GRRLN: Gated Recurrent Residual Learning Networks for code clone detection
Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair...
Saved in:
| Published in | Journal of software : evolution and process Vol. 36; no. 7 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester
Wiley Subscription Services, Inc
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2047-7473 2047-7481 |
| DOI | 10.1002/smr.2649 |
Cover
| Abstract | Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair as a clone or not based on a pre‐defined threshold. In reality, there are various types of code clone subject to the degree of how a pair of code fragments are similar to each other. To investigate the effect of different code clone detection manners on the clone detection result, we propose Gated Recurrent Residual Learning Networks (GRRLN), a novel neural network model for code clone detection. To train GRRLN, we first represent each code fragment as a statement‐level tree sequence derived from the whole syntax tree (AST). Then, a gated recurrent neural network with residual connections is adopted to fully extract the semantics of all individual statement trees together with their dependency relationships across the input statement sequence. Finally, the output representations of code fragments by GRRLN are used for similarity calculation and clone detection. We evaluate GRRLN using two real‐world datasets for code clone detection and clone type classification. Experiments show that GRRLN achieves promising and compelling results and meanwhile needs significantly less time and memory consumption compared with the state‐of‐the‐art methods.
Code clone detection is commonly approached as a binary classification task, determining whether code pairs are clones or not based on a fixed threshold. However, code clones exhibit varying degrees of similarity, leading to different types of clones. To explore the impact of detection manners on clone detection results, we proposed a Gated Recurrent Residual Learning Networks for code clone detection task. The experimental results demonstrate that different detection manners yield varying results, even with the same model and dataset. |
|---|---|
| AbstractList | Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair as a clone or not based on a pre‐defined threshold. In reality, there are various types of code clone subject to the degree of how a pair of code fragments are similar to each other. To investigate the effect of different code clone detection manners on the clone detection result, we propose Gated Recurrent Residual Learning Networks (GRRLN), a novel neural network model for code clone detection. To train GRRLN, we first represent each code fragment as a statement‐level tree sequence derived from the whole abstract syntax tree (AST). Then, a gated recurrent neural network with residual connections is adopted to fully extract the semantics of all individual statement trees together with their dependency relationships across the input statement sequence. Finally, the output representations of code fragments by GRRLN are used for similarity calculation and clone detection. We evaluate GRRLN using two real‐world datasets for code clone detection and clone type classification. Experiments show that GRRLN achieves promising and compelling results and meanwhile needs significantly less time and memory consumption compared with the state‐of‐the‐art methods. Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair as a clone or not based on a pre‐defined threshold. In reality, there are various types of code clone subject to the degree of how a pair of code fragments are similar to each other. To investigate the effect of different code clone detection manners on the clone detection result, we propose Gated Recurrent Residual Learning Networks (GRRLN), a novel neural network model for code clone detection. To train GRRLN, we first represent each code fragment as a statement‐level tree sequence derived from the whole syntax tree (AST). Then, a gated recurrent neural network with residual connections is adopted to fully extract the semantics of all individual statement trees together with their dependency relationships across the input statement sequence. Finally, the output representations of code fragments by GRRLN are used for similarity calculation and clone detection. We evaluate GRRLN using two real‐world datasets for code clone detection and clone type classification. Experiments show that GRRLN achieves promising and compelling results and meanwhile needs significantly less time and memory consumption compared with the state‐of‐the‐art methods. Code clone detection is commonly approached as a binary classification task, determining whether code pairs are clones or not based on a fixed threshold. However, code clones exhibit varying degrees of similarity, leading to different types of clones. To explore the impact of detection manners on clone detection results, we proposed a Gated Recurrent Residual Learning Networks for code clone detection task. The experimental results demonstrate that different detection manners yield varying results, even with the same model and dataset. |
| Author | Shi, Min Zhang, Xiangping Liu, Jianxun |
| Author_xml | – sequence: 1 givenname: Xiangping orcidid: 0000-0001-7751-602X surname: Zhang fullname: Zhang, Xiangping organization: Hunan University of Science and Technology – sequence: 2 givenname: Jianxun surname: Liu fullname: Liu, Jianxun email: 834506424@qq.com organization: Hunan University of Science and Technology – sequence: 3 givenname: Min surname: Shi fullname: Shi, Min organization: Harvard Medical School |
| BookMark | eNp1kEFLwzAUx4NMcM6BHyHgxUtn0qRp602Gm0qdUPUckvRVOrtmJi1j397MiTff5f0PP96f9ztHo852gNAlJTNKSHzjN24WC56foHFMeBqlPKOjv5yyMzT1fk3CiJgkPBmjp2VZFqtbvFQ9VLgEMzgHXR-Sb6pBtbgA5bqm-8Ar6HfWfXpcW4eNrQCbNrTjCnowfWO7C3Raq9bD9HdP0Pvi_m3-EBUvy8f5XRGZOOF5pIkGwSvKNUuJ1jrLORW50trwmjCtcmBEqExoCqLiCQHB6rymyghK4iqL2QRdHe9unf0awPdybQfXhUrJSBZ-44zSQF0fKeOs9w5quXXNRrm9pEQeZMkgSx5kBTQ6orumhf2_nHx9Ln_4b37Aa10 |
| Cites_doi | 10.1016/j.infsof.2013.01.008 10.1109/ICSME.2017.46 10.1109/ICPC.2008.41 10.1109/ITICT.2007.4475669 10.1109/SANER48275.2020.9054857 10.1016/j.jss.2023.111618 10.1145/3196321.3196334 10.1109/ICSE.2012.6227135 10.1109/ICSM.1998.738528 10.1016/j.scico.2009.02.007 10.1109/MS.2010.159 10.1145/1985793.1985836 10.1145/2970276.2970326 10.1145/3180155.3180167 10.1109/TSE.2015.2454508 10.1109/ACCESS.2020.3006178 10.1109/ICSM.1999.792593 10.1145/3381307.3381310 10.1609/aaai.v30i1.10139 10.1016/j.infsof.2022.107130 10.1145/3485135 10.1109/DSAA.2019.00017 10.1145/1287624.1287698 10.1109/TSE.2002.1019480 10.1145/3524842.3528015 10.1109/IWSC50091.2020.9047643 10.1007/s11042-018-5827-6 10.1109/ICSE.2019.00086 10.1109/WCRE.2001.957835 10.1109/ICPC.2019.00021 10.1109/IWSC.2017.7880508 10.1145/3341105.3374117 10.24963/ijcai.2017/423 10.1109/TSC.2016.2592909 10.1145/3238147.3238206 10.1145/3428293 10.1145/2884781.2884877 10.1109/SANER.2015.7081861 10.1145/349214.349233 10.1007/s10664-008-9076-6 10.1145/1094855.1094903 10.1109/ICSME.2014.77 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/smr.2649 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2047-7481 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_smr_2649 SMR2649 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61872139 |
| GroupedDBID | .3N .4S .GA .Y3 05W 0R~ 10A 1OC 31~ 33P 3SF 50Z 52O 52U 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN BAFTC BDRZF BHBCM BMNLL BMXJE BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EDO EJD F00 F01 F04 G-S G.N GODZA HGLYW HZ~ I-F LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 O66 O9- P2W P2X PQQKQ Q.N Q11 QB0 R.K ROL SUPJJ TUS W8V W99 WBKPD WIH WIK WOHZO WXSBR WYISQ WZISG ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2549-b0be64d14b370bbb894169abbc4f03ba9e306a86b1e6d450e63f9f1ac6102d823 |
| IEDL.DBID | DR2 |
| ISSN | 2047-7473 |
| IngestDate | Sat Jul 26 03:19:29 EDT 2025 Wed Oct 01 02:26:08 EDT 2025 Wed Jan 22 17:17:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2549-b0be64d14b370bbb894169abbc4f03ba9e306a86b1e6d450e63f9f1ac6102d823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7751-602X |
| PQID | 3080004311 |
| PQPubID | 2034650 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3080004311 crossref_primary_10_1002_smr_2649 wiley_primary_10_1002_smr_2649_SMR2649 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Journal of software : evolution and process |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2012 2011 2019; 12 2000; 22 1998 2008 2007 2008; 13 2020; 79 2005 2023; 20223 2020; 19 1999 2020; 8 2002; 28 2020; 4 2009; 74 2021; 31 2013; 55 2001 2022 2020 2015; 41 2023; 156 2019 2018 2017 2016 2015 2014 2016; 137 2011; 28 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Sheneamer A (e_1_2_11_43_1) 2016; 137 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
| References_xml | – volume: 156 year: 2023 article-title: Graph‐based code semantics learning for efficient semantic code clone detection publication-title: Inform Softw Technol – volume: 20223 year: 2023 article-title: CCStokener: fast yet accurate code clone detection with semantic token publication-title: J Syst Softw – volume: 41 start-page: 1217 issue: 12 year: 2015 end-page: 1235 article-title: Software plagiarism detection with birthmarks based on dynamic key instruction sequences publication-title: IEEE Trans Softw Eng – start-page: 140 year: 2005 end-page: 141 – start-page: 261 year: 2020 end-page: 271 – start-page: 129 year: 2011 end-page: 136 – start-page: 513 year: 2007 end-page: 516 – start-page: 397 year: 2018 end-page: 407 – start-page: 783 year: 2019 end-page: 794 – volume: 79 start-page: 8581 year: 2020 end-page: 8598 article-title: Plagiarism detection in students' programming assignments based on semantics: multimedia e‐learning based smart assessment methodology publication-title: Multimed Tools Appl – volume: 19 start-page: 28 issue: 4 year: 2020 end-page: 39 article-title: Open‐source tools and benchmarks for code‐clone detection: past, present, and future trends publication-title: ACM SIGAPP Appl Comput Rev – start-page: 1 year: 2017 end-page: 2 – start-page: 682 year: 2022 end-page: 686 – start-page: 315 year: 2007 end-page: 318 – year: 2018 – start-page: 1287 year: 2016 end-page: 1293 – start-page: 249 year: 2017 end-page: 260 – start-page: 933 year: 2018 end-page: 944 – year: 2014 – start-page: 109 year: 1999 end-page: 118 – start-page: 57 year: 2020 end-page: 63 – start-page: 1157 year: 2016 end-page: 1168 – volume: 55 start-page: 1165 issue: 7 year: 2013 end-page: 1199 article-title: Software clone detection: a systematic review publication-title: Inform Softw Technol – volume: 31 start-page: 1 issue: 2 year: 2021 end-page: 34 article-title: What you see is what it means! semantic representation learning of code based on visualization and transfer learning publication-title: ACM Trans Softw Eng Methodol (TOSEM) – volume: 137 start-page: 1 issue: 10 year: 2016 end-page: 21 article-title: A survey of software clone detection techniques publication-title: Int J Comput Appl – volume: 28 start-page: 654 issue: 7 year: 2002 end-page: 670 article-title: CCFinder: a multilinguistic token‐based code clone detection system for large scale source code publication-title: IEEE Trans Softw Eng – start-page: 301 year: 2001 end-page: 309 – volume: 4 start-page: 1 year: 2020 end-page: 28 article-title: Neural reverse engineering of stripped binaries using augmented control flow graphs publication-title: Proc ACM on Progr Lang – start-page: 3034 year: 2017 end-page: 3040 – start-page: 200 year: 2018 end-page: 210 – volume: 22 start-page: 378 issue: 2 year: 2000 end-page: 415 article-title: Compiler techniques for code compaction publication-title: ACM Trans Progr Lang Syst – start-page: 311 year: 2011 end-page: 320 – volume: 12 start-page: 34 issue: 1 year: 2019 end-page: 46 article-title: ROSF: leveraging information retrieval and supervised learning for recommending code snippets publication-title: IEEE Trans Serv Comput – start-page: 70 year: 2019 end-page: 80 – start-page: 87 year: 2016 end-page: 98 – start-page: 368 year: 1998 end-page: 377 – volume: 13 start-page: 645 year: 2008 end-page: 692 article-title: Cloning considered harmful considered harmful: patterns of cloning in software publication-title: Empir Softw Eng – volume: 8 start-page: 124978 year: 2020 end-page: 124988 article-title: An automatic advisor for refactoring software clones based on machine learning publication-title: IEEE Access – start-page: 484 year: 2015 end-page: 488 – volume: 74 start-page: 470 issue: 7 year: 2009 end-page: 495 article-title: Comparison and evaluation of code clone detection techniques and tools: a qualitative approach publication-title: Sci Comput Progr – start-page: 172 year: 2008 end-page: 181 – volume: 28 start-page: 42 issue: 2 year: 2011 end-page: 47 article-title: Guilty or not guilty: using clone metrics to determine open source licensing violations publication-title: IEEE Softw – start-page: 31 year: 2019 end-page: 40 – start-page: 837 year: 2012 end-page: 847 – start-page: 129 year: 2020 end-page: 131 – start-page: 476 year: 2014 end-page: 480 – ident: e_1_2_11_23_1 doi: 10.1016/j.infsof.2013.01.008 – ident: e_1_2_11_34_1 doi: 10.1109/ICSME.2017.46 – ident: e_1_2_11_45_1 doi: 10.1109/ICPC.2008.41 – ident: e_1_2_11_12_1 doi: 10.1109/ITICT.2007.4475669 – ident: e_1_2_11_17_1 doi: 10.1109/SANER48275.2020.9054857 – ident: e_1_2_11_36_1 doi: 10.1016/j.jss.2023.111618 – ident: e_1_2_11_50_1 doi: 10.1145/3196321.3196334 – ident: e_1_2_11_16_1 doi: 10.1109/ICSE.2012.6227135 – ident: e_1_2_11_32_1 – ident: e_1_2_11_40_1 doi: 10.1109/ICSM.1998.738528 – ident: e_1_2_11_44_1 doi: 10.1016/j.scico.2009.02.007 – ident: e_1_2_11_48_1 doi: 10.1109/MS.2010.159 – ident: e_1_2_11_3_1 doi: 10.1145/1985793.1985836 – ident: e_1_2_11_26_1 doi: 10.1145/2970276.2970326 – ident: e_1_2_11_5_1 doi: 10.1145/3180155.3180167 – ident: e_1_2_11_11_1 doi: 10.1109/TSE.2015.2454508 – ident: e_1_2_11_8_1 doi: 10.1109/ACCESS.2020.3006178 – ident: e_1_2_11_28_1 – ident: e_1_2_11_14_1 doi: 10.1109/ICSM.1999.792593 – ident: e_1_2_11_2_1 doi: 10.1145/3381307.3381310 – ident: e_1_2_11_33_1 doi: 10.1609/aaai.v30i1.10139 – ident: e_1_2_11_37_1 doi: 10.1016/j.infsof.2022.107130 – ident: e_1_2_11_30_1 – ident: e_1_2_11_21_1 doi: 10.1145/3485135 – ident: e_1_2_11_31_1 doi: 10.1109/DSAA.2019.00017 – ident: e_1_2_11_46_1 doi: 10.1145/1287624.1287698 – ident: e_1_2_11_47_1 doi: 10.1109/TSE.2002.1019480 – ident: e_1_2_11_39_1 doi: 10.1145/3524842.3528015 – volume: 137 start-page: 1 issue: 10 year: 2016 ident: e_1_2_11_43_1 article-title: A survey of software clone detection techniques publication-title: Int J Comput Appl – ident: e_1_2_11_38_1 doi: 10.1109/IWSC50091.2020.9047643 – ident: e_1_2_11_41_1 doi: 10.1016/j.infsof.2013.01.008 – ident: e_1_2_11_10_1 doi: 10.1007/s11042-018-5827-6 – ident: e_1_2_11_27_1 – ident: e_1_2_11_35_1 – ident: e_1_2_11_20_1 doi: 10.1109/ICSE.2019.00086 – ident: e_1_2_11_51_1 doi: 10.1109/WCRE.2001.957835 – ident: e_1_2_11_22_1 doi: 10.1109/ICPC.2019.00021 – ident: e_1_2_11_9_1 doi: 10.1109/IWSC.2017.7880508 – ident: e_1_2_11_42_1 doi: 10.1145/3341105.3374117 – ident: e_1_2_11_29_1 – ident: e_1_2_11_19_1 doi: 10.24963/ijcai.2017/423 – ident: e_1_2_11_6_1 doi: 10.1109/TSC.2016.2592909 – ident: e_1_2_11_49_1 doi: 10.1145/3238147.3238206 – ident: e_1_2_11_18_1 doi: 10.1145/3428293 – ident: e_1_2_11_25_1 doi: 10.1145/2884781.2884877 – ident: e_1_2_11_7_1 doi: 10.1109/SANER.2015.7081861 – ident: e_1_2_11_13_1 doi: 10.1145/349214.349233 – ident: e_1_2_11_4_1 doi: 10.1007/s10664-008-9076-6 – ident: e_1_2_11_15_1 doi: 10.1145/1094855.1094903 – ident: e_1_2_11_24_1 doi: 10.1109/ICSME.2014.77 |
| SSID | ssj0000620545 |
| Score | 2.3004293 |
| Snippet | Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | abstract syntax tree Binary codes Classification code clone detection code representation Fragments Learning Neural networks Recurrent neural networks residual network Semantics Software development |
| Title | GRRLN: Gated Recurrent Residual Learning Networks for code clone detection |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.2649 https://www.proquest.com/docview/3080004311 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2047-7481 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0000620545 issn: 2047-7473 databaseCode: ADMLS dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 2047-7473 databaseCode: DR2 dateStart: 20120101 customDbUrl: isFulltext: true eissn: 2047-7481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000620545 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kJy_WT6xWWUG8pU32y6w3EWsp2kO0UPAQMsnWgxqlSS_-emc3SauCIJ6SQ5ZNZncyb4Y3bwk5BYVR2ID0dBpknuBKeKEGzHm0kpnACCLBsS3GajgRo6mc1qxK2wtT6UMsC27WM9z_2jp4AkV_JRpavM57GM1t717AlcumIrYsr_iKIRixBEZmtQgQNPNGetZn_Wbs92C0QphfcaoLNIM2eWxeseKXPPcWJfTSjx_qjf_7hk2yUeNPelltmC2yZvJt0m7OdqC1q--Q0U0U3Y4vqK2uZTSyVXmr44R3hWvforUw6xMdV0TygiL8pbZDnqYvb7mhmSkdzSvfJZPB9cPV0KvPXfBSmy564INRIgsE8HMfAEKNqE0nAKmY-RwSbTDPSEIFgVGZkL5RfKZnQZIiFGNZyPgeaeU40T6hTBtpdIDjpBECZDhLjJ-YUKeY9xmddchJswDxeyWvEVdCyixG48TWOB3SbVYmrh2siLlFulYYKOiQM2fiX8fH93eRvR789cFDss4QulSk3C5plfOFOULoUcKx22SfD0DUdA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWChPEWhgJEQW9rEcUwME0KUUtoOoZU6IEW5xGUACupj4ddzzqMFJCTElAw5OTn7ct-dPn8GOEVJWVijZ6nYSSzhSmH5CqnmUdJLBGUQD1O2RVc2-6I18AZLcFnshcn0IeYNNxMZ6f_aBLhpSNcXqqGT13GN0rlahhUhqUwxiCjg8waLLTnBEUNh5EaNgGCzW4jP2rxeGH9PRwuM-RWppqmmUYbH4iUzhslzbTbFWvzxQ7_xn1-xAes5BGVX2ZrZhCU92oJycbwDy6N9G1q3QdDuXjDTYEtYYBrzRsqJ7ibpDi6Wa7M-sW7GJZ8wQsDMbJJn8cvbSLNET1Om12gH-o2b3nXTyo9esGJTMVpoo5YicQS65zYi-oqAm4oQYzG0XYyUplIj8iU6WibCs7V0h2roRDGhMZ743N2F0ogG2gPGlfa0csjO00Kg5w8jbUfaVzGVflolFTgpZiB8zxQ2wkxLmYfknNA4pwLVYmrCPMYmoWvArtEGcipwlvr4V_vwoROY6_5fHzyG1Wav0w7bd937A1jjhGQyjm4VStPxTB8SEpniUbriPgFsztiV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50BfHiW1yfEcRb1zZNYqMnUdf3IlXBg1A6TepBXWUfF3-9kz58gSCe2kOHtJNM55vhyxeATVSUhS1KT2eB8USohBdppJpHK2kEZRCJBduio05uxdmdvBuBvXovTKkP8dFwc5FR_K9dgNtXk29_qob2n3stSud6FMaE1JHj8x3G_KPB4itOcMRRGLlTIyDYHNbisz7fro2_p6NPjPkVqRappj0F9_VLlgyTx9ZwgK3s7Yd-4z-_YhomKwjK9ss1MwMjtjsLU_XxDqyK9jk4O47ji84ucw02w2LXmHdSTnTXL3ZwsUqb9YF1Si55nxECZm6TPMueXrqWGTsomF7debhtH90cnHjV0Qte5ipGD320SphAYLjjI2KkCbjpFDETuR9iqi2VGmmkMLDKCOlbFeY6D9KM0Bg3EQ8XoNGlgRaBcW2l1QHZSSsEyihPrZ_aSGdU-lltmrBRz0DyWipsJKWWMk_IOYlzThNW6qlJqhjrJ6EDu04bKGjCVuHjX-2T68vYXZf--uA6jF8dtpOL0875MkxwAjIlRXcFGoPe0K4SEBngWrHg3gFKwNgZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRRLN%3A+Gated+Recurrent+Residual+Learning+Networks+for+code+clone+detection&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Zhang%2C+Xiangping&rft.au=Liu%2C+Jianxun&rft.au=Shi%2C+Min&rft.date=2024-07-01&rft.issn=2047-7473&rft.eissn=2047-7481&rft.volume=36&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmr.2649&rft.externalDBID=10.1002%252Fsmr.2649&rft.externalDocID=SMR2649 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon |