A Resilient Deep Learning Approach for State Estimation in Distribution Grids With Distributed Generation
State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional methods that solve the state estimation problem at the transmission level require the grid to be observable, which does not apply to distribut...
Saved in:
Published in | International transactions on electrical energy systems Vol. 2025; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley & Sons, Inc
01.01.2025
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2050-7038 2050-7038 |
DOI | 10.1155/etep/2734170 |
Cover
Abstract | State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional methods that solve the state estimation problem at the transmission level require the grid to be observable, which does not apply to distribution grids. To make the distribution grid observable, researchers resort to pseudomeasurements, which are inaccurate. Also, the high integration of renewable energy introduces uncertainty, making the Distribution System State Estimation (DSSE) problem even more complex. This work proposes a deep neural network approach that solves the DSSE problem in unobservable distribution grids without employing erroneous pseudomeasurements. We create a dataset that emulates real‐life scenarios of diverse operating conditions with distributed generation. We then subject the neural network to multiple test scenarios featuring noisier measurements and bad data to evaluate the robustness of our algorithm. We test our approach on three networks. Results demonstrate that our method efficiently solves the DSSE problem—which cannot be solved using conventional methods—and detects and mitigates bad data, further enhancing the reliability of the state estimation results. |
---|---|
AbstractList | State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional methods that solve the state estimation problem at the transmission level require the grid to be observable, which does not apply to distribution grids. To make the distribution grid observable, researchers resort to pseudomeasurements, which are inaccurate. Also, the high integration of renewable energy introduces uncertainty, making the Distribution System State Estimation (DSSE) problem even more complex. This work proposes a deep neural network approach that solves the DSSE problem in unobservable distribution grids without employing erroneous pseudomeasurements. We create a dataset that emulates real‐life scenarios of diverse operating conditions with distributed generation. We then subject the neural network to multiple test scenarios featuring noisier measurements and bad data to evaluate the robustness of our algorithm. We test our approach on three networks. Results demonstrate that our method efficiently solves the DSSE problem—which cannot be solved using conventional methods—and detects and mitigates bad data, further enhancing the reliability of the state estimation results. |
Author | Kfouri, Ronald Margossian, Harag |
Author_xml | – sequence: 1 givenname: Ronald orcidid: 0000-0002-0855-0774 surname: Kfouri fullname: Kfouri, Ronald – sequence: 2 givenname: Harag orcidid: 0000-0003-2057-6325 surname: Margossian fullname: Margossian, Harag |
BookMark | eNpNUctOYzEMjUaMNMCw4wMisaVDnMd9LCseHaRKSDAjllGS60CqklySdMHfc9siwBvbR_bx4xyRg5giEnIK7A-AUhdYcbzgrZDQsh_kkDPFZi0T3cG3-Bc5KWXFJuslQNsdkjCn91jCOmCs9ApxpEs0OYb4ROfjmJNxz9SnTB-qqUivSw0vpoYUaYj0KpSag93s8kUOQ6GPoT5_4TjQBUbMu47f5Kc364InH_6Y_L-5_nf5d7a8W9xezpczx5Wss65h3IJnXvbKmE54qxDBKe5ZgwYdcD40jXJgmgaEka61kgtnjQXk0_nimNzueYdkVnrM08L5TScT9A5I-UmbXINbo-bKCmu98h6k9M50UgCTvRAwcGmYmrjO9lzTJ143WKpepU2O0_paQNcr2aheTlXn-yqXUykZ_edUYHqrjd5qoz-0Ee8hnoOS |
Cites_doi | 10.1016/j.apenergy.2023.120916 10.1016/j.jksus.2021.101815 10.1016/j.epsr.2024.110922 10.3390/s20051399 10.1109/tsg.2016.2615473 10.1109/tpwrs.2012.2187804 10.1109/tsg.2014.2385871 10.1109/tpas.1971.292925 10.1109/59.373974 10.1109/tii.2016.2626782 10.1109/t-pas.1975.31858 10.1109/tii.2023.3335453 10.1016/j.apenergy.2023.122602 10.1109/tsg.2019.2937162 10.1016/j.egyr.2022.08.009 10.1109/tpwrs.2011.2157367 10.1109/tpwrs.2019.2919157 10.1109/tsg.2022.3204524 10.1109/tsg.2014.2302213 10.32604/csse.2023.038514 10.1109/tpwrs.2020.3047269 10.1109/tii.2023.3248082 10.1109/59.496174 10.1109/tpwrs.2014.2364819 10.1109/tpwrs.2013.2248398 10.1109/tim.2013.2295657 10.1109/tsg.2018.2870600 10.1016/j.ijcip.2023.100643 10.1109/61.248315 10.1109/tsg.2021.3115816 10.1109/tpwrs.2018.2829021 10.3390/en17174317 10.1016/j.apenergy.2023.122339 10.1201/9780203913673 10.1109/jsyst.2021.3060072 10.1109/tpas.1970.292678 10.1109/tsg.2019.2924496 10.1155/2022/7040601 10.1109/tsg.2020.3009571 10.1109/59.336098 10.1016/j.ijepes.2019.03.039 10.1109/tpwrs.2012.2219629 10.1109/tsg.2014.2378035 10.1109/tpwrs.2019.2909150 10.1109/tpwrs.2020.2988352 10.1109/61.584427 10.1109/tpwrs.2009.2030271 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Ronald Kfouri and Harag Margossian. International Transactions on Electrical Energy Systems published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2025 Ronald Kfouri and Harag Margossian. International Transactions on Electrical Energy Systems published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KR7 L6V L7M M7S P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1155/etep/2734170 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Technology Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7038 |
Editor | Davide Falabretti |
Editor_xml | – fullname: Davide Falabretti |
ExternalDocumentID | oai_doaj_org_article_25b3bbf5ff144fca8431049331d24a05 10_1155_etep_2734170 |
GroupedDBID | 1OC 24P 31~ 8-1 8-4 8-5 AAEVG AAHHS AAJEY AANHP AAYXX AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCMX ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFZJQ AGQPQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BENPR BFHJK BHBCM BHPHI BKSAR BMNLL BMXJE BRXPI CCPQU CITATION D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA GROUPED_DOAJ HCIFZ IX1 L8X LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM M~E PCBAR PHGZM PHGZT QB0 SUPJJ WIH WIK 1OB 7SP 7TB 8FD 8FE 8FG AAMMB ABJCF AEFGJ AGXDD AIDQK AIDYY ARAPS BGLVJ DWQXO FR3 H8D KR7 L6V L7M M7S P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-LOGICAL-c254t-8602b1f0f495aa83fb5ee1c52f06eaec122d665c1a6613a4c7b423cbab1e22733 |
IEDL.DBID | 8FG |
ISSN | 2050-7038 |
IngestDate | Wed Aug 27 01:32:45 EDT 2025 Sat Sep 06 07:29:53 EDT 2025 Tue Jul 01 05:21:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c254t-8602b1f0f495aa83fb5ee1c52f06eaec122d665c1a6613a4c7b423cbab1e22733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0855-0774 0000-0003-2057-6325 |
OpenAccessLink | https://doaj.org/article/25b3bbf5ff144fca8431049331d24a05 |
PQID | 3189546594 |
PQPubID | 2034359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25b3bbf5ff144fca8431049331d24a05 proquest_journals_3189546594 crossref_primary_10_1155_etep_2734170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International transactions on electrical energy systems |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_11_30_2 e_1_2_11_13_2 e_1_2_11_34_2 e_1_2_11_11_2 e_1_2_11_32_2 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_29_2 Haykin S. (e_1_2_11_48_2) 2009 e_1_2_11_20_2 e_1_2_11_43_2 e_1_2_11_45_2 e_1_2_11_24_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_41_2 e_1_2_11_17_2 e_1_2_11_15_2 e_1_2_11_36_2 e_1_2_11_19_2 e_1_2_11_38_2 e_1_2_11_31_2 e_1_2_11_35_2 e_1_2_11_50_2 e_1_2_11_12_2 e_1_2_11_33_2 e_1_2_11_10_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_47_2 e_1_2_11_1_2 e_1_2_11_49_2 e_1_2_11_44_2 e_1_2_11_46_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_40_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_42_2 e_1_2_11_16_2 e_1_2_11_14_2 e_1_2_11_37_2 e_1_2_11_18_2 e_1_2_11_39_2 |
References_xml | – ident: e_1_2_11_28_2 doi: 10.1016/j.apenergy.2023.120916 – ident: e_1_2_11_32_2 doi: 10.1016/j.jksus.2021.101815 – ident: e_1_2_11_41_2 doi: 10.1016/j.epsr.2024.110922 – ident: e_1_2_11_45_2 – ident: e_1_2_11_31_2 doi: 10.3390/s20051399 – ident: e_1_2_11_14_2 doi: 10.1109/tsg.2016.2615473 – ident: e_1_2_11_35_2 doi: 10.1109/tpwrs.2012.2187804 – ident: e_1_2_11_13_2 doi: 10.1109/tsg.2014.2385871 – ident: e_1_2_11_20_2 doi: 10.1109/tpas.1971.292925 – ident: e_1_2_11_5_2 doi: 10.1109/59.373974 – ident: e_1_2_11_7_2 doi: 10.1109/tii.2016.2626782 – ident: e_1_2_11_21_2 doi: 10.1109/t-pas.1975.31858 – ident: e_1_2_11_30_2 doi: 10.1109/tii.2023.3335453 – ident: e_1_2_11_40_2 doi: 10.1016/j.apenergy.2023.122602 – ident: e_1_2_11_25_2 doi: 10.1109/tsg.2019.2937162 – ident: e_1_2_11_33_2 doi: 10.1016/j.egyr.2022.08.009 – ident: e_1_2_11_22_2 doi: 10.1109/tpwrs.2011.2157367 – ident: e_1_2_11_37_2 doi: 10.1109/tpwrs.2019.2919157 – ident: e_1_2_11_38_2 doi: 10.1109/tsg.2022.3204524 – ident: e_1_2_11_6_2 doi: 10.1109/tsg.2014.2302213 – ident: e_1_2_11_27_2 doi: 10.32604/csse.2023.038514 – ident: e_1_2_11_19_2 doi: 10.1109/tpwrs.2020.3047269 – ident: e_1_2_11_46_2 – ident: e_1_2_11_42_2 doi: 10.1109/tii.2023.3248082 – ident: e_1_2_11_3_2 doi: 10.1109/59.496174 – ident: e_1_2_11_12_2 doi: 10.1109/tpwrs.2014.2364819 – ident: e_1_2_11_4_2 doi: 10.1109/tpwrs.2013.2248398 – ident: e_1_2_11_16_2 doi: 10.1109/tim.2013.2295657 – ident: e_1_2_11_8_2 doi: 10.1109/tsg.2018.2870600 – ident: e_1_2_11_50_2 doi: 10.1016/j.ijcip.2023.100643 – ident: e_1_2_11_1_2 doi: 10.1109/61.248315 – ident: e_1_2_11_15_2 doi: 10.1109/tsg.2021.3115816 – ident: e_1_2_11_47_2 doi: 10.1109/tpwrs.2018.2829021 – ident: e_1_2_11_43_2 doi: 10.3390/en17174317 – volume-title: Neural Networks and Learning Machines, 3/E year: 2009 ident: e_1_2_11_48_2 – ident: e_1_2_11_29_2 doi: 10.1016/j.apenergy.2023.122339 – ident: e_1_2_11_9_2 doi: 10.1201/9780203913673 – ident: e_1_2_11_17_2 doi: 10.1109/jsyst.2021.3060072 – ident: e_1_2_11_44_2 doi: 10.1109/tpas.1970.292678 – ident: e_1_2_11_24_2 doi: 10.1109/tsg.2019.2924496 – ident: e_1_2_11_26_2 doi: 10.1155/2022/7040601 – ident: e_1_2_11_18_2 doi: 10.1109/tsg.2020.3009571 – ident: e_1_2_11_2_2 doi: 10.1109/59.336098 – ident: e_1_2_11_49_2 doi: 10.1016/j.ijepes.2019.03.039 – ident: e_1_2_11_23_2 doi: 10.1109/tpwrs.2012.2219629 – ident: e_1_2_11_36_2 doi: 10.1109/tsg.2014.2378035 – ident: e_1_2_11_34_2 doi: 10.1109/tpwrs.2019.2909150 – ident: e_1_2_11_39_2 doi: 10.1109/tpwrs.2020.2988352 – ident: e_1_2_11_10_2 doi: 10.1109/61.584427 – ident: e_1_2_11_11_2 doi: 10.1109/tpwrs.2009.2030271 |
SSID | ssj0000941178 |
Score | 2.3560228 |
Snippet | State estimation is a challenging problem, particularly in distribution grids that have unique characteristics compared with transmission grids. Conventional... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
SubjectTerms | Algorithms Alternative energy sources Artificial intelligence Artificial neural networks Communication Deep learning Distributed generation Electric power Machine learning Methods Neural networks Renewable energy Renewable resources State estimation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27T8MwEMYt1AkGxFMUCvIAY9T62WQstKVCggFR0c3yE4JQqNrw_3NOUojEwMIaWUl0F_u-i-zfh9ClYSLLQiBJSKWEBsWaxGjpEqeHxvEIMasgSfcPcjbndwuxaFl9xT1hNR64DlyfCsOMCQLux3mwOoWKB6qWMeIo1zW9FMpYq5l6q_fLETJMNzvdheiDBF32I8uFRF_iVg2qUP2_VuKqvEz30G6jC_Gofp99tOWLA7TTogUeonyEH_06f48nGPHY-yVu4KgveNSQwTFIUFzpRzyBuVsfS8R5gceRj9tYW-HbVe7W-DkvX3-ue4drAnUccYTm08nTzSxpnBISCw1emUQjKUPCIEC7o3XKghHeEytoGEivvSWUOimFJRrKMdPcDg3IKGu0IZ5CUNgx6hQfhT9BOJM8hSWPccM8SCWdysBo8NBDU2OFC110tYmdWtZADFU1EkKoGGPVxLiLrmNgv8dEjHV1AZKrmuSqv5LbRb1NWlQzt9YKVqEsWrhn_PQ_nnGGtmn09K1-q_RQp1x9-nMQGqW5qL6pL6VW0dU priority: 102 providerName: Directory of Open Access Journals |
Title | A Resilient Deep Learning Approach for State Estimation in Distribution Grids With Distributed Generation |
URI | https://www.proquest.com/docview/3189546594 https://doaj.org/article/25b3bbf5ff144fca8431049331d24a05 |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-7038 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941178 issn: 2050-7038 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2050-7038 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000941178 issn: 2050-7038 databaseCode: ADMLS dateStart: 20130501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-7038 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941178 issn: 2050-7038 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2050-7038 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941178 issn: 2050-7038 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2050-7038 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941178 issn: 2050-7038 databaseCode: 24P dateStart: 20220101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFA4uFz2IK9al5KDHoc3amZNU7YKgiFjsbciqA9LWtv5_X9K0FgSvmZxeXl6-703yfQhdaSaKwnuS-VxKIChGZ1pJm1nV0pYHEbMokvT4JPsD_jAUw9Rwm6VrlcuaGAu1HZvQI29A7hXBuLvgN5OvLLhGhb-ryUJjE20TCpkUXop3e6seC1AXQlr58r67EA0AopNGUHQhwZ147SSKgv1_6nE8ZLr7aC-hQ9xeLOcB2nCjQ7S7phl4hKo2fnGz6jO8Y8T3zk1wkkh9x-2kD44BiOKIInEHdvDicSKuRvg-qOQmgyvcm1Z2ht-q-cfvuLN4oUMdZhyjQbfzetfPkl9CZoDmzbNgJ6WJb3ogPUrlzGvhHDGC-qZ0yhlCqZVSGKLgUGaKm5YGMGW00sRRCAo7QVuj8cidIlxInkPhY1wzB4BJ5dIz6h0waaqNsL6GrpexKycLWYwy0gkhyhDjMsW4hm5DYFdzgph1HBhP38u0N0oqNNPaC0gZzr1ROYAaIC6MEUu5aooaulguS5l22Kz8zYez_z-fox0aPHtj2-QCbc2n3-4SgMRc12O21NH2befp-aUe6fgPVI3MaQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFL0qZQEsEE81tIAXdDlK_MzMoqoCaZrSxwK1ojvjZxkJJSEJQv0pvpFrz0xbCYldtzPWLK6v7z3HY58D8MFyWVUx0iKWSiFBcbawRvnCm6H1IomYZZGk0zM1vRCfL-XlBvzp7sKkY5VdTcyF2s9d2iPvY-5Vybi7EvuLn0VyjUp_VzsLjSYtjsP1b6Rsq72jMc7vLmOTg_NP06J1FSgckqF1kUyXLI2DiNTAmJJHK0OgTrI4UMEERxnzSklHDbYuboQbWoQczhpLA8Nmz_G7D-Ch4Jwnrf5ycnizp4NUidJh2Z2vl7KPwHfRTwoyNLkh3-l82SDgn_qfm9rkGTxt0SgZNenzHDbC7AU8uaNR-BLqEfkSVvWPdG-SjENYkFaS9YqMWj1ygsCXZNRKDrBiNJchST0j46TK2xpqkcNl7Vfka73-fvs8eNLoXqcRr-DiXiL5GjZn81nYAlIpUWKh5cLygADNlCpyFgMyd2ad9LEHu13s9KKR4dCZvkipU4x1G-MefEyBvRmTxLPzg_nySrdrUTNpubVRYooKEZ0pEUQhUeKceibMQPZgp5sW3a7olb7Nvzf_f_0eHk3PT0_0ydHZ8TY8ZskvOG_Z7MDmevkrvEUQs7bvcuYQ-HbfqfoX0H4HAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Resilient+Deep+Learning+Approach+for+State+Estimation+in+Distribution+Grids+With+Distributed+Generation&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=Kfouri%2C+Ronald&rft.au=Margossian%2C+Harag&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-7038&rft.volume=2025&rft_id=info:doi/10.1155%2Fetep%2F2734170 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon |