GRRLN: Gated Recurrent Residual Learning Networks for code clone detection

Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair...

Full description

Saved in:
Bibliographic Details
Published inJournal of software : evolution and process Vol. 36; no. 7
Main Authors Zhang, Xiangping, Liu, Jianxun, Shi, Min
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN2047-7473
2047-7481
DOI10.1002/smr.2649

Cover

Abstract Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair as a clone or not based on a pre‐defined threshold. In reality, there are various types of code clone subject to the degree of how a pair of code fragments are similar to each other. To investigate the effect of different code clone detection manners on the clone detection result, we propose Gated Recurrent Residual Learning Networks (GRRLN), a novel neural network model for code clone detection. To train GRRLN, we first represent each code fragment as a statement‐level tree sequence derived from the whole syntax tree (AST). Then, a gated recurrent neural network with residual connections is adopted to fully extract the semantics of all individual statement trees together with their dependency relationships across the input statement sequence. Finally, the output representations of code fragments by GRRLN are used for similarity calculation and clone detection. We evaluate GRRLN using two real‐world datasets for code clone detection and clone type classification. Experiments show that GRRLN achieves promising and compelling results and meanwhile needs significantly less time and memory consumption compared with the state‐of‐the‐art methods. Code clone detection is commonly approached as a binary classification task, determining whether code pairs are clones or not based on a fixed threshold. However, code clones exhibit varying degrees of similarity, leading to different types of clones. To explore the impact of detection manners on clone detection results, we proposed a Gated Recurrent Residual Learning Networks for code clone detection task. The experimental results demonstrate that different detection manners yield varying results, even with the same model and dataset.
AbstractList Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair as a clone or not based on a pre‐defined threshold. In reality, there are various types of code clone subject to the degree of how a pair of code fragments are similar to each other. To investigate the effect of different code clone detection manners on the clone detection result, we propose Gated Recurrent Residual Learning Networks (GRRLN), a novel neural network model for code clone detection. To train GRRLN, we first represent each code fragment as a statement‐level tree sequence derived from the whole abstract syntax tree (AST). Then, a gated recurrent neural network with residual connections is adopted to fully extract the semantics of all individual statement trees together with their dependency relationships across the input statement sequence. Finally, the output representations of code fragments by GRRLN are used for similarity calculation and clone detection. We evaluate GRRLN using two real‐world datasets for code clone detection and clone type classification. Experiments show that GRRLN achieves promising and compelling results and meanwhile needs significantly less time and memory consumption compared with the state‐of‐the‐art methods.
Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code fragments within an application. Existing works formulate the code clone detection task as a binary classification problem which predicts a code pair as a clone or not based on a pre‐defined threshold. In reality, there are various types of code clone subject to the degree of how a pair of code fragments are similar to each other. To investigate the effect of different code clone detection manners on the clone detection result, we propose Gated Recurrent Residual Learning Networks (GRRLN), a novel neural network model for code clone detection. To train GRRLN, we first represent each code fragment as a statement‐level tree sequence derived from the whole syntax tree (AST). Then, a gated recurrent neural network with residual connections is adopted to fully extract the semantics of all individual statement trees together with their dependency relationships across the input statement sequence. Finally, the output representations of code fragments by GRRLN are used for similarity calculation and clone detection. We evaluate GRRLN using two real‐world datasets for code clone detection and clone type classification. Experiments show that GRRLN achieves promising and compelling results and meanwhile needs significantly less time and memory consumption compared with the state‐of‐the‐art methods. Code clone detection is commonly approached as a binary classification task, determining whether code pairs are clones or not based on a fixed threshold. However, code clones exhibit varying degrees of similarity, leading to different types of clones. To explore the impact of detection manners on clone detection results, we proposed a Gated Recurrent Residual Learning Networks for code clone detection task. The experimental results demonstrate that different detection manners yield varying results, even with the same model and dataset.
Author Shi, Min
Zhang, Xiangping
Liu, Jianxun
Author_xml – sequence: 1
  givenname: Xiangping
  orcidid: 0000-0001-7751-602X
  surname: Zhang
  fullname: Zhang, Xiangping
  organization: Hunan University of Science and Technology
– sequence: 2
  givenname: Jianxun
  surname: Liu
  fullname: Liu, Jianxun
  email: 834506424@qq.com
  organization: Hunan University of Science and Technology
– sequence: 3
  givenname: Min
  surname: Shi
  fullname: Shi, Min
  organization: Harvard Medical School
BookMark eNp1kEFLwzAUx4NMcM6BHyHgxUtn0qRp602Gm0qdUPUckvRVOrtmJi1j397MiTff5f0PP96f9ztHo852gNAlJTNKSHzjN24WC56foHFMeBqlPKOjv5yyMzT1fk3CiJgkPBmjp2VZFqtbvFQ9VLgEMzgHXR-Sb6pBtbgA5bqm-8Ar6HfWfXpcW4eNrQCbNrTjCnowfWO7C3Raq9bD9HdP0Pvi_m3-EBUvy8f5XRGZOOF5pIkGwSvKNUuJ1jrLORW50trwmjCtcmBEqExoCqLiCQHB6rymyghK4iqL2QRdHe9unf0awPdybQfXhUrJSBZ-44zSQF0fKeOs9w5quXXNRrm9pEQeZMkgSx5kBTQ6orumhf2_nHx9Ln_4b37Aa10
Cites_doi 10.1016/j.infsof.2013.01.008
10.1109/ICSME.2017.46
10.1109/ICPC.2008.41
10.1109/ITICT.2007.4475669
10.1109/SANER48275.2020.9054857
10.1016/j.jss.2023.111618
10.1145/3196321.3196334
10.1109/ICSE.2012.6227135
10.1109/ICSM.1998.738528
10.1016/j.scico.2009.02.007
10.1109/MS.2010.159
10.1145/1985793.1985836
10.1145/2970276.2970326
10.1145/3180155.3180167
10.1109/TSE.2015.2454508
10.1109/ACCESS.2020.3006178
10.1109/ICSM.1999.792593
10.1145/3381307.3381310
10.1609/aaai.v30i1.10139
10.1016/j.infsof.2022.107130
10.1145/3485135
10.1109/DSAA.2019.00017
10.1145/1287624.1287698
10.1109/TSE.2002.1019480
10.1145/3524842.3528015
10.1109/IWSC50091.2020.9047643
10.1007/s11042-018-5827-6
10.1109/ICSE.2019.00086
10.1109/WCRE.2001.957835
10.1109/ICPC.2019.00021
10.1109/IWSC.2017.7880508
10.1145/3341105.3374117
10.24963/ijcai.2017/423
10.1109/TSC.2016.2592909
10.1145/3238147.3238206
10.1145/3428293
10.1145/2884781.2884877
10.1109/SANER.2015.7081861
10.1145/349214.349233
10.1007/s10664-008-9076-6
10.1145/1094855.1094903
10.1109/ICSME.2014.77
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/smr.2649
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2047-7481
EndPage n/a
ExternalDocumentID 10_1002_smr_2649
SMR2649
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61872139
GroupedDBID .3N
.4S
.GA
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
50Z
52O
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
G-S
G.N
GODZA
HGLYW
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
P2W
P2X
PQQKQ
Q.N
Q11
QB0
R.K
ROL
SUPJJ
TUS
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2549-b0be64d14b370bbb894169abbc4f03ba9e306a86b1e6d450e63f9f1ac6102d823
IEDL.DBID DR2
ISSN 2047-7473
IngestDate Sat Jul 26 03:19:29 EDT 2025
Wed Oct 01 02:26:08 EDT 2025
Wed Jan 22 17:17:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2549-b0be64d14b370bbb894169abbc4f03ba9e306a86b1e6d450e63f9f1ac6102d823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7751-602X
PQID 3080004311
PQPubID 2034650
PageCount 21
ParticipantIDs proquest_journals_3080004311
crossref_primary_10_1002_smr_2649
wiley_primary_10_1002_smr_2649_SMR2649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of software : evolution and process
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012
2011
2019; 12
2000; 22
1998
2008
2007
2008; 13
2020; 79
2005
2023; 20223
2020; 19
1999
2020; 8
2002; 28
2020; 4
2009; 74
2021; 31
2013; 55
2001
2022
2020
2015; 41
2023; 156
2019
2018
2017
2016
2015
2014
2016; 137
2011; 28
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Sheneamer A (e_1_2_11_43_1) 2016; 137
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 156
  year: 2023
  article-title: Graph‐based code semantics learning for efficient semantic code clone detection
  publication-title: Inform Softw Technol
– volume: 20223
  year: 2023
  article-title: CCStokener: fast yet accurate code clone detection with semantic token
  publication-title: J Syst Softw
– volume: 41
  start-page: 1217
  issue: 12
  year: 2015
  end-page: 1235
  article-title: Software plagiarism detection with birthmarks based on dynamic key instruction sequences
  publication-title: IEEE Trans Softw Eng
– start-page: 140
  year: 2005
  end-page: 141
– start-page: 261
  year: 2020
  end-page: 271
– start-page: 129
  year: 2011
  end-page: 136
– start-page: 513
  year: 2007
  end-page: 516
– start-page: 397
  year: 2018
  end-page: 407
– start-page: 783
  year: 2019
  end-page: 794
– volume: 79
  start-page: 8581
  year: 2020
  end-page: 8598
  article-title: Plagiarism detection in students' programming assignments based on semantics: multimedia e‐learning based smart assessment methodology
  publication-title: Multimed Tools Appl
– volume: 19
  start-page: 28
  issue: 4
  year: 2020
  end-page: 39
  article-title: Open‐source tools and benchmarks for code‐clone detection: past, present, and future trends
  publication-title: ACM SIGAPP Appl Comput Rev
– start-page: 1
  year: 2017
  end-page: 2
– start-page: 682
  year: 2022
  end-page: 686
– start-page: 315
  year: 2007
  end-page: 318
– year: 2018
– start-page: 1287
  year: 2016
  end-page: 1293
– start-page: 249
  year: 2017
  end-page: 260
– start-page: 933
  year: 2018
  end-page: 944
– year: 2014
– start-page: 109
  year: 1999
  end-page: 118
– start-page: 57
  year: 2020
  end-page: 63
– start-page: 1157
  year: 2016
  end-page: 1168
– volume: 55
  start-page: 1165
  issue: 7
  year: 2013
  end-page: 1199
  article-title: Software clone detection: a systematic review
  publication-title: Inform Softw Technol
– volume: 31
  start-page: 1
  issue: 2
  year: 2021
  end-page: 34
  article-title: What you see is what it means! semantic representation learning of code based on visualization and transfer learning
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
– volume: 137
  start-page: 1
  issue: 10
  year: 2016
  end-page: 21
  article-title: A survey of software clone detection techniques
  publication-title: Int J Comput Appl
– volume: 28
  start-page: 654
  issue: 7
  year: 2002
  end-page: 670
  article-title: CCFinder: a multilinguistic token‐based code clone detection system for large scale source code
  publication-title: IEEE Trans Softw Eng
– start-page: 301
  year: 2001
  end-page: 309
– volume: 4
  start-page: 1
  year: 2020
  end-page: 28
  article-title: Neural reverse engineering of stripped binaries using augmented control flow graphs
  publication-title: Proc ACM on Progr Lang
– start-page: 3034
  year: 2017
  end-page: 3040
– start-page: 200
  year: 2018
  end-page: 210
– volume: 22
  start-page: 378
  issue: 2
  year: 2000
  end-page: 415
  article-title: Compiler techniques for code compaction
  publication-title: ACM Trans Progr Lang Syst
– start-page: 311
  year: 2011
  end-page: 320
– volume: 12
  start-page: 34
  issue: 1
  year: 2019
  end-page: 46
  article-title: ROSF: leveraging information retrieval and supervised learning for recommending code snippets
  publication-title: IEEE Trans Serv Comput
– start-page: 70
  year: 2019
  end-page: 80
– start-page: 87
  year: 2016
  end-page: 98
– start-page: 368
  year: 1998
  end-page: 377
– volume: 13
  start-page: 645
  year: 2008
  end-page: 692
  article-title: Cloning considered harmful considered harmful: patterns of cloning in software
  publication-title: Empir Softw Eng
– volume: 8
  start-page: 124978
  year: 2020
  end-page: 124988
  article-title: An automatic advisor for refactoring software clones based on machine learning
  publication-title: IEEE Access
– start-page: 484
  year: 2015
  end-page: 488
– volume: 74
  start-page: 470
  issue: 7
  year: 2009
  end-page: 495
  article-title: Comparison and evaluation of code clone detection techniques and tools: a qualitative approach
  publication-title: Sci Comput Progr
– start-page: 172
  year: 2008
  end-page: 181
– volume: 28
  start-page: 42
  issue: 2
  year: 2011
  end-page: 47
  article-title: Guilty or not guilty: using clone metrics to determine open source licensing violations
  publication-title: IEEE Softw
– start-page: 31
  year: 2019
  end-page: 40
– start-page: 837
  year: 2012
  end-page: 847
– start-page: 129
  year: 2020
  end-page: 131
– start-page: 476
  year: 2014
  end-page: 480
– ident: e_1_2_11_23_1
  doi: 10.1016/j.infsof.2013.01.008
– ident: e_1_2_11_34_1
  doi: 10.1109/ICSME.2017.46
– ident: e_1_2_11_45_1
  doi: 10.1109/ICPC.2008.41
– ident: e_1_2_11_12_1
  doi: 10.1109/ITICT.2007.4475669
– ident: e_1_2_11_17_1
  doi: 10.1109/SANER48275.2020.9054857
– ident: e_1_2_11_36_1
  doi: 10.1016/j.jss.2023.111618
– ident: e_1_2_11_50_1
  doi: 10.1145/3196321.3196334
– ident: e_1_2_11_16_1
  doi: 10.1109/ICSE.2012.6227135
– ident: e_1_2_11_32_1
– ident: e_1_2_11_40_1
  doi: 10.1109/ICSM.1998.738528
– ident: e_1_2_11_44_1
  doi: 10.1016/j.scico.2009.02.007
– ident: e_1_2_11_48_1
  doi: 10.1109/MS.2010.159
– ident: e_1_2_11_3_1
  doi: 10.1145/1985793.1985836
– ident: e_1_2_11_26_1
  doi: 10.1145/2970276.2970326
– ident: e_1_2_11_5_1
  doi: 10.1145/3180155.3180167
– ident: e_1_2_11_11_1
  doi: 10.1109/TSE.2015.2454508
– ident: e_1_2_11_8_1
  doi: 10.1109/ACCESS.2020.3006178
– ident: e_1_2_11_28_1
– ident: e_1_2_11_14_1
  doi: 10.1109/ICSM.1999.792593
– ident: e_1_2_11_2_1
  doi: 10.1145/3381307.3381310
– ident: e_1_2_11_33_1
  doi: 10.1609/aaai.v30i1.10139
– ident: e_1_2_11_37_1
  doi: 10.1016/j.infsof.2022.107130
– ident: e_1_2_11_30_1
– ident: e_1_2_11_21_1
  doi: 10.1145/3485135
– ident: e_1_2_11_31_1
  doi: 10.1109/DSAA.2019.00017
– ident: e_1_2_11_46_1
  doi: 10.1145/1287624.1287698
– ident: e_1_2_11_47_1
  doi: 10.1109/TSE.2002.1019480
– ident: e_1_2_11_39_1
  doi: 10.1145/3524842.3528015
– volume: 137
  start-page: 1
  issue: 10
  year: 2016
  ident: e_1_2_11_43_1
  article-title: A survey of software clone detection techniques
  publication-title: Int J Comput Appl
– ident: e_1_2_11_38_1
  doi: 10.1109/IWSC50091.2020.9047643
– ident: e_1_2_11_41_1
  doi: 10.1016/j.infsof.2013.01.008
– ident: e_1_2_11_10_1
  doi: 10.1007/s11042-018-5827-6
– ident: e_1_2_11_27_1
– ident: e_1_2_11_35_1
– ident: e_1_2_11_20_1
  doi: 10.1109/ICSE.2019.00086
– ident: e_1_2_11_51_1
  doi: 10.1109/WCRE.2001.957835
– ident: e_1_2_11_22_1
  doi: 10.1109/ICPC.2019.00021
– ident: e_1_2_11_9_1
  doi: 10.1109/IWSC.2017.7880508
– ident: e_1_2_11_42_1
  doi: 10.1145/3341105.3374117
– ident: e_1_2_11_29_1
– ident: e_1_2_11_19_1
  doi: 10.24963/ijcai.2017/423
– ident: e_1_2_11_6_1
  doi: 10.1109/TSC.2016.2592909
– ident: e_1_2_11_49_1
  doi: 10.1145/3238147.3238206
– ident: e_1_2_11_18_1
  doi: 10.1145/3428293
– ident: e_1_2_11_25_1
  doi: 10.1145/2884781.2884877
– ident: e_1_2_11_7_1
  doi: 10.1109/SANER.2015.7081861
– ident: e_1_2_11_13_1
  doi: 10.1145/349214.349233
– ident: e_1_2_11_4_1
  doi: 10.1007/s10664-008-9076-6
– ident: e_1_2_11_15_1
  doi: 10.1145/1094855.1094903
– ident: e_1_2_11_24_1
  doi: 10.1109/ICSME.2014.77
SSID ssj0000620545
Score 2.3004293
Snippet Code clone detection is a critical problem in software development and maintenance domains. It aims to identify functionally identical or similar code...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms abstract syntax tree
Binary codes
Classification
code clone detection
code representation
Fragments
Learning
Neural networks
Recurrent neural networks
residual network
Semantics
Software development
Title GRRLN: Gated Recurrent Residual Learning Networks for code clone detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.2649
https://www.proquest.com/docview/3080004311
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2047-7481
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0000620545
  issn: 2047-7473
  databaseCode: ADMLS
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 2047-7473
  databaseCode: DR2
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  eissn: 2047-7481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000620545
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kJy_WT6xWWUG8pU32y6w3EWsp2kO0UPAQMsnWgxqlSS_-emc3SauCIJ6SQ5ZNZncyb4Y3bwk5BYVR2ID0dBpknuBKeKEGzHm0kpnACCLBsS3GajgRo6mc1qxK2wtT6UMsC27WM9z_2jp4AkV_JRpavM57GM1t717AlcumIrYsr_iKIRixBEZmtQgQNPNGetZn_Wbs92C0QphfcaoLNIM2eWxeseKXPPcWJfTSjx_qjf_7hk2yUeNPelltmC2yZvJt0m7OdqC1q--Q0U0U3Y4vqK2uZTSyVXmr44R3hWvforUw6xMdV0TygiL8pbZDnqYvb7mhmSkdzSvfJZPB9cPV0KvPXfBSmy564INRIgsE8HMfAEKNqE0nAKmY-RwSbTDPSEIFgVGZkL5RfKZnQZIiFGNZyPgeaeU40T6hTBtpdIDjpBECZDhLjJ-YUKeY9xmddchJswDxeyWvEVdCyixG48TWOB3SbVYmrh2siLlFulYYKOiQM2fiX8fH93eRvR789cFDss4QulSk3C5plfOFOULoUcKx22SfD0DUdA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWChPEWhgJEQW9rEcUwME0KUUtoOoZU6IEW5xGUACupj4ddzzqMFJCTElAw5OTn7ct-dPn8GOEVJWVijZ6nYSSzhSmH5CqnmUdJLBGUQD1O2RVc2-6I18AZLcFnshcn0IeYNNxMZ6f_aBLhpSNcXqqGT13GN0rlahhUhqUwxiCjg8waLLTnBEUNh5EaNgGCzW4jP2rxeGH9PRwuM-RWppqmmUYbH4iUzhslzbTbFWvzxQ7_xn1-xAes5BGVX2ZrZhCU92oJycbwDy6N9G1q3QdDuXjDTYEtYYBrzRsqJ7ibpDi6Wa7M-sW7GJZ8wQsDMbJJn8cvbSLNET1Om12gH-o2b3nXTyo9esGJTMVpoo5YicQS65zYi-oqAm4oQYzG0XYyUplIj8iU6WibCs7V0h2roRDGhMZ743N2F0ogG2gPGlfa0csjO00Kg5w8jbUfaVzGVflolFTgpZiB8zxQ2wkxLmYfknNA4pwLVYmrCPMYmoWvArtEGcipwlvr4V_vwoROY6_5fHzyG1Wav0w7bd937A1jjhGQyjm4VStPxTB8SEpniUbriPgFsztiV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50BfHiW1yfEcRb1zZNYqMnUdf3IlXBg1A6TepBXWUfF3-9kz58gSCe2kOHtJNM55vhyxeATVSUhS1KT2eB8USohBdppJpHK2kEZRCJBduio05uxdmdvBuBvXovTKkP8dFwc5FR_K9dgNtXk29_qob2n3stSud6FMaE1JHj8x3G_KPB4itOcMRRGLlTIyDYHNbisz7fro2_p6NPjPkVqRappj0F9_VLlgyTx9ZwgK3s7Yd-4z-_YhomKwjK9ss1MwMjtjsLU_XxDqyK9jk4O47ji84ucw02w2LXmHdSTnTXL3ZwsUqb9YF1Si55nxECZm6TPMueXrqWGTsomF7debhtH90cnHjV0Qte5ipGD320SphAYLjjI2KkCbjpFDETuR9iqi2VGmmkMLDKCOlbFeY6D9KM0Bg3EQ8XoNGlgRaBcW2l1QHZSSsEyihPrZ_aSGdU-lltmrBRz0DyWipsJKWWMk_IOYlzThNW6qlJqhjrJ6EDu04bKGjCVuHjX-2T68vYXZf--uA6jF8dtpOL0875MkxwAjIlRXcFGoPe0K4SEBngWrHg3gFKwNgZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRRLN%3A+Gated+Recurrent+Residual+Learning+Networks+for+code+clone+detection&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Zhang%2C+Xiangping&rft.au=Liu%2C+Jianxun&rft.au=Shi%2C+Min&rft.date=2024-07-01&rft.issn=2047-7473&rft.eissn=2047-7481&rft.volume=36&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmr.2649&rft.externalDBID=10.1002%252Fsmr.2649&rft.externalDocID=SMR2649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon