDo9jIVAHwFybzPeTBtRBrBVosNs0aVTsQFrWpFVPuKaKPLKP1t38iLnRrmy1FVL7NKeCt8IXJwwZpbKwylmubauiJkXheyjc4a3VX1Yl1Vu6nVRp-2-vyvnzr99_feo5ex9yZkc4Za6-Wj_wAgZm066FD1rjv1_OykUAA8r2__QNuwP7j4-ReOyfRM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYoHOittKCGQutDe3RZr-2194Cq0gQlhUaIgsRta3vtECmvJkERf66_rWNnNwmXqhcue9iHvfLYM9-MPfMh9DHXnCnnMlKWWU64p5YoZyTRYG4T5nJjbTwg283at_z7nbjbQn_qXJhwrLLWiVFRl2MbYuQnDIAIoH2q5JfJbxJYo8Luak2hoStqhfI0lhirEjsu3OMCXLjZaacJ8v6Upuetm29tUrEMEAtwmhJw0oRlKlHScS0Ms0aXXJWpV9qAbyQVs5pJT2UoXM6NsSLROi8TmctSUWkYtPsC7XDGc3D-ds5a3avrjSgPGPjIYQh9CQIrhtX5e4KeODYDp9eHAAQDNwmQW0af2MdII_AE--4-jCb6caEHgw0zeP4K7a8TBPHVyvTtoS03eo0OWuukOT3AldaYvUH9ZqAQWJb_wNehVmyYDXjscWRdWgDcneKf99P-cIKb_V6gMcGdISg6HA80YMCo0FvcFIAnQYONR9AHrguq4K-DHohqfj_cR7fPMvgHaHsEfb5FODWKc2HhQj0PZjZRHsCel8y5lHvTQKQe2GKyrORRxB14QYtKEMWmIBroLIz-6t1QhzveGE97RbWsC-GscJlIweRrbq0wlGqaaltmPnE6kw10VMuuqJTDrFhP5Qb6vJLnf_3U4b_b-4B22zc_LovLTvfiHXoZvlyGi47Q9nz64I4BQM3N-2qWYvTruRfGX_SQK2k
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQOcCFHVE2-cDVJY7t2DmWTcABIaASnCLbsaGim7qogq9nnKRAhZDgEilxEieeGc8bL28QOko1Z8q5hOR5khLuqSXKGUk0uNuIudRYWyyQvUkuW_z6UTx-8WzPTd8LeuzYCMJCH0J0BoEEYJsQ6iwmAoB3DS22bm6bTyF9XAzmDp4qzBkARhYEVJPNNsr98po5R1Tw9c-BzKVJb6DfprrT-eZvLlbLjdyjgqYwLDN5bUzGpmHff5I4_uVX1tBKhTtxs1SUdbTgehto-_xrmxsUVnY-2kTts0D6XxJ24LvA7hrkh_seF3mSpgBQh_j-ZdjuDvBZ-zkkHsFXXeiacLEEAQOqxLflMD6UhD6n34M68IwCBTc7z_1he_zS3UKti_OH00tSJWUgFlqWEohphWUqUtJxLQyzRudc5bFX2kAoKRWzmklPZeB558ZYEWmd5pFMZa6oNGwb1XpQ5w7CsVGcCwsH6nlwjJHyAM-8ZM7F3Js6IjMJZYOSeyMr5swFzarWzL63Zh2dBDF-3huYs4sLIIasMsRMOCtcIkBhlObWCkOpprG2eeIjpxNZR_szJcgqcx5lDFAwhJpUQXHjUzH-9FG7_31gDy2H03KYZx_VxsOJOwDgMzaHlcJ_ABrS-mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Dimensional+Reduction+of+Underwater+Shrimp+Digital+Image+Using+the+Principal+Component+Analysis+Algorithm&rft.au=Setiawan%2C+Arif&rft.au=Hadiyanto%2C+Hadiyanto&rft.au=Catur+Edi+Widodo&rft.date=2023-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=448&rft_id=info:doi/10.1051%2Fe3sconf%2F202344802061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon