A Resilient Deep Learning Approach for State Estimation in Distribution Grids With Distributed Generation

State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional methods that solve the state estimation problem at the transmission level require the grid to be observable, which does not apply to distribut...

Full description

Saved in:
Bibliographic Details
Published inInternational transactions on electrical energy systems Vol. 2025; no. 1
Main Authors Kfouri, Ronald, Margossian, Harag
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.01.2025
Wiley
Subjects
Online AccessGet full text
ISSN2050-7038
2050-7038
DOI10.1155/etep/2734170

Cover

Abstract State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional methods that solve the state estimation problem at the transmission level require the grid to be observable, which does not apply to distribution grids. To make the distribution grid observable, researchers resort to pseudomeasurements, which are inaccurate. Also, the high integration of renewable energy introduces uncertainty, making the Distribution System State Estimation (DSSE) problem even more complex. This work proposes a deep neural network approach that solves the DSSE problem in unobservable distribution grids without employing erroneous pseudomeasurements. We create a dataset that emulates real‐life scenarios of diverse operating conditions with distributed generation. We then subject the neural network to multiple test scenarios featuring noisier measurements and bad data to evaluate the robustness of our algorithm. We test our approach on three networks. Results demonstrate that our method efficiently solves the DSSE problem—which cannot be solved using conventional methods—and detects and mitigates bad data, further enhancing the reliability of the state estimation results.
AbstractList State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional methods that solve the state estimation problem at the transmission level require the grid to be observable, which does not apply to distribution grids. To make the distribution grid observable, researchers resort to pseudomeasurements, which are inaccurate. Also, the high integration of renewable energy introduces uncertainty, making the Distribution System State Estimation (DSSE) problem even more complex. This work proposes a deep neural network approach that solves the DSSE problem in unobservable distribution grids without employing erroneous pseudomeasurements. We create a dataset that emulates real‐life scenarios of diverse operating conditions with distributed generation. We then subject the neural network to multiple test scenarios featuring noisier measurements and bad data to evaluate the robustness of our algorithm. We test our approach on three networks. Results demonstrate that our method efficiently solves the DSSE problem—which cannot be solved using conventional methods—and detects and mitigates bad data, further enhancing the reliability of the state estimation results.
Author Kfouri, Ronald
Margossian, Harag
Author_xml – sequence: 1
  givenname: Ronald
  orcidid: 0000-0002-0855-0774
  surname: Kfouri
  fullname: Kfouri, Ronald
– sequence: 2
  givenname: Harag
  orcidid: 0000-0003-2057-6325
  surname: Margossian
  fullname: Margossian, Harag
BookMark eNpNUctOYzEMjUaMNMCw4wMisaVDnMd9LCseHaRKSDAjllGS60CqklySdMHfc9siwBvbR_bx4xyRg5giEnIK7A-AUhdYcbzgrZDQsh_kkDPFZi0T3cG3-Bc5KWXFJuslQNsdkjCn91jCOmCs9ApxpEs0OYb4ROfjmJNxz9SnTB-qqUivSw0vpoYUaYj0KpSag93s8kUOQ6GPoT5_4TjQBUbMu47f5Kc364InH_6Y_L-5_nf5d7a8W9xezpczx5Wss65h3IJnXvbKmE54qxDBKe5ZgwYdcD40jXJgmgaEka61kgtnjQXk0_nimNzueYdkVnrM08L5TScT9A5I-UmbXINbo-bKCmu98h6k9M50UgCTvRAwcGmYmrjO9lzTJ143WKpepU2O0_paQNcr2aheTlXn-yqXUykZ_edUYHqrjd5qoz-0Ee8hnoOS
Cites_doi 10.1016/j.apenergy.2023.120916
10.1016/j.jksus.2021.101815
10.1016/j.epsr.2024.110922
10.3390/s20051399
10.1109/tsg.2016.2615473
10.1109/tpwrs.2012.2187804
10.1109/tsg.2014.2385871
10.1109/tpas.1971.292925
10.1109/59.373974
10.1109/tii.2016.2626782
10.1109/t-pas.1975.31858
10.1109/tii.2023.3335453
10.1016/j.apenergy.2023.122602
10.1109/tsg.2019.2937162
10.1016/j.egyr.2022.08.009
10.1109/tpwrs.2011.2157367
10.1109/tpwrs.2019.2919157
10.1109/tsg.2022.3204524
10.1109/tsg.2014.2302213
10.32604/csse.2023.038514
10.1109/tpwrs.2020.3047269
10.1109/tii.2023.3248082
10.1109/59.496174
10.1109/tpwrs.2014.2364819
10.1109/tpwrs.2013.2248398
10.1109/tim.2013.2295657
10.1109/tsg.2018.2870600
10.1016/j.ijcip.2023.100643
10.1109/61.248315
10.1109/tsg.2021.3115816
10.1109/tpwrs.2018.2829021
10.3390/en17174317
10.1016/j.apenergy.2023.122339
10.1201/9780203913673
10.1109/jsyst.2021.3060072
10.1109/tpas.1970.292678
10.1109/tsg.2019.2924496
10.1155/2022/7040601
10.1109/tsg.2020.3009571
10.1109/59.336098
10.1016/j.ijepes.2019.03.039
10.1109/tpwrs.2012.2219629
10.1109/tsg.2014.2378035
10.1109/tpwrs.2019.2909150
10.1109/tpwrs.2020.2988352
10.1109/61.584427
10.1109/tpwrs.2009.2030271
ContentType Journal Article
Copyright Copyright © 2025 Ronald Kfouri and Harag Margossian. International Transactions on Electrical Energy Systems published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2025 Ronald Kfouri and Harag Margossian. International Transactions on Electrical Energy Systems published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1155/etep/2734170
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Technology Collection
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7038
Editor Davide Falabretti
Editor_xml – fullname: Davide Falabretti
ExternalDocumentID oai_doaj_org_article_25b3bbf5ff144fca8431049331d24a05
10_1155_etep_2734170
GroupedDBID 1OC
24P
31~
8-1
8-4
8-5
AAEVG
AAHHS
AAJEY
AANHP
AAYXX
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BRXPI
CCPQU
CITATION
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
GROUPED_DOAJ
HCIFZ
IX1
L8X
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
M~E
PCBAR
PHGZM
PHGZT
QB0
SUPJJ
WIH
WIK
1OB
7SP
7TB
8FD
8FE
8FG
AAMMB
ABJCF
AEFGJ
AGXDD
AIDQK
AIDYY
ARAPS
BGLVJ
DWQXO
FR3
H8D
KR7
L6V
L7M
M7S
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c254t-8602b1f0f495aa83fb5ee1c52f06eaec122d665c1a6613a4c7b423cbab1e22733
IEDL.DBID 8FG
ISSN 2050-7038
IngestDate Wed Aug 27 01:32:45 EDT 2025
Sat Sep 06 07:29:53 EDT 2025
Tue Jul 01 05:21:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-8602b1f0f495aa83fb5ee1c52f06eaec122d665c1a6613a4c7b423cbab1e22733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0855-0774
0000-0003-2057-6325
OpenAccessLink https://doaj.org/article/25b3bbf5ff144fca8431049331d24a05
PQID 3189546594
PQPubID 2034359
ParticipantIDs doaj_primary_oai_doaj_org_article_25b3bbf5ff144fca8431049331d24a05
proquest_journals_3189546594
crossref_primary_10_1155_etep_2734170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International transactions on electrical energy systems
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_34_2
e_1_2_11_11_2
e_1_2_11_32_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_29_2
Haykin S. (e_1_2_11_48_2) 2009
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_45_2
e_1_2_11_24_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_17_2
e_1_2_11_15_2
e_1_2_11_36_2
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_31_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_12_2
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_47_2
e_1_2_11_1_2
e_1_2_11_49_2
e_1_2_11_44_2
e_1_2_11_46_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_40_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_42_2
e_1_2_11_16_2
e_1_2_11_14_2
e_1_2_11_37_2
e_1_2_11_18_2
e_1_2_11_39_2
References_xml – ident: e_1_2_11_28_2
  doi: 10.1016/j.apenergy.2023.120916
– ident: e_1_2_11_32_2
  doi: 10.1016/j.jksus.2021.101815
– ident: e_1_2_11_41_2
  doi: 10.1016/j.epsr.2024.110922
– ident: e_1_2_11_45_2
– ident: e_1_2_11_31_2
  doi: 10.3390/s20051399
– ident: e_1_2_11_14_2
  doi: 10.1109/tsg.2016.2615473
– ident: e_1_2_11_35_2
  doi: 10.1109/tpwrs.2012.2187804
– ident: e_1_2_11_13_2
  doi: 10.1109/tsg.2014.2385871
– ident: e_1_2_11_20_2
  doi: 10.1109/tpas.1971.292925
– ident: e_1_2_11_5_2
  doi: 10.1109/59.373974
– ident: e_1_2_11_7_2
  doi: 10.1109/tii.2016.2626782
– ident: e_1_2_11_21_2
  doi: 10.1109/t-pas.1975.31858
– ident: e_1_2_11_30_2
  doi: 10.1109/tii.2023.3335453
– ident: e_1_2_11_40_2
  doi: 10.1016/j.apenergy.2023.122602
– ident: e_1_2_11_25_2
  doi: 10.1109/tsg.2019.2937162
– ident: e_1_2_11_33_2
  doi: 10.1016/j.egyr.2022.08.009
– ident: e_1_2_11_22_2
  doi: 10.1109/tpwrs.2011.2157367
– ident: e_1_2_11_37_2
  doi: 10.1109/tpwrs.2019.2919157
– ident: e_1_2_11_38_2
  doi: 10.1109/tsg.2022.3204524
– ident: e_1_2_11_6_2
  doi: 10.1109/tsg.2014.2302213
– ident: e_1_2_11_27_2
  doi: 10.32604/csse.2023.038514
– ident: e_1_2_11_19_2
  doi: 10.1109/tpwrs.2020.3047269
– ident: e_1_2_11_46_2
– ident: e_1_2_11_42_2
  doi: 10.1109/tii.2023.3248082
– ident: e_1_2_11_3_2
  doi: 10.1109/59.496174
– ident: e_1_2_11_12_2
  doi: 10.1109/tpwrs.2014.2364819
– ident: e_1_2_11_4_2
  doi: 10.1109/tpwrs.2013.2248398
– ident: e_1_2_11_16_2
  doi: 10.1109/tim.2013.2295657
– ident: e_1_2_11_8_2
  doi: 10.1109/tsg.2018.2870600
– ident: e_1_2_11_50_2
  doi: 10.1016/j.ijcip.2023.100643
– ident: e_1_2_11_1_2
  doi: 10.1109/61.248315
– ident: e_1_2_11_15_2
  doi: 10.1109/tsg.2021.3115816
– ident: e_1_2_11_47_2
  doi: 10.1109/tpwrs.2018.2829021
– ident: e_1_2_11_43_2
  doi: 10.3390/en17174317
– volume-title: Neural Networks and Learning Machines, 3/E
  year: 2009
  ident: e_1_2_11_48_2
– ident: e_1_2_11_29_2
  doi: 10.1016/j.apenergy.2023.122339
– ident: e_1_2_11_9_2
  doi: 10.1201/9780203913673
– ident: e_1_2_11_17_2
  doi: 10.1109/jsyst.2021.3060072
– ident: e_1_2_11_44_2
  doi: 10.1109/tpas.1970.292678
– ident: e_1_2_11_24_2
  doi: 10.1109/tsg.2019.2924496
– ident: e_1_2_11_26_2
  doi: 10.1155/2022/7040601
– ident: e_1_2_11_18_2
  doi: 10.1109/tsg.2020.3009571
– ident: e_1_2_11_2_2
  doi: 10.1109/59.336098
– ident: e_1_2_11_49_2
  doi: 10.1016/j.ijepes.2019.03.039
– ident: e_1_2_11_23_2
  doi: 10.1109/tpwrs.2012.2219629
– ident: e_1_2_11_36_2
  doi: 10.1109/tsg.2014.2378035
– ident: e_1_2_11_34_2
  doi: 10.1109/tpwrs.2019.2909150
– ident: e_1_2_11_39_2
  doi: 10.1109/tpwrs.2020.2988352
– ident: e_1_2_11_10_2
  doi: 10.1109/61.584427
– ident: e_1_2_11_11_2
  doi: 10.1109/tpwrs.2009.2030271
SSID ssj0000941178
Score 2.3560228
Snippet State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
SubjectTerms Algorithms
Alternative energy sources
Artificial intelligence
Artificial neural networks
Communication
Deep learning
Distributed generation
Electric power
Machine learning
Methods
Neural networks
Renewable energy
Renewable resources
State estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27T8MwEMYt1AkGxFMUCvIAY9T62WQstKVCggFR0c3yE4JQqNrw_3NOUojEwMIaWUl0F_u-i-zfh9ClYSLLQiBJSKWEBsWaxGjpEqeHxvEIMasgSfcPcjbndwuxaFl9xT1hNR64DlyfCsOMCQLux3mwOoWKB6qWMeIo1zW9FMpYq5l6q_fLETJMNzvdheiDBF32I8uFRF_iVg2qUP2_VuKqvEz30G6jC_Gofp99tOWLA7TTogUeonyEH_06f48nGPHY-yVu4KgveNSQwTFIUFzpRzyBuVsfS8R5gceRj9tYW-HbVe7W-DkvX3-ue4drAnUccYTm08nTzSxpnBISCw1emUQjKUPCIEC7o3XKghHeEytoGEivvSWUOimFJRrKMdPcDg3IKGu0IZ5CUNgx6hQfhT9BOJM8hSWPccM8SCWdysBo8NBDU2OFC110tYmdWtZADFU1EkKoGGPVxLiLrmNgv8dEjHV1AZKrmuSqv5LbRb1NWlQzt9YKVqEsWrhn_PQ_nnGGtmn09K1-q_RQp1x9-nMQGqW5qL6pL6VW0dU
  priority: 102
  providerName: Directory of Open Access Journals
Title A Resilient Deep Learning Approach for State Estimation in Distribution Grids With Distributed Generation
URI https://www.proquest.com/docview/3189546594
https://doaj.org/article/25b3bbf5ff144fca8431049331d24a05
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-7038
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941178
  issn: 2050-7038
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2050-7038
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000941178
  issn: 2050-7038
  databaseCode: ADMLS
  dateStart: 20130501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-7038
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941178
  issn: 2050-7038
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2050-7038
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941178
  issn: 2050-7038
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2050-7038
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941178
  issn: 2050-7038
  databaseCode: 24P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFA4uFz2IK9al5KDHoc3amZNU7YKgiFjsbciqA9LWtv5_X9K0FgSvmZxeXl6-703yfQhdaSaKwnuS-VxKIChGZ1pJm1nV0pYHEbMokvT4JPsD_jAUw9Rwm6VrlcuaGAu1HZvQI29A7hXBuLvgN5OvLLhGhb-ryUJjE20TCpkUXop3e6seC1AXQlr58r67EA0AopNGUHQhwZ147SSKgv1_6nE8ZLr7aC-hQ9xeLOcB2nCjQ7S7phl4hKo2fnGz6jO8Y8T3zk1wkkh9x-2kD44BiOKIInEHdvDicSKuRvg-qOQmgyvcm1Z2ht-q-cfvuLN4oUMdZhyjQbfzetfPkl9CZoDmzbNgJ6WJb3ogPUrlzGvhHDGC-qZ0yhlCqZVSGKLgUGaKm5YGMGW00sRRCAo7QVuj8cidIlxInkPhY1wzB4BJ5dIz6h0waaqNsL6GrpexKycLWYwy0gkhyhDjMsW4hm5DYFdzgph1HBhP38u0N0oqNNPaC0gZzr1ROYAaIC6MEUu5aooaulguS5l22Kz8zYez_z-fox0aPHtj2-QCbc2n3-4SgMRc12O21NH2befp-aUe6fgPVI3MaQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFL0qZQEsEE81tIAXdDlK_MzMoqoCaZrSxwK1ojvjZxkJJSEJQv0pvpFrz0xbCYldtzPWLK6v7z3HY58D8MFyWVUx0iKWSiFBcbawRvnCm6H1IomYZZGk0zM1vRCfL-XlBvzp7sKkY5VdTcyF2s9d2iPvY-5Vybi7EvuLn0VyjUp_VzsLjSYtjsP1b6Rsq72jMc7vLmOTg_NP06J1FSgckqF1kUyXLI2DiNTAmJJHK0OgTrI4UMEERxnzSklHDbYuboQbWoQczhpLA8Nmz_G7D-Ch4Jwnrf5ycnizp4NUidJh2Z2vl7KPwHfRTwoyNLkh3-l82SDgn_qfm9rkGTxt0SgZNenzHDbC7AU8uaNR-BLqEfkSVvWPdG-SjENYkFaS9YqMWj1ygsCXZNRKDrBiNJchST0j46TK2xpqkcNl7Vfka73-fvs8eNLoXqcRr-DiXiL5GjZn81nYAlIpUWKh5cLygADNlCpyFgMyd2ad9LEHu13s9KKR4dCZvkipU4x1G-MefEyBvRmTxLPzg_nySrdrUTNpubVRYooKEZ0pEUQhUeKceibMQPZgp5sW3a7olb7Nvzf_f_0eHk3PT0_0ydHZ8TY8ZskvOG_Z7MDmevkrvEUQs7bvcuYQ-HbfqfoX0H4HAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Resilient+Deep+Learning+Approach+for+State+Estimation+in+Distribution+Grids+With+Distributed+Generation&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=Kfouri%2C+Ronald&rft.au=Margossian%2C+Harag&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-7038&rft.volume=2025&rft_id=info:doi/10.1155%2Fetep%2F2734170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon