Generative adversarial networks‐based super‐resolution algorithm enables high signal‐to‐noise ratio spatial heterodyne Raman spectra
High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors....
Saved in:
| Published in | Journal of Raman spectroscopy Vol. 54; no. 12; pp. 1490 - 1501 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Wiley Subscription Services, Inc
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0377-0486 1097-4555 |
| DOI | 10.1002/jrs.6598 |
Cover
| Abstract | High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities.
As for point‐of‐care testing, a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm is designed for spatial heterodyne Raman interference patterns. The algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Using a proposed Raman characteristic peak‐focused network training scheme, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. The proposed GAN‐based algorithm can successfully reconstruct low‐resolution interference patterns into high‐resolution ones, achieving a high R‐square value of 96.05%. |
|---|---|
| AbstractList | High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities.
As for point‐of‐care testing, a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm is designed for spatial heterodyne Raman interference patterns. The algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Using a proposed Raman characteristic peak‐focused network training scheme, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. The proposed GAN‐based algorithm can successfully reconstruct low‐resolution interference patterns into high‐resolution ones, achieving a high R‐square value of 96.05%. High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm−1. These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities. High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise ratio. A sought‐after super‐resolution algorithm can enhance Raman interference pattern images, reducing reliance on expensive imaging sensors. This enables miniaturization and portability for point‐of‐care testing. This study proposes a generative adversarial network (GAN)‐based super‐resolution reconstruction algorithm explicitly designed for Raman interference patterns. Employing GAN adversarial training, the algorithm effectively reconstructs interference pattern images at higher resolution, improving Raman spectra signal‐to‐noise ratio. Considering Raman spectra analysis mainly focuses on characteristic peaks, a Raman characteristic peak‐focused network training scheme is used. For instance, acetaminophen is studied with two selected Raman characteristic peaks centered at 388 and 858 cm −1 . These peaks are observed in Fourier transformed Raman spectra from corresponding low‐resolution interference pattern images obtained by down‐sampling high‐resolution ones by twofold and fourfold. The proposed GAN‐based algorithm successfully reconstructs low‐resolution interference patterns into high‐resolution ones, achieving high R ‐square values (96.05% for twofold and 91.1% for fourfold). This innovation holds potential for point‐of‐care applications, like noninvasive blood glucose concentration measurements, enabling cost‐effective, portable Raman spectrometers with improved capabilities. |
| Author | Hu, Lilei Chen, Zhu Chen, Chang Zhang, Yichen Shen, Jingxuan |
| Author_xml | – sequence: 1 givenname: Lilei surname: Hu fullname: Hu, Lilei email: hulilei@shu.edu.cn organization: Shanghai Industrial μTechnology Research Institute – sequence: 2 givenname: Jingxuan orcidid: 0000-0003-1659-7203 surname: Shen fullname: Shen, Jingxuan organization: Shanghai University – sequence: 3 givenname: Zhu surname: Chen fullname: Chen, Zhu organization: Shanghai University – sequence: 4 givenname: Yichen surname: Zhang fullname: Zhang, Yichen organization: Shanghai Industrial μTechnology Research Institute – sequence: 5 givenname: Chang orcidid: 0000-0002-9988-930X surname: Chen fullname: Chen, Chang email: chang.chen@sitrigroup.com organization: Shanghai Academy of Experimental Medicine |
| BookMark | eNp1kM9q20AQxpeSQO2k0EdY6CUXOSNp_0jHYlq3IRBI27PYlUb2uvKuuyPH-JYH6CHPmCfJOs41l_kY5sc3H9-UnfngkbHPOcxygOJ6HWmmZF19YJMcap0JKeUZm0CpdQaiUh_ZlGgNAHWt8gn7v0CP0YzuAbnpHjCSic4M3OO4D_EvPT8-WUPYcdptMaYtIoVhN7rguRmWIbpxteHojR2Q-MotV5zc0pshoWNIwwdHyI8fAqdtkmS-whFj6A4e-b3ZGJ8O2I7RXLLz3gyEn970gv35_u33_Ed2e7f4Of96m7WFFFVmhdB91WOJZQulFaroLRhjtbSil7pTBoTt2k5pa3OrQQkABZXWypaFVKq8YF9OvtsY_u2QxmYddjGFpqaoQUAlda4TdXWi2hiIIvbNNrqNiYcmh-bYdZO6bo5dJzQ7oXs34OFdrrm5__XKvwB98Imw |
| Cites_doi | 10.1002/jrs.5659 10.1364/OL.36.003124 10.1016/j.sab.2021.106108 10.1016/j.microc.2021.106228 10.1109/OGC.2019.8925036 10.1109/CANDARW53999.2021.00089 10.1002/jrs.5548 10.1366/14-07844 10.1002/jrs.5145 10.1039/D0AN01390K 10.1109/MLBDBI54094.2021.00104 10.1088/1742-6596/1903/1/012050 10.1038/s43586-021-00019-0 10.1002/jrs.4821 10.1007/978-3-319-24574-4_28 10.1364/OE.395569 10.1364/OE.22.012102 10.1007/978-3-030-34980-6_5 10.1364/OE.24.001829 10.1109/SLAAI-ICAI54477.2021.9664686 10.1177/0003702820906222 10.1002/jrs.6025 10.1021/acs.analchem.1c04263 10.1109/CEI52496.2021.9574494 10.1109/JLT.2021.3084471 10.1038/s43586-021-00083-6 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 |
| DOI | 10.1002/jrs.6598 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1097-4555 |
| EndPage | 1501 |
| ExternalDocumentID | 10_1002_jrs_6598 JRS6598 |
| Genre | article |
| GrantInformation_xml | – fundername: General Program of National Natural Science Foundation of China funderid: 62275147 – fundername: Key Technologies Research and Development Program funderid: 2020YFC0847600 – fundername: National Key Scientific Instrument and Equipment Development Projects of China funderid: GJJSTD20210006 – fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Rising‐Star Program) funderid: 21QB1405700 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 |
| ID | FETCH-LOGICAL-c2548-b447f8fe3e3c03b462fb0aab75b4f57d6a04bdcd67bb1b706400608776b325663 |
| IEDL.DBID | DR2 |
| ISSN | 0377-0486 |
| IngestDate | Tue Aug 12 18:15:28 EDT 2025 Sat Oct 25 05:11:47 EDT 2025 Wed Jan 22 16:15:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2548-b447f8fe3e3c03b462fb0aab75b4f57d6a04bdcd67bb1b706400608776b325663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9988-930X 0000-0003-1659-7203 |
| PQID | 2904085717 |
| PQPubID | 1016368 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2904085717 crossref_primary_10_1002_jrs_6598 wiley_primary_10_1002_jrs_6598_JRS6598 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Journal of Raman spectroscopy |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2016; 9855 2019; 50 2017; 48 2022; 94 2020; 145 2021; 166 2011; 36 2021; 1 2014; 22 2015; 9455 2010; 7850 2015; 69 2014; 2 2021; 179 2020; 74 2020; 51 2021 2021; 1903 2021; 39 2020; 28 2019 2017 2016 2015 2022; 1 2016; 47 2016; 24 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Feng Y. (e_1_2_7_7_1) 2010 e_1_2_7_11_1 e_1_2_7_10_1 Gomer N. R. (e_1_2_7_12_1) 2016 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Gomer N. R. (e_1_2_7_13_1) 2015 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Deb S. (e_1_2_7_37_1) 2016 |
| References_xml | – volume: 51 start-page: 2354 year: 2020 publication-title: J. Raman Spectrosc. – start-page: 234 year: 2015 end-page: 241 – volume: 47 start-page: 289 year: 2016 publication-title: J. Raman Spectrosc. – volume: 94 start-page: 577 year: 2022 publication-title: Anal. Chem. – volume: 145 start-page: 6607 year: 2020 publication-title: Analyst – volume: 48 start-page: 1633 year: 2017 publication-title: J. Raman Spectrosc. – start-page: 478 year: 2021 end-page: 480 – volume: 166 year: 2021 publication-title: Microchem. J. – volume: 69 start-page: 525 year: 2015 publication-title: Appl. Spectrosc. – start-page: 1 year: 2021 end-page: 6 – volume: 1 start-page: 87 year: 2022 publication-title: Nat. Rev. Meth. Prim. – volume: 39 start-page: 5634 year: 2021 publication-title: J. Lightwave Technol. – start-page: 371 year: 2021 end-page: 375 – volume: 9855 start-page: 120 year: 2016 – start-page: 4681 year: 2017 end-page: 4690 – start-page: 57 year: 2019 end-page: 62 – start-page: 131 year: 2016 end-page: 142 – volume: 179 year: 2021 publication-title: Spectrochim. Acta Part B. – volume: 28 year: 2020 publication-title: Opt. Express – volume: 24 start-page: 1829 year: 2016 publication-title: Opt. Express – start-page: 2223 year: 2017 end-page: 2232 – start-page: 214 year: 2017 end-page: 223 – start-page: 1747 year: 2016 end-page: 1756 – volume: 74 start-page: 921 year: 2020 publication-title: Appl. Spectrosc. – volume: 9455 start-page: 164 year: 2015 – volume: 36 start-page: 3124 year: 2011 publication-title: Opt. Lett. – volume: 7850 start-page: 376 year: 2010 – volume: 50 start-page: 1602 year: 2019 publication-title: J. Raman Spectrosc. – volume: 1903 year: 2021 publication-title: J. Phys.: Conf. Ser. – volume: 50 start-page: 563 year: 2019 publication-title: J. Raman Spectrosc. – start-page: 1125 year: 2017 end-page: 1134 – volume: 2 start-page: 2672 year: 2014 – start-page: 126 year: 2019 end-page: 130 – volume: 1 start-page: 21 issue: 1 year: 2021 publication-title: Nat. Rev. Meth. Prim. – volume: 22 year: 2014 publication-title: Opt. Express – start-page: 515 year: 2021 end-page: 519 – ident: e_1_2_7_15_1 doi: 10.1002/jrs.5659 – ident: e_1_2_7_29_1 – ident: e_1_2_7_8_1 doi: 10.1364/OL.36.003124 – ident: e_1_2_7_5_1 doi: 10.1016/j.sab.2021.106108 – start-page: 164 volume-title: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI year: 2015 ident: e_1_2_7_13_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.microc.2021.106228 – start-page: 120 volume-title: Next‐Generation Spectroscopic Technologies IX year: 2016 ident: e_1_2_7_12_1 – ident: e_1_2_7_18_1 doi: 10.1109/OGC.2019.8925036 – start-page: 376 volume-title: Optoelectronic Imaging and Multimedia Technology year: 2010 ident: e_1_2_7_7_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_34_1 doi: 10.1109/CANDARW53999.2021.00089 – ident: e_1_2_7_33_1 – ident: e_1_2_7_20_1 doi: 10.1002/jrs.5548 – ident: e_1_2_7_11_1 doi: 10.1366/14-07844 – ident: e_1_2_7_17_1 doi: 10.1002/jrs.5145 – ident: e_1_2_7_21_1 doi: 10.1039/D0AN01390K – ident: e_1_2_7_36_1 doi: 10.1109/MLBDBI54094.2021.00104 – ident: e_1_2_7_26_1 doi: 10.1088/1742-6596/1903/1/012050 – ident: e_1_2_7_4_1 doi: 10.1038/s43586-021-00019-0 – ident: e_1_2_7_16_1 doi: 10.1002/jrs.4821 – ident: e_1_2_7_32_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_7_9_1 doi: 10.1364/OE.395569 – ident: e_1_2_7_22_1 doi: 10.1364/OE.22.012102 – ident: e_1_2_7_24_1 – ident: e_1_2_7_35_1 doi: 10.1007/978-3-030-34980-6_5 – ident: e_1_2_7_27_1 – ident: e_1_2_7_6_1 doi: 10.1364/OE.24.001829 – ident: e_1_2_7_31_1 doi: 10.1109/SLAAI-ICAI54477.2021.9664686 – ident: e_1_2_7_14_1 doi: 10.1177/0003702820906222 – ident: e_1_2_7_2_1 doi: 10.1002/jrs.6025 – ident: e_1_2_7_30_1 doi: 10.1021/acs.analchem.1c04263 – ident: e_1_2_7_25_1 doi: 10.1109/CEI52496.2021.9574494 – ident: e_1_2_7_19_1 doi: 10.1109/JLT.2021.3084471 – ident: e_1_2_7_3_1 doi: 10.1038/s43586-021-00083-6 – ident: e_1_2_7_23_1 – start-page: 131 volume-title: International Conference on Computational Intelligence in Information System year: 2016 ident: e_1_2_7_37_1 |
| SSID | ssj0009961 |
| Score | 2.4130976 |
| Snippet | High‐resolution interference pattern images are vital for spatial heterodyne Raman spectroscopy to produce quality Raman spectra with a good signal‐to‐noise... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1490 |
| SubjectTerms | Acetaminophen Algorithms Blood levels deep learning generative adversarial network Generative adversarial networks Image enhancement image processing Image reconstruction Interference Raman spectra Raman spectroscopy spatial heterodyne Raman spectroscopy Spectrometers Spectrum analysis super‐resolution Training |
| Title | Generative adversarial networks‐based super‐resolution algorithm enables high signal‐to‐noise ratio spatial heterodyne Raman spectra |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6598 https://www.proquest.com/docview/2904085717 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1097-4555 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009961 issn: 0377-0486 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0377-0486 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-4555 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009961 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iiF58i6urRBBvXftM3KMsinjwsLqw4KFkmtTXbitN96Anf4AHf6O_xEzauioI4qWlkJQ28yWZab_5hpB94FGSqoA74EvmoIvtiEhKY5Cu5yvhSwWW5XvBzgbh-TAa1qxKzIWp9CE-P7jhzLDrNU5wAfpwKhp6X-gOi7qY5-sFzEZT_alylHHjbbG8gHMHVeUa3VnXP2w6ft-Jpu7lVyfV7jKnS-S6eb6KXPLQmZTQSZ5_SDf-7wWWyWLtfNLjCi0rZEZlq2S-19R8WyVzlhCa6DXyWulR42JIBRZt1gKhSrOKNq7fX95wA5RUTx5VYa5M2F6jmIrRTV7clbdjqmxmlqYoikyRKiJGpmmZm0OW32lFLf6oRlq3ufktcnNy-ZQp2hdjkVGbB1qIdTI4PbnqnTl15QYnMQHnkQNhyNMjgwEVJG4AIfNTcIUwwIAwjbhkwg1BJpJxAA84_k10GUoTMgiMD8aCDTKb5ZnaJNSDCDXxBchUhqkHQiUCuia0TlQAZjlpkb3GivFjJdARV1LMfmxGOMYRbpF2Y964nqI69rsuqrtxvMWBtdOv_ePz_iWet_7acJssYFn6ivbSJrNlMVE7xnkpYdfC9AMDLPTN |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xEIJLS3moPFpcCXHLks3D3hWnChUtlHJYQOKAFHlih4VCguLsoZz4ARz4jf0l9TibLiAhIS6JItlW4hnb3zifvwHYRBGnmQ6Fh4HiHkFsT8ZKWYN024GWgdLoWL5HvHcaHZzFZxOw05yFqfUh_m-40chw8zUNcNqQ3h6rhl6VpsXjbmcSpiNuwxRCRP2xdpQF8i5dXiiER7pyjfKsH2w3NZ-vRWOA-RSmunVm7yOcN29Y00t-t4YVttK7F-KN7_yEefgwwp_se-0wn2BC5wswu9ukfVuAGccJTc0iPNSS1DQfMkl5m40kb2V5zRw3f-8faQ1UzAxvdWmfbOQ-cmQmry-K8rIa3DDtDmcZRrrIjNgi8toWrQp7yYtLo5lzQWaI2W0bHxA9p1B_cs368kbmzB0FLeUSnO79ONnteaPkDV5qY86Oh1Ekso51Ax2mfogRDzL0pbS-gVEWC8WlH6FKFReIbRT0Q9HnpE7IMbQwjIfLMJUXuf4MrI0xyeJLVJmKsjZKnUrs2ug61SHaGWUFvjVmTG5rjY6kVmMOEtvDCfXwCqw39k1Go9QkQdcngTdBTWw5Q71aPznoH9N99a0FN2C2d_LrMDncP_q5BnOUpb5mwazDVFUO9ReLZSr86nz2Hzmb-O4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1tQf24QAtU3bK0roS4Zcnmw94VJwSsKK1W1RYkDkiRJ3YKLSSrOHtoT_0BPfAb-SV4nA3bIiGhXmJFsq3E82zPJM9vADZRxGmmQ-FhoLhHLrYnY6WsQQa9QMtAaXQs3xE_PImOTuPTFuw0Z2FqfYi7D240M9x6TRNcT1S2PVcN_V6aLo8H_SewGNmC-Hz747l2lHXkXbq8UAiPdOUa5Vk_2G5a_rsXzR3Mv91Ut88Ml-GsecKaXvKjO62wm_66J974n6_wEpZm_ifbrQHzClo6X4Hne03atxV46jihqVmFP7UkNa2HTFLeZiMJrSyvmePm5vc17YGKmelEl_bORu4zIDN5-a0oL6rzK6bd4SzDSBeZEVtEXtqqVWEveXFhNHMQZIaY3bbzc6LnFOpnrtlYXsmcuaOgpVyDk-HB8d6hN0ve4KU25ux7GEUi61sY6DD1Q4x4kKEvpcUGRlksFJd-hCpVXCD2UNAPRZ-TOiHH0LphPHwNC3mR6zfAehiTLL5Elako66HUqcSBja5THaJdUdrwoTFjMqk1OpJajTlI7AgnNMJt6DT2TWaz1CTBwCeBN0FdbDlDPdg-ORp_pfLtYyu-h2df9ofJ54-jT-vwgpLU1ySYDixU5VRvWFemwncOsrfupPhy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks%E2%80%90based+super%E2%80%90resolution+algorithm+enables+high+signal%E2%80%90to%E2%80%90noise+ratio+spatial+heterodyne+Raman+spectra&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Hu%2C+Lilei&rft.au=Shen%2C+Jingxuan&rft.au=Chen%2C+Zhu&rft.au=Zhang%2C+Yichen&rft.date=2023-12-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=54&rft.issue=12&rft.spage=1490&rft.epage=1501&rft_id=info:doi/10.1002%2Fjrs.6598&rft.externalDBID=10.1002%252Fjrs.6598&rft.externalDocID=JRS6598 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon |