Maximum Voltage Gain Tracking Algorithm for High-Efficiency of Two-Stage Induction Heating Systems Using Resonant Impedance Estimation

A boost power factor correction (PFC) circuit has replaced the diode rectifier to improve its poor power factor performance, low efficiency, and output power limitation for conventional induction heating (IH) applications. Accordingly, many studies have been conducted, but they considered only the e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 70; no. 8; pp. 1 - 10
Main Authors Heo, Kyung-Wook, Jin, Juil, Jung, Jee-Hoon
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2022.3225853

Cover

Abstract A boost power factor correction (PFC) circuit has replaced the diode rectifier to improve its poor power factor performance, low efficiency, and output power limitation for conventional induction heating (IH) applications. Accordingly, many studies have been conducted, but they considered only the efficiency of the boost PFC rather than the entire IH system, or their control and design were complicated. In this paper, an algorithm tracking the maximum voltage gain of the resonant network is proposed to improve the entire efficiency of the two-stage IH system based on an exact online resonant frequency estimation. It can make the resonant network operate at the maximum voltage gain point which can improve the efficiency of the series-resonant inverter (SRI) included in the IH system with low circulating current, the minimum switching frequency, and zero voltage switching (ZVS) capability. The proposed algorithm also induces the minimum output voltage of the boost PFC, which can reduce its switching losses and total harmonic distortion (THD). The validity of the proposed algorithm is experimentally verified using a 2.4-kW prototype IH system, including the boost PFC and the IH-SRI controlled by a digital signal processor (DSP).
AbstractList A boost power factor correction (PFC) circuit has replaced the diode rectifier to improve its poor power factor performance, low efficiency, and output power limitation for conventional induction heating (IH) applications. Accordingly, many studies have been conducted, but they considered only the efficiency of the boost PFC rather than the entire IH system, or their control and design were complicated. In this article, an algorithm tracking the maximum voltage gain of the resonant network is proposed to improve the entire efficiency of the two-stage IH system based on an exact online resonant frequency estimation. It can make the resonant network operate at the maximum voltage gain point which can improve the efficiency of the series-resonant inverter (SRI) included in the IH system with low circulating current, the minimum switching frequency, and zero voltage switching capability. The proposed algorithm also induces the minimum output voltage of the boost PFC, which can reduce its switching losses and total harmonic distortion. The validity of the proposed algorithm is experimentally verified using a 2.4-kW prototype IH system, including the boost PFC and the IH-SRI controlled by a digital signal processor.
A boost power factor correction (PFC) circuit has replaced the diode rectifier to improve its poor power factor performance, low efficiency, and output power limitation for conventional induction heating (IH) applications. Accordingly, many studies have been conducted, but they considered only the efficiency of the boost PFC rather than the entire IH system, or their control and design were complicated. In this paper, an algorithm tracking the maximum voltage gain of the resonant network is proposed to improve the entire efficiency of the two-stage IH system based on an exact online resonant frequency estimation. It can make the resonant network operate at the maximum voltage gain point which can improve the efficiency of the series-resonant inverter (SRI) included in the IH system with low circulating current, the minimum switching frequency, and zero voltage switching (ZVS) capability. The proposed algorithm also induces the minimum output voltage of the boost PFC, which can reduce its switching losses and total harmonic distortion (THD). The validity of the proposed algorithm is experimentally verified using a 2.4-kW prototype IH system, including the boost PFC and the IH-SRI controlled by a digital signal processor (DSP).
Author Heo, Kyung-Wook
Jin, Juil
Jung, Jee-Hoon
Author_xml – sequence: 1
  givenname: Kyung-Wook
  orcidid: 0000-0002-2161-6969
  surname: Heo
  fullname: Heo, Kyung-Wook
– sequence: 2
  givenname: Juil
  surname: Jin
  fullname: Jin, Juil
– sequence: 3
  givenname: Jee-Hoon
  orcidid: 0000-0002-4055-3764
  surname: Jung
  fullname: Jung, Jee-Hoon
BookMark eNp9kM1KAzEURoMoWKt7wU3A9dQkkzSTpUhtC4qg1e2QZu600U5SkxTtC_jcztjiwoWr3MB37s85QYfOO0DonJIBpURdzaajASOMDXLGRCHyA9SjQshMKV4coh5hssgI4cNjdBLjKyGUCyp66Otef9pm0-AXv0p6AXisrcOzoM2bdQt8vVr4YNOywbUPeGIXy2xU19ZYcGaLfY1nHz57-gGnrtqYZL3DE9Cpg5-2MUET8XPsfo8QvdMu4Wmzhko7A3gUk210x5yio1qvIpzt3z56vh3NbibZ3cN4enN9lxkmeMqqOXBZSVIprrlgCuZiqIgwulJMSipNlas8F4JXbcUkFTA3slCFlEQoYYq8jy53fdfBv28gpvLVb4JrR5atoDbGC8ba1HCXMsHHGKAujU0_e6ag7aqkpOycl63zsnNe7p23IPkDrkN7Ydj-h1zsEAsAv3GlZE6oyr8BKTaPDw
CODEN ITIED6
CitedBy_id crossref_primary_10_1007_s43236_024_00834_0
crossref_primary_10_1109_ACCESS_2024_3491299
crossref_primary_10_1007_s42835_024_01868_x
crossref_primary_10_1109_TPEL_2024_3477715
Cites_doi 10.1109/TPEL.2010.2051041
10.1109/63.4347
10.1109/TPEL.2008.921107
10.1109/TIA.2016.2602217
10.1109/TIE.2013.2278524
10.1109/TMAG.2006.882308
10.1109/APEC.2018.8341024
10.1109/TPEL.2005.850925
10.1109/EPEPEMC.2014.6980717
10.1109/TIE.2013.2281155
10.1109/TIE.2007.892741
10.1109/TIA.2015.2409177
10.1007/b100747
10.1109/APEC.2018.8341394
10.1109/TPEL.2013.2262154
10.1109/TPEL.2017.2740998
10.1109/TPEL.2017.2775106
10.1109/TPEL.2006.876894
10.1109/TPEL.2015.2398429
10.1109/TIE.2018.2823687
10.1007/s43236-020-00147-y
10.1109/TPEL.2013.2276041
10.1109/TPEL.2017.2755367
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2022.3225853
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 10
ExternalDocumentID 10_1109_TIE_2022_3225853
9973019
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
5VS
9M8
AAYXX
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
VJK
7SP
8FD
L7M
ID FETCH-LOGICAL-c254t-dbe47d70d94a4529eb56905cad927717cd3933554dcd32715ebc7898770595c83
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:08:08 EDT 2025
Wed Oct 01 00:27:23 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Aug 27 02:18:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-dbe47d70d94a4529eb56905cad927717cd3933554dcd32715ebc7898770595c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2161-6969
0000-0002-4055-3764
PQID 2787704822
PQPubID 85464
PageCount 10
ParticipantIDs ieee_primary_9973019
crossref_citationtrail_10_1109_TIE_2022_3225853
crossref_primary_10_1109_TIE_2022_3225853
proquest_journals_2787704822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/TPEL.2010.2051041
– ident: ref15
  doi: 10.1109/63.4347
– ident: ref20
  doi: 10.1109/TPEL.2008.921107
– ident: ref17
  doi: 10.1109/TIA.2016.2602217
– ident: ref2
  doi: 10.1109/TIE.2013.2278524
– ident: ref16
  doi: 10.1109/TMAG.2006.882308
– ident: ref23
  doi: 10.1109/APEC.2018.8341024
– ident: ref6
  doi: 10.1109/TPEL.2005.850925
– ident: ref7
  doi: 10.1109/EPEPEMC.2014.6980717
– ident: ref3
  doi: 10.1109/TIE.2013.2281155
– ident: ref4
  doi: 10.1109/TIE.2007.892741
– ident: ref10
  doi: 10.1109/TIA.2015.2409177
– ident: ref19
  doi: 10.1007/b100747
– ident: ref18
  doi: 10.1109/APEC.2018.8341394
– ident: ref9
  doi: 10.1109/TPEL.2013.2262154
– ident: ref14
  doi: 10.1109/TPEL.2017.2740998
– ident: ref21
  doi: 10.1109/TPEL.2017.2775106
– ident: ref22
  doi: 10.1109/TPEL.2006.876894
– ident: ref11
  doi: 10.1109/TPEL.2015.2398429
– ident: ref13
  doi: 10.1109/TIE.2018.2823687
– ident: ref12
  doi: 10.1007/s43236-020-00147-y
– ident: ref1
  doi: 10.1109/TPEL.2013.2276041
– ident: ref8
  doi: 10.1109/TPEL.2017.2755367
SSID ssj0014515
Score 2.4704318
Snippet A boost power factor correction (PFC) circuit has replaced the diode rectifier to improve its poor power factor performance, low efficiency, and output power...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Boost PFC
Circuits
Digital signal processors
Diode rectifiers
Efficiency
Estimation
Harmonic distortion
Heating systems
Impedance
Impedance estimation
Induction Heating
Maximum voltage gain tracking algorithm
Microprocessors
Power factor
Resonant frequencies
Resonant frequency
Series resonant inverter
Switches
Switching
Switching frequency
Tracking
Voltage
Voltage gain
Zero voltage switching
Title Maximum Voltage Gain Tracking Algorithm for High-Efficiency of Two-Stage Induction Heating Systems Using Resonant Impedance Estimation
URI https://ieeexplore.ieee.org/document/9973019
https://www.proquest.com/docview/2787704822
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6FnMqh0AJqeMmHXirhPPZl-xihQIKUXhoQt5Xt9bYRSRaFjUD9Af3dzHg3UUsR4mZpPZKl-dbzjecF8NWF9EWEXCOeeJSLiMvQCm5zpUwiezrPqXZ4_D0ZXkdXt_FtA842tTDOOZ985tq09LH8rLAreirrKEV4VFuwJWRS1WptIgZRXE0rCKhjLDp965BkV3UmowE6gkHQJvDKOPzHBPmZKv9dxN66XOzAeH2uKqnkrr0qTdv-ftGy8b0H34WPNc1k_QoXn6DhFp9h-6_mg3vwZ6yfpvPVnN0UsxJvFXappwuGtsvS6znrz34Wy2n5a86Q1jJKB-ED326CajVZkbPJY8F_eEEa_-HLI9iQGCgK133QmU9IYBQioHwbNkKOnhHM2ABvlqpoch-uLwaT8yGvpzJwi85kyTPjIpGJbqYiTVFbZ2L0sGOrMxUIdA5tFqqQWEyGq0D0YmeskEoKgUwutjI8gOaiWLgvwEyidU8rY5TSkbZCo6lMJKInND1pctmCzlpRqa1bltPkjFnqXZeuSlG1Kak2rVXbgm8bifuqXccbe_dIU5t9tZJacLzGQlr_zw8pogrPHyGbOnxd6gg-0CD6KjXwGJrlcuVOkK6U5tTj9BnzOugQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9gAcaKEgQlvwgQsSzmPXju1jVaUkpemFFPW2sr1eiEiyVbsRqD-gv7sz3k1UHkK9WVqPZGm-9XzjeQG8Dyl9USm3iCcuCiW4Tr3ivjDG9XXPFgXVDo_P-sNzcXIhLzbg47oWJoQQk89Cm5Yxlp-XfklPZR1jCI_mEWxJIYSsq7XWMQMh63kFCfWMRbdvFZTsms5kNEBXMEnaBF8t09-MUJyq8tdVHO3L8TaMVyer00p-tJeVa_ubP5o2PvToO_CsIZrssEbGc9gIixfw9F77wV24Hdtf0_lyzr6WswrvFfbJThcMrZen93N2OPtWXk2r73OGxJZRQggfxIYTVK3JyoJNfpb8SxSkASCxQIINiYOicNMJncWUBEZBAsq4YSNk6TkBjQ3wbqnLJl_C-fFgcjTkzVwG7tGdrHjuglC56uZGWIrbBifRx5be5iZR6B76PDUp8ZgcV4nqyeC80kYrhVxOep2-gs1FuQivgbm-tT1rnDPGCuuVRWPZ14if1PW0K3QLOitFZb5pWk6zM2ZZdF66JkPVZqTarFFtCz6sJS7rhh3_2btLmlrva5TUgv0VFrLmj77OEFV4foF86s2_pd7B4-FkfJqdjs4-78ETGktfJwruw2Z1tQwHSF4q9zZi9g4-hOtd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Voltage+Gain+Tracking+Algorithm+for+High-Efficiency+of+Two-Stage+Induction+Heating+Systems+Using+Resonant+Impedance+Estimation&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Kyung-Wook+Heo&rft.au=Jin%2C+Juil&rft.au=Jee-Hoon+Jung&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=70&rft.issue=8&rft.spage=7934&rft_id=info:doi/10.1109%2FTIE.2022.3225853&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon