Hyper‐parameter optimized GPR model based on chaos game algorithm for RF power transistors

In this paper, a new frequency domain behavior model for radio frequency (RF) power transistors based on a hyper‐parameter optimized Gaussian process regression (GPR) method is presented. The chaos game optimization (CGO) algorithm is used to optimize GPR hyperparameters, resulting in the CGO‐GPR mo...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of numerical modelling Vol. 37; no. 3
Main Authors Gao, Zhiwei, Zhou, Tao, Crupi, Giovanni, Cai, Jialin
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.05.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0894-3370
1099-1204
DOI10.1002/jnm.3259

Cover

Abstract In this paper, a new frequency domain behavior model for radio frequency (RF) power transistors based on a hyper‐parameter optimized Gaussian process regression (GPR) method is presented. The chaos game optimization (CGO) algorithm is used to optimize GPR hyperparameters, resulting in the CGO‐GPR model. The basic theory as well as the details of the modeling process are presented. Validation of the model is conducted using a 10‐watt GaN power transistor. Compared to the standard GPR model, the proposed model achieved a significant improvement. Furthermore, the comparison with the particle swarm optimization (PSO) based GPR model (PSO‐GPR) showed that the proposed model allows achieving superior performance, thereby confirming the effectiveness of the developed modeling technique.
AbstractList In this paper, a new frequency domain behavior model for radio frequency (RF) power transistors based on a hyper‐parameter optimized Gaussian process regression (GPR) method is presented. The chaos game optimization (CGO) algorithm is used to optimize GPR hyperparameters, resulting in the CGO‐GPR model. The basic theory as well as the details of the modeling process are presented. Validation of the model is conducted using a 10‐watt GaN power transistor. Compared to the standard GPR model, the proposed model achieved a significant improvement. Furthermore, the comparison with the particle swarm optimization (PSO) based GPR model (PSO‐GPR) showed that the proposed model allows achieving superior performance, thereby confirming the effectiveness of the developed modeling technique.
Author Crupi, Giovanni
Cai, Jialin
Zhou, Tao
Gao, Zhiwei
Author_xml – sequence: 1
  givenname: Zhiwei
  surname: Gao
  fullname: Gao, Zhiwei
  organization: Hangzhou Dianzi University
– sequence: 2
  givenname: Tao
  surname: Zhou
  fullname: Zhou, Tao
  email: zhou.tao@hdu.edu.cn
  organization: Hangzhou Dianzi University
– sequence: 3
  givenname: Giovanni
  surname: Crupi
  fullname: Crupi, Giovanni
  organization: University of Messina
– sequence: 4
  givenname: Jialin
  orcidid: 0000-0001-7024-9248
  surname: Cai
  fullname: Cai, Jialin
  email: caijialin@hdu.edu.cn
  organization: Hangzhou Dianzi University
BookMark eNp1kMtKAzEUhoNUsK2CjxBw42ZqLpNOs5RiL1IvFN0J4cxM0k6ZmYzJlFJXPoLP6JOYWreuDj98_zmcr4c6ta01QpeUDCgh7GZTVwPOhDxBXUqkjCgjcQd1yUjGEecJOUM97zeEEE4F66K32b7R7vvzqwEHlW61w7Zpi6r40DmePi9xZXNd4hR8yLbG2Rqsx6uAYihX1hXtusLGOryc4MbuQr11UPvCt9b5c3RqoPT64m_20evk7mU8ixZP0_n4dhFlTMQyGgmRGm2AZDTlOSRilPMUZA5UhCCBCDlkJsm1YeEjw2jCANhQJrHUAlLD--jquLdx9n2rfas2duvqcFJxMpQkiEhYoK6PVOas904b1biiArdXlKiDOxXcqYO7gEZHdFeUev8vp-4fH375H9Pncyo
Cites_doi 10.1109/TMAG.2007.892480
10.1016/j.cej.2011.08.021
10.1201/9780367815493
10.1109/MMM.2010.937735
10.1109/TMTT.2010.2095034
10.1002/jnm.3201
10.1016/j.jmp.2018.03.001
10.1109/TMTT.2017.2669984
10.1002/jnm.3143
10.1002/mmce.22112
10.1109/TSP.2020.2997940
10.1109/TMTT.2020.2990171
10.1016/j.cie.2020.106560
10.1109/TMTT.2016.2586055
10.1109/ACCESS.2019.2928392
10.1109/JEDS.2020.3035628
10.1109/ACCESS.2021.3069939
10.1109/MWSYM.2006.249594
10.1109/ISCAS51556.2021.9401088
10.1109/TMTT.2024.3378597
10.1109/IWS52775.2021.9499388
10.1109/MMM.2012.2216095
10.1049/iet-rsn.2019.0421
10.1109/TMTT.2004.837196
10.1017/CBO9780511541124
10.1109/22.179888
10.1007/s10462-020-09867-w
10.1109/LMWC.2018.2819427
10.1109/TMTT.2012.2229712
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/jnm.3259
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1099-1204
EndPage n/a
ExternalDocumentID 10_1002_jnm_3259
JNM3259
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62175056, 62371176
– fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang
  funderid: GK229909299001‐011
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2549-855bfefa0c1b3da758d3ba9da15a759a05962f7def2099f2172aa269749e5abf3
IEDL.DBID DR2
ISSN 0894-3370
IngestDate Sun Jul 13 05:11:37 EDT 2025
Wed Oct 01 04:51:44 EDT 2025
Wed Aug 20 07:26:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2549-855bfefa0c1b3da758d3ba9da15a759a05962f7def2099f2172aa269749e5abf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7024-9248
PQID 3069010972
PQPubID 1026348
PageCount 12
ParticipantIDs proquest_journals_3069010972
crossref_primary_10_1002_jnm_3259
wiley_primary_10_1002_jnm_3259_JNM3259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of numerical modelling
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 9
2010; 11
2019; 7
2004; 52
2018; 28
2021; 54
2020; 30
2020
2013; 61
2017; 65
2016; 64
2007
2020; 14
2006
2020; 68
2018; 85
2020; 145
2011; 59
2024
2012; 13
2024; 37
2007; 43
2011; 173
1992; 40
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Rasmussen CW (e_1_2_6_26_1) 2006
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – volume: 65
  start-page: 2836
  issue: 8
  year: 2017
  end-page: 2846
  article-title: A scalable large‐signal multiharmonic model of AlGaN/GaN HEMTs and its application in C‐band high power amplifier MMIC
  publication-title: IEEE Trans Microw Theory Techn
– volume: 37
  issue: 2
  year: 2024
  article-title: Incorporating DC bias voltage in poly‐harmonic distortion modeling for RF power GaN transistors
  publication-title: Int J Numer Model
– volume: 173
  start-page: 636
  issue: 2
  year: 2011
  end-page: 643
  article-title: Recursive GPR for nonlinear dynamic process modeling
  publication-title: Chem Eng J
– volume: 85
  start-page: 1
  year: 2018
  end-page: 16
  article-title: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions
  publication-title: J Math Psychol
– volume: 68
  start-page: 3090
  issue: 7
  year: 2020
  end-page: 3099
  article-title: ANN‐based large‐signal model of AlGaN/GaN HEMTs with accurate buffer‐related trapping effects characterization
  publication-title: IEEE Trans Microw Theory Techn
– volume: 11
  start-page: 82
  issue: 6
  year: 2010
  end-page: 96
  article-title: Modeling GaN: powerful but challenging
  publication-title: IEEE Microw Mag
– year: 2007
– volume: 40
  start-page: 2258
  issue: 12
  year: 1992
  end-page: 2266
  article-title: A new empirical nonlinear model for HEMT and MESFET devices
  publication-title: IEEE Trans Microw Theory Techn
– volume: 14
  start-page: 1061
  issue: 7
  year: 2020
  end-page: 1067
  article-title: Multi‐frequency analysis of Gaussian process modelling for aperiodic RCS responses of a parameterised aircraft model
  publication-title: IET Radar Sonar Navig
– volume: 7
  start-page: 94205
  year: 2019
  end-page: 94214
  article-title: On neural networks based electrothermal modeling of GaN devices
  publication-title: IEEE Access
– volume: 61
  start-page: 444
  issue: 1
  year: 2013
  end-page: 454
  article-title: Nonlinear electrothermal GaN HEMT model applied to high‐efficiency power amplifier design
  publication-title: IEEE Trans Microw Theory Techn
– volume: 13
  start-page: 45
  issue: 7
  year: 2012
  end-page: 59
  article-title: Future device modeling trends
  publication-title: IEEE Microw Mag
– volume: 59
  start-page: 644
  issue: 3
  year: 2011
  end-page: 651
  article-title: Improved modeling of GaN HEMTs on Si substrate for design of RF power amplifiers
  publication-title: IEEE Trans Microw Theory Techn
– volume: 52
  start-page: 2585
  issue: 11
  year: 2004
  end-page: 2592
  article-title: Nonlinear device model of microwave power GaN HEMTs for high power‐amplifier design
  publication-title: IEEE Trans Microw Theory Techn
– volume: 68
  start-page: 3450
  year: 2020
  end-page: 3460
  article-title: Improved most likely heteroscedastic Gaussian process regression via Bayesian residual moment estimator
  publication-title: IEEE Trans Signal Process
– volume: 30
  issue: 4
  year: 2020
  article-title: Small signal behavioral modeling technique of GaN high electron mobility transistor using artificial neural network: an accurate, fast, and reliable approach
  publication-title: Int J RF Microw Comput Aided Eng
– volume: 43
  start-page: 1589
  issue: 4
  year: 2007
  end-page: 1592
  article-title: Microwave devices and antennas modelling by support vector regression machines
  publication-title: IEEE Trans Magn
– start-page: 1
  year: 2024
  end-page: 12
  article-title: On the extraction of accurate non‐quasi‐static transistor models for E‐band amplifier design: learning from the past
  publication-title: IEEE Trans Microw Theory Techn
– volume: 54
  start-page: 917
  issue: 2
  year: 2021
  end-page: 1004
  article-title: Chaos game optimization: a novel metaheuristic algorithm
  publication-title: Artif Intell Rev
– volume: 9
  start-page: 195
  year: 2021
  end-page: 208
  article-title: Large‐signal modeling of GaN HEMTs using hybrid GA‐ANN, PSO‐SVR, and GPR‐based approaches
  publication-title: IEEE J Electron Devices Soc
– year: 2006
– volume: 145
  year: 2020
  article-title: Optimization of constrained mathematical and engineering design problems using chaos game optimization
  publication-title: Comput Ind Eng
– year: 2020
– volume: 9
  start-page: 51582
  year: 2021
  end-page: 51594
  article-title: A new application of chaos game optimization algorithm for parameters extraction of three diode photovoltaic model
  publication-title: IEEE Access
– volume: 37
  issue: 1
  year: 2024
  article-title: Analysis of the impact of prototyping‐related parasitic effects in a hybrid GaN power amplifier for 5G FR1 applications
  publication-title: Int J Numer Model
– volume: 64
  start-page: 2519
  issue: 8
  year: 2016
  end-page: 2528
  article-title: An artificial neural network‐based electrothermal model for GaN HEMTs with dynamic trapping effects consideration
  publication-title: IEEE Trans Microw Theory Techn
– volume: 28
  start-page: 428
  issue: 5
  year: 2018
  end-page: 430
  article-title: Support vector regression based behavioral modeling technique for RF power transistors
  publication-title: IEEE Microw Wirel Compon Lett
– ident: e_1_2_6_19_1
  doi: 10.1109/TMAG.2007.892480
– ident: e_1_2_6_25_1
  doi: 10.1016/j.cej.2011.08.021
– ident: e_1_2_6_27_1
  doi: 10.1201/9780367815493
– ident: e_1_2_6_2_1
  doi: 10.1109/MMM.2010.937735
– ident: e_1_2_6_7_1
  doi: 10.1109/TMTT.2010.2095034
– ident: e_1_2_6_10_1
  doi: 10.1002/jnm.3201
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jmp.2018.03.001
– ident: e_1_2_6_9_1
  doi: 10.1109/TMTT.2017.2669984
– ident: e_1_2_6_11_1
  doi: 10.1002/jnm.3143
– ident: e_1_2_6_14_1
  doi: 10.1002/mmce.22112
– ident: e_1_2_6_24_1
  doi: 10.1109/TSP.2020.2997940
– ident: e_1_2_6_16_1
  doi: 10.1109/TMTT.2020.2990171
– ident: e_1_2_6_31_1
  doi: 10.1016/j.cie.2020.106560
– ident: e_1_2_6_13_1
  doi: 10.1109/TMTT.2016.2586055
– ident: e_1_2_6_15_1
  doi: 10.1109/ACCESS.2019.2928392
– ident: e_1_2_6_22_1
  doi: 10.1109/JEDS.2020.3035628
– ident: e_1_2_6_30_1
  doi: 10.1109/ACCESS.2021.3069939
– ident: e_1_2_6_17_1
  doi: 10.1109/MWSYM.2006.249594
– ident: e_1_2_6_21_1
  doi: 10.1109/ISCAS51556.2021.9401088
– ident: e_1_2_6_12_1
  doi: 10.1109/TMTT.2024.3378597
– ident: e_1_2_6_18_1
  doi: 10.1109/IWS52775.2021.9499388
– ident: e_1_2_6_4_1
  doi: 10.1109/MMM.2012.2216095
– ident: e_1_2_6_23_1
  doi: 10.1049/iet-rsn.2019.0421
– ident: e_1_2_6_3_1
  doi: 10.1109/TMTT.2004.837196
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: e_1_2_6_26_1
– ident: e_1_2_6_5_1
  doi: 10.1017/CBO9780511541124
– ident: e_1_2_6_6_1
  doi: 10.1109/22.179888
– ident: e_1_2_6_29_1
  doi: 10.1007/s10462-020-09867-w
– ident: e_1_2_6_20_1
  doi: 10.1109/LMWC.2018.2819427
– ident: e_1_2_6_8_1
  doi: 10.1109/TMTT.2012.2229712
SSID ssj0003152
Score 2.320816
Snippet In this paper, a new frequency domain behavior model for radio frequency (RF) power transistors based on a hyper‐parameter optimized Gaussian process...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
chaos game optimization
Gaussian process
Gaussian process regression
Modelling
nonlinear behavior
Parameters
Particle swarm optimization
Power semiconductor devices
power transistor
Radio frequency
Transistors
Title Hyper‐parameter optimized GPR model based on chaos game algorithm for RF power transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnm.3259
https://www.proquest.com/docview/3069010972
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-1204
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0003152
  issn: 0894-3370
  databaseCode: ABDBF
  dateStart: 19880301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0894-3370
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1204
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003152
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7ikz54F-eNCOJbtzTpZX0UcQ5hQ4aCoFCSNNm8tB1r9-KTP8Hf6C_xJF2dCoL4VAIJtCfJOd_XnHwHoWMICp5LtXZo4gNBodJ1RBAGTsghXErZVtLe4-71g-6Nd3nr386yKs1dmEof4vOHm9kZ1l-bDc5F0ZqLhj5maZMBeAf367LAsqnBXDmKVcV2SDvyHMZCUuvOEtqqB36PRHN4-RWk2ijTWUV39ftVySVPzWkpmvLlh3Tj_z5gDa3MwCc-rVbLOlpQ2QZa_iJJCK3ep45rsYnuu0BTJ--vb0YhPDWZMzgHH5M-vKgEX1wNsC2kg00oTHCeYTnieYGH0BXz52E-eShHKQZYjAcdPDb12HBpYqOVJim20E3n_Pqs68zqMTjS0Ein7ftCK82JdAVLODCNhAkeJdz1oRFxW8lHh4nS5j6uNqWvOKcBMJZI-Vxoto0WszxTOwiTgCjmcS6oiIBhAgpSEqCmJIkgmnhhAx3VcxOPK9mNuBJYpjHYLTZ2a6D9etLi2cYrYmaUl82pOm2gE2v9X8fHl_2eee7-teMeWqIAaap0x320WE6m6gAgSSkO7eL7ABF83qY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F9RhBvXbNJH1s8ibiuj11kUfAglCRNfG4ru_XiyZ_gb_SXOGm3rgqCeCqBBNqZTOabdOYbgG10Cm6NGeOw2MMAhamaI_3AdwKB7lKpulZ5HXer7Tcv3ZMr72oE9spamIIf4vPCzVpGfl5bA7cX0rtD1tD7pFvliN5HYdz1MUyxiKgz5I7iRbsdWg9dh_OAlsyzlO2WK7_7oiHA_ApTcz_TmIHr8g2L9JKH6nMmq-rlB3njPz9hFqYH-JPsFxtmDkZ0Mg9TX1gJcdT6pHLtL8B1EyPV3vvrmyUJ79rkGZLiMdO9e9ExOTrvkLyXDrHeMCZpQtStSPvkBqcS8XiT9u6y2y5BZEw6DfJkW7KRzLrHnJ2kvwiXjcOLg6YzaMngKBtJOnXPk0YbQVVN8lhgsBFzKcJY1DwchCJv5mOCWBtbkmts9yshmI9BS6g9IQ1fgrEkTfQyEOpTzV0hJJMhag-BkFaINhWNJTXUDSqwVSoneiqYN6KCY5lFKLfIyq0Ca6XWooHt9SNuyZftj3VWgZ1c_L-uj07aLftc-evETZhoXrTOorPj9ukqTDJEOEX24xqMZb1nvY4IJZMb-U78AAhi4sc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxtBFD54gaIPXitGrR1BfNs4mdlLFp-KNqZqggQFH4RlrmprdkOyeclTf0J_o7-kZ3azxgqF0qdlYAZ2Z-bM952dc74DcIig4DeYtR7TATooTDU8GUahFwmES6WaRhV53J1u2L71L-6Cuzk4qXJhSn2I1x9uzjKK89oZuBloezxTDf2e9usc2fs8LPpB3HTxfGe9mXYUL8vt0Gbse5xHtFKepey4GvknFs0I5luaWuBMaxXuqzcsw0t-1Me5rKvJO_HG__yENViZ8k_ypdww6zBn0g1YfqNKiK3Oq5TraBPu2-ipDl9-_nIi4X0XPEMyPGb6TxOjyfl1jxS1dIhDQ02ylKhHkY3IA3Yl4vkhGz7lj32CzJj0WmTgSrKR3MFjoU4y-gi3ra83p21vWpLBU86T9JpBIK2xgqqG5Fqgs6G5FLEWjQAbsSiK-dhIG-tScq2rfiUEC9FpiU0gpOVbsJBmqdkGQkNquC-EZDJGJxOJkFHINhXVklrqRzU4qBYnGZTKG0mpscwSnLfEzVsN9qpVS6a2N0q4E192F-usBkfF9P91fHLR7bjnzr92_Awfrs9aydW37uUuLDEkOGXw4x4s5MOx-YQEJZf7xUb8DdjV4ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper%E2%80%90parameter+optimized+GPR+model+based+on+chaos+game+algorithm+for+RF+power+transistors&rft.jtitle=International+journal+of+numerical+modelling&rft.au=Gao%2C+Zhiwei&rft.au=Zhou%2C+Tao&rft.au=Crupi%2C+Giovanni&rft.au=Cai%2C+Jialin&rft.date=2024-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0894-3370&rft.eissn=1099-1204&rft.volume=37&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjnm.3259&rft.externalDBID=10.1002%252Fjnm.3259&rft.externalDocID=JNM3259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-3370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-3370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-3370&client=summon