Generative adversarial networks‐based super‐resolution algorithm enables high signal‐to‐noise ratio spatial heterodyne Raman spectra

High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors....

Full description

Saved in:
Bibliographic Details
Published inJournal of Raman spectroscopy Vol. 54; no. 12; pp. 1490 - 1501
Main Authors Hu, Lilei, Shen, Jingxuan, Chen, Zhu, Zhang, Yichen, Chen, Chang
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text
ISSN0377-0486
1097-4555
DOI10.1002/jrs.6598

Cover

Abstract High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities. As for point‐of‐care testing, a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm is designed for spatial heterodyne Raman interference patterns. The algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Using a proposed Raman characteristic peak‐focused network training scheme, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. The proposed GAN‐based algorithm can successfully reconstruct low‐resolution interference patterns into high‐resolution ones, achieving a high R‐square value of 96.05%.
AbstractList High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities. As for point‐of‐care testing, a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm is designed for spatial heterodyne Raman interference patterns. The algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Using a proposed Raman characteristic peak‐focused network training scheme, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. The proposed GAN‐based algorithm can successfully reconstruct low‐resolution interference patterns into high‐resolution ones, achieving a high R‐square value of 96.05%.
High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities.
High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm −1 . These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R ‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities.
Author Hu, Lilei
Chen, Zhu
Chen, Chang
Zhang, Yichen
Shen, Jingxuan
Author_xml – sequence: 1
  givenname: Lilei
  surname: Hu
  fullname: Hu, Lilei
  email: hulilei@shu.edu.cn
  organization: Shanghai Industrial μTechnology Research Institute
– sequence: 2
  givenname: Jingxuan
  orcidid: 0000-0003-1659-7203
  surname: Shen
  fullname: Shen, Jingxuan
  organization: Shanghai University
– sequence: 3
  givenname: Zhu
  surname: Chen
  fullname: Chen, Zhu
  organization: Shanghai University
– sequence: 4
  givenname: Yichen
  surname: Zhang
  fullname: Zhang, Yichen
  organization: Shanghai Industrial μTechnology Research Institute
– sequence: 5
  givenname: Chang
  orcidid: 0000-0002-9988-930X
  surname: Chen
  fullname: Chen, Chang
  email: chang.chen@sitrigroup.com
  organization: Shanghai Academy of Experimental Medicine
BookMark eNp1kM9q20AQxpeSQO2k0EdY6CUXOSNp_0jHYlq3IRBI27PYlUb2uvKuuyPH-JYH6CHPmCfJOs41l_kY5sc3H9-UnfngkbHPOcxygOJ6HWmmZF19YJMcap0JKeUZm0CpdQaiUh_ZlGgNAHWt8gn7v0CP0YzuAbnpHjCSic4M3OO4D_EvPT8-WUPYcdptMaYtIoVhN7rguRmWIbpxteHojR2Q-MotV5zc0pshoWNIwwdHyI8fAqdtkmS-whFj6A4e-b3ZGJ8O2I7RXLLz3gyEn970gv35_u33_Ed2e7f4Of96m7WFFFVmhdB91WOJZQulFaroLRhjtbSil7pTBoTt2k5pa3OrQQkABZXWypaFVKq8YF9OvtsY_u2QxmYddjGFpqaoQUAlda4TdXWi2hiIIvbNNrqNiYcmh-bYdZO6bo5dJzQ7oXs34OFdrrm5__XKvwB98Imw
Cites_doi 10.1002/jrs.5659
10.1364/OL.36.003124
10.1016/j.sab.2021.106108
10.1016/j.microc.2021.106228
10.1109/OGC.2019.8925036
10.1109/CANDARW53999.2021.00089
10.1002/jrs.5548
10.1366/14-07844
10.1002/jrs.5145
10.1039/D0AN01390K
10.1109/MLBDBI54094.2021.00104
10.1088/1742-6596/1903/1/012050
10.1038/s43586-021-00019-0
10.1002/jrs.4821
10.1007/978-3-319-24574-4_28
10.1364/OE.395569
10.1364/OE.22.012102
10.1007/978-3-030-34980-6_5
10.1364/OE.24.001829
10.1109/SLAAI-ICAI54477.2021.9664686
10.1177/0003702820906222
10.1002/jrs.6025
10.1021/acs.analchem.1c04263
10.1109/CEI52496.2021.9574494
10.1109/JLT.2021.3084471
10.1038/s43586-021-00083-6
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
DOI 10.1002/jrs.6598
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1097-4555
EndPage 1501
ExternalDocumentID 10_1002_jrs_6598
JRS6598
Genre article
GrantInformation_xml – fundername: General Program of National Natural Science Foundation of China
  funderid: 62275147
– fundername: Key Technologies Research and Development Program
  funderid: 2020YFC0847600
– fundername: National Key Scientific Instrument and Equipment Development Projects of China
  funderid: GJJSTD20210006
– fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Rising‐Star Program)
  funderid: 21QB1405700
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
ID FETCH-LOGICAL-c2548-b447f8fe3e3c03b462fb0aab75b4f57d6a04bdcd67bb1b706400608776b325663
IEDL.DBID DR2
ISSN 0377-0486
IngestDate Tue Aug 12 18:15:28 EDT 2025
Sat Oct 25 05:11:47 EDT 2025
Wed Jan 22 16:15:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2548-b447f8fe3e3c03b462fb0aab75b4f57d6a04bdcd67bb1b706400608776b325663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9988-930X
0000-0003-1659-7203
PQID 2904085717
PQPubID 1016368
PageCount 12
ParticipantIDs proquest_journals_2904085717
crossref_primary_10_1002_jrs_6598
wiley_primary_10_1002_jrs_6598_JRS6598
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Journal of Raman spectroscopy
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016; 9855
2019; 50
2017; 48
2022; 94
2020; 145
2021; 166
2011; 36
2021; 1
2014; 22
2015; 9455
2010; 7850
2015; 69
2014; 2
2021; 179
2020; 74
2020; 51
2021
2021; 1903
2021; 39
2020; 28
2019
2017
2016
2015
2022; 1
2016; 47
2016; 24
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Feng Y. (e_1_2_7_7_1) 2010
e_1_2_7_11_1
e_1_2_7_10_1
Gomer N. R. (e_1_2_7_12_1) 2016
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Gomer N. R. (e_1_2_7_13_1) 2015
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Deb S. (e_1_2_7_37_1) 2016
References_xml – volume: 51
  start-page: 2354
  year: 2020
  publication-title: J. Raman Spectrosc.
– start-page: 234
  year: 2015
  end-page: 241
– volume: 47
  start-page: 289
  year: 2016
  publication-title: J. Raman Spectrosc.
– volume: 94
  start-page: 577
  year: 2022
  publication-title: Anal. Chem.
– volume: 145
  start-page: 6607
  year: 2020
  publication-title: Analyst
– volume: 48
  start-page: 1633
  year: 2017
  publication-title: J. Raman Spectrosc.
– start-page: 478
  year: 2021
  end-page: 480
– volume: 166
  year: 2021
  publication-title: Microchem. J.
– volume: 69
  start-page: 525
  year: 2015
  publication-title: Appl. Spectrosc.
– start-page: 1
  year: 2021
  end-page: 6
– volume: 1
  start-page: 87
  year: 2022
  publication-title: Nat. Rev. Meth. Prim.
– volume: 39
  start-page: 5634
  year: 2021
  publication-title: J. Lightwave Technol.
– start-page: 371
  year: 2021
  end-page: 375
– volume: 9855
  start-page: 120
  year: 2016
– start-page: 4681
  year: 2017
  end-page: 4690
– start-page: 57
  year: 2019
  end-page: 62
– start-page: 131
  year: 2016
  end-page: 142
– volume: 179
  year: 2021
  publication-title: Spectrochim. Acta Part B.
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 24
  start-page: 1829
  year: 2016
  publication-title: Opt. Express
– start-page: 2223
  year: 2017
  end-page: 2232
– start-page: 214
  year: 2017
  end-page: 223
– start-page: 1747
  year: 2016
  end-page: 1756
– volume: 74
  start-page: 921
  year: 2020
  publication-title: Appl. Spectrosc.
– volume: 9455
  start-page: 164
  year: 2015
– volume: 36
  start-page: 3124
  year: 2011
  publication-title: Opt. Lett.
– volume: 7850
  start-page: 376
  year: 2010
– volume: 50
  start-page: 1602
  year: 2019
  publication-title: J. Raman Spectrosc.
– volume: 1903
  year: 2021
  publication-title: J. Phys.: Conf. Ser.
– volume: 50
  start-page: 563
  year: 2019
  publication-title: J. Raman Spectrosc.
– start-page: 1125
  year: 2017
  end-page: 1134
– volume: 2
  start-page: 2672
  year: 2014
– start-page: 126
  year: 2019
  end-page: 130
– volume: 1
  start-page: 21
  issue: 1
  year: 2021
  publication-title: Nat. Rev. Meth. Prim.
– volume: 22
  year: 2014
  publication-title: Opt. Express
– start-page: 515
  year: 2021
  end-page: 519
– ident: e_1_2_7_15_1
  doi: 10.1002/jrs.5659
– ident: e_1_2_7_29_1
– ident: e_1_2_7_8_1
  doi: 10.1364/OL.36.003124
– ident: e_1_2_7_5_1
  doi: 10.1016/j.sab.2021.106108
– start-page: 164
  volume-title: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI
  year: 2015
  ident: e_1_2_7_13_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.microc.2021.106228
– start-page: 120
  volume-title: Next‐Generation Spectroscopic Technologies IX
  year: 2016
  ident: e_1_2_7_12_1
– ident: e_1_2_7_18_1
  doi: 10.1109/OGC.2019.8925036
– start-page: 376
  volume-title: Optoelectronic Imaging and Multimedia Technology
  year: 2010
  ident: e_1_2_7_7_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_34_1
  doi: 10.1109/CANDARW53999.2021.00089
– ident: e_1_2_7_33_1
– ident: e_1_2_7_20_1
  doi: 10.1002/jrs.5548
– ident: e_1_2_7_11_1
  doi: 10.1366/14-07844
– ident: e_1_2_7_17_1
  doi: 10.1002/jrs.5145
– ident: e_1_2_7_21_1
  doi: 10.1039/D0AN01390K
– ident: e_1_2_7_36_1
  doi: 10.1109/MLBDBI54094.2021.00104
– ident: e_1_2_7_26_1
  doi: 10.1088/1742-6596/1903/1/012050
– ident: e_1_2_7_4_1
  doi: 10.1038/s43586-021-00019-0
– ident: e_1_2_7_16_1
  doi: 10.1002/jrs.4821
– ident: e_1_2_7_32_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_7_9_1
  doi: 10.1364/OE.395569
– ident: e_1_2_7_22_1
  doi: 10.1364/OE.22.012102
– ident: e_1_2_7_24_1
– ident: e_1_2_7_35_1
  doi: 10.1007/978-3-030-34980-6_5
– ident: e_1_2_7_27_1
– ident: e_1_2_7_6_1
  doi: 10.1364/OE.24.001829
– ident: e_1_2_7_31_1
  doi: 10.1109/SLAAI-ICAI54477.2021.9664686
– ident: e_1_2_7_14_1
  doi: 10.1177/0003702820906222
– ident: e_1_2_7_2_1
  doi: 10.1002/jrs.6025
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.analchem.1c04263
– ident: e_1_2_7_25_1
  doi: 10.1109/CEI52496.2021.9574494
– ident: e_1_2_7_19_1
  doi: 10.1109/JLT.2021.3084471
– ident: e_1_2_7_3_1
  doi: 10.1038/s43586-021-00083-6
– ident: e_1_2_7_23_1
– start-page: 131
  volume-title: International Conference on Computational Intelligence in Information System
  year: 2016
  ident: e_1_2_7_37_1
SSID ssj0009961
Score 2.4130976
Snippet High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1490
SubjectTerms Acetaminophen
Algorithms
Blood levels
deep learning
generative adversarial network
Generative adversarial networks
Image enhancement
image processing
Image reconstruction
Interference
Raman spectra
Raman spectroscopy
spatial heterodyne Raman spectroscopy
Spectrometers
Spectrum analysis
super‐resolution
Training
Title Generative adversarial networks‐based super‐resolution algorithm enables high signal‐to‐noise ratio spatial heterodyne Raman spectra
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6598
https://www.proquest.com/docview/2904085717
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1097-4555
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009961
  issn: 0377-0486
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0377-0486
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-4555
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009961
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iiF58i6urRBBvXftM3KMsinjwsLqw4KFkmtTXbitN96Anf4AHf6O_xEzauioI4qWlkJQ28yWZab_5hpB94FGSqoA74EvmoIvtiEhKY5Cu5yvhSwWW5XvBzgbh-TAa1qxKzIWp9CE-P7jhzLDrNU5wAfpwKhp6X-gOi7qY5-sFzEZT_alylHHjbbG8gHMHVeUa3VnXP2w6ft-Jpu7lVyfV7jKnS-S6eb6KXPLQmZTQSZ5_SDf-7wWWyWLtfNLjCi0rZEZlq2S-19R8WyVzlhCa6DXyWulR42JIBRZt1gKhSrOKNq7fX95wA5RUTx5VYa5M2F6jmIrRTV7clbdjqmxmlqYoikyRKiJGpmmZm0OW32lFLf6oRlq3ufktcnNy-ZQp2hdjkVGbB1qIdTI4PbnqnTl15QYnMQHnkQNhyNMjgwEVJG4AIfNTcIUwwIAwjbhkwg1BJpJxAA84_k10GUoTMgiMD8aCDTKb5ZnaJNSDCDXxBchUhqkHQiUCuia0TlQAZjlpkb3GivFjJdARV1LMfmxGOMYRbpF2Y964nqI69rsuqrtxvMWBtdOv_ePz_iWet_7acJssYFn6ivbSJrNlMVE7xnkpYdfC9AMDLPTN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xEIJLS3moPFpcCXHLks3D3hWnChUtlHJYQOKAFHlih4VCguLsoZz4ARz4jf0l9TibLiAhIS6JItlW4hnb3zifvwHYRBGnmQ6Fh4HiHkFsT8ZKWYN024GWgdLoWL5HvHcaHZzFZxOw05yFqfUh_m-40chw8zUNcNqQ3h6rhl6VpsXjbmcSpiNuwxRCRP2xdpQF8i5dXiiER7pyjfKsH2w3NZ-vRWOA-RSmunVm7yOcN29Y00t-t4YVttK7F-KN7_yEefgwwp_se-0wn2BC5wswu9ukfVuAGccJTc0iPNSS1DQfMkl5m40kb2V5zRw3f-8faQ1UzAxvdWmfbOQ-cmQmry-K8rIa3DDtDmcZRrrIjNgi8toWrQp7yYtLo5lzQWaI2W0bHxA9p1B_cs368kbmzB0FLeUSnO79ONnteaPkDV5qY86Oh1Ekso51Ax2mfogRDzL0pbS-gVEWC8WlH6FKFReIbRT0Q9HnpE7IMbQwjIfLMJUXuf4MrI0xyeJLVJmKsjZKnUrs2ug61SHaGWUFvjVmTG5rjY6kVmMOEtvDCfXwCqw39k1Go9QkQdcngTdBTWw5Q71aPznoH9N99a0FN2C2d_LrMDncP_q5BnOUpb5mwazDVFUO9ReLZSr86nz2Hzmb-O4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1tQf24QAtU3bK0roS4Zcnmw94VJwSsKK1W1RYkDkiRJ3YKLSSrOHtoT_0BPfAb-SV4nA3bIiGhXmJFsq3E82zPJM9vADZRxGmmQ-FhoLhHLrYnY6WsQQa9QMtAaXQs3xE_PImOTuPTFuw0Z2FqfYi7D240M9x6TRNcT1S2PVcN_V6aLo8H_SewGNmC-Hz747l2lHXkXbq8UAiPdOUa5Vk_2G5a_rsXzR3Mv91Ut88Ml-GsecKaXvKjO62wm_66J974n6_wEpZm_ifbrQHzClo6X4Hne03atxV46jihqVmFP7UkNa2HTFLeZiMJrSyvmePm5vc17YGKmelEl_bORu4zIDN5-a0oL6rzK6bd4SzDSBeZEVtEXtqqVWEveXFhNHMQZIaY3bbzc6LnFOpnrtlYXsmcuaOgpVyDk-HB8d6hN0ve4KU25ux7GEUi61sY6DD1Q4x4kKEvpcUGRlksFJd-hCpVXCD2UNAPRZ-TOiHH0LphPHwNC3mR6zfAehiTLL5Elako66HUqcSBja5THaJdUdrwoTFjMqk1OpJajTlI7AgnNMJt6DT2TWaz1CTBwCeBN0FdbDlDPdg-ORp_pfLtYyu-h2df9ofJ54-jT-vwgpLU1ySYDixU5VRvWFemwncOsrfupPhy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks%E2%80%90based+super%E2%80%90resolution+algorithm+enables+high+signal%E2%80%90to%E2%80%90noise+ratio+spatial+heterodyne+Raman+spectra&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Hu%2C+Lilei&rft.au=Shen%2C+Jingxuan&rft.au=Chen%2C+Zhu&rft.au=Zhang%2C+Yichen&rft.date=2023-12-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=54&rft.issue=12&rft.spage=1490&rft.epage=1501&rft_id=info:doi/10.1002%2Fjrs.6598&rft.externalDBID=10.1002%252Fjrs.6598&rft.externalDocID=JRS6598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon