The r‐hypergeometric distribution: Characterization, mathematical methods, simulations, and applications in sciences and engineering

In this article, we introduce a novel univariate discrete distribution called the r‐hypergeometric model. This distribution has the sampling characteristics with replacement of the binomial distribution and no‐order sampling of the hypergeometric distribution. Mathematical expressions are obtained f...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 46; no. 5; pp. 5208 - 5233
Main Authors Díaz‐Rodríguez, Martín, Leiva, Víctor, Martin‐Barreiro, Carlos, Cabezas, Xavier, Mahdi, Esam
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 30.03.2023
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.8826

Cover

Abstract In this article, we introduce a novel univariate discrete distribution called the r‐hypergeometric model. This distribution has the sampling characteristics with replacement of the binomial distribution and no‐order sampling of the hypergeometric distribution. Mathematical expressions are obtained for computing probabilities, the mode, and moments of the new distribution. Two simulation algorithms are proposed using the acceptance‐rejection and inverse‐transform methods and computational features to generate values of an r‐hypergeometric distributed random variable. Python and R codes are implemented to perform computational experiments. Applications of mathematical methods based on the new distribution in sciences and engineering employing simulated and real‐world data sets are provided. A comparison with existing distributions is also included. In addition to the mathematical results, some findings obtained from our study are related to a better computational performance of the inverse‐transform method. Also, we identify applications of our model that are not covered by the traditional count distributions. In addition, we establish distinct probabilities for the same event under the binomial, hypergeometric, and r‐hypergeometric distributions, with their means also being distinct, but their variances, skewness, and kurtosis converge to the same value.
AbstractList In this article, we introduce a novel univariate discrete distribution called the r‐hypergeometric model. This distribution has the sampling characteristics with replacement of the binomial distribution and no‐order sampling of the hypergeometric distribution. Mathematical expressions are obtained for computing probabilities, the mode, and moments of the new distribution. Two simulation algorithms are proposed using the acceptance‐rejection and inverse‐transform methods and computational features to generate values of an r‐hypergeometric distributed random variable. Python and R codes are implemented to perform computational experiments. Applications of mathematical methods based on the new distribution in sciences and engineering employing simulated and real‐world data sets are provided. A comparison with existing distributions is also included. In addition to the mathematical results, some findings obtained from our study are related to a better computational performance of the inverse‐transform method. Also, we identify applications of our model that are not covered by the traditional count distributions. In addition, we establish distinct probabilities for the same event under the binomial, hypergeometric, and r‐hypergeometric distributions, with their means also being distinct, but their variances, skewness, and kurtosis converge to the same value.
In this article, we introduce a novel univariate discrete distribution called the r‐hypergeometric model. This distribution has the sampling characteristics with replacement of the binomial distribution and no‐order sampling of the hypergeometric distribution. Mathematical expressions are obtained for computing probabilities, the mode, and moments of the new distribution. Two simulation algorithms are proposed using the acceptance‐rejection and inverse‐transform methods and computational features to generate values of an r‐hypergeometric distributed random variable. Python and R codes are implemented to perform computational experiments. Applications of mathematical methods based on the new distribution in sciences and engineering employing simulated and real‐world data sets are provided. A comparison with existing distributions is also included. In addition to the mathematical results, some findings obtained from our study are related to a better computational performance of the inverse‐transform method. Also, we identify applications of our model that are not covered by the traditional count distributions. In addition, we establish distinct probabilities for the same event under the binomial, hypergeometric, and r‐hypergeometric distributions, with their means also being distinct, but their variances, skewness, and kurtosis converge to the same value.
Author Mahdi, Esam
Leiva, Víctor
Díaz‐Rodríguez, Martín
Martin‐Barreiro, Carlos
Cabezas, Xavier
Author_xml – sequence: 1
  givenname: Martín
  orcidid: 0000-0003-4783-0063
  surname: Díaz‐Rodríguez
  fullname: Díaz‐Rodríguez, Martín
  organization: Universidad del Norte
– sequence: 2
  givenname: Víctor
  orcidid: 0000-0003-4755-3270
  surname: Leiva
  fullname: Leiva, Víctor
  email: victorleivasanchez@gmail.com
  organization: School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso
– sequence: 3
  givenname: Carlos
  orcidid: 0000-0002-8797-681X
  surname: Martin‐Barreiro
  fullname: Martin‐Barreiro, Carlos
  organization: Universidad Espíritu Santo
– sequence: 4
  givenname: Xavier
  orcidid: 0000-0003-3128-001X
  surname: Cabezas
  fullname: Cabezas, Xavier
  organization: Escuela Superior Politécnica del Litoral ESPOL
– sequence: 5
  givenname: Esam
  surname: Mahdi
  fullname: Mahdi, Esam
  organization: University of Toronto
BookMark eNp1kL9OwzAQxi1UJEpB4hEssTA0xXYdO2GrKv5JrVjKbDmO07hKnGAnQmViYuYZeRLclJXlPt13v7uTvnMwso3VAFxhNMMIkdu6lrMkIewEjDFK0whTzkZgjDBHESWYnoFz73cIoQRjMgZfm1JD9_P5Xe5b7ba6qXXnjIK58UGzvjONvYPLUjqpOu3Mhzw4U1jLrtShGCUrGHbKJvdT6E3dVwMRGmlzKNu2CsjgQGOhV0Zbpf0w1HZrrA5H7fYCnBay8vryTyfg9eF-s3yKVi-Pz8vFKlIkpixSTCaKY5KonJKUFqigKSIZzqmUhCUsVhklmilEGccFpVlMOOUZQnyepXFezCfg-ni3dc1br30ndk3vbHgpCE9iQkNaNFA3R0q5xnunC9E6U0u3FxiJQ8oipCwOKQc0OqLvptL7fzmxXi8G_hcZp4Lv
Cites_doi 10.2466/pms.1996.83.3f.1216
10.1016/j.trb.2011.09.007
10.1007/BF02613383
10.1007/s00362-021-01260-1
10.1080/0020739930240403
10.1007/s00362-006-0376-x
10.1002/sim.7929
10.1007/BF02480295
10.1016/j.jspi.2010.12.005
10.1109/TR.2015.2499964
10.1002/0471715816
10.3390/math9172058
10.1007/s00477-020-01961-3
10.1007/978-3-642-04898-2_291
10.3906/mat-1906-6
10.1002/mma.5463
10.1080/02664763.2018.1531978
10.1081/QEN-200059865
10.1002/asmb.1944
10.1080/03610926.2019.1682163
10.1002/env.2349
10.1007/s00362-017-0888-6
10.1080/0020739870180316
10.1080/03610919208813021
10.4028/www.scientific.net/AMM.427-429.2549
10.1002/mma.3986
10.3390/s21124094
10.1081/STA-120018555
10.1016/j.jspi.2010.06.029
10.1007/978-3-031-02425-2
10.1016/j.csda.2012.05.007
10.1201/9781315120744
10.3390/s21155198
10.1002/mma.855
10.1016/j.chemolab.2018.03.012
10.3390/sym13060926
10.1016/j.chemolab.2019.04.013
10.3390/s21165352
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.8826
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 5233
ExternalDocumentID 10_1002_mma_8826
MMA8826
Genre article
GrantInformation_xml – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  funderid: 1200525
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2546-c6a8c7128cd4294f0f4902b1d4aa26865cb42e6c04671f44b52747b0073b95df3
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:13:57 EDT 2025
Wed Oct 01 03:42:43 EDT 2025
Wed Jan 22 16:23:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2546-c6a8c7128cd4294f0f4902b1d4aa26865cb42e6c04671f44b52747b0073b95df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3128-001X
0000-0003-4755-3270
0000-0003-4783-0063
0000-0002-8797-681X
PQID 2785244764
PQPubID 1016386
PageCount 26
ParticipantIDs proquest_journals_2785244764
crossref_primary_10_1002_mma_8826
wiley_primary_10_1002_mma_8826_MMA8826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 March 2023
PublicationDateYYYYMMDD 2023-03-30
PublicationDate_xml – month: 03
  year: 2023
  text: 30 March 2023
  day: 30
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2021; 9
1993; 24
2021; 21
2019; 50
2019; 190
2012
2013; 427
2011
2005
2022; 63
1979; 31
2012; 56
1987; 18
2003; 32
1991; 6
2021; 13
2021; 35
2015; 26
2018; 177
1968; 13
2019; 60
2019; 42
2001
2022
2019; 43
2020
2019; 46
2008; 49
2021; 19
1996; 83
2016; 65
1986
2018
2017
2014
2011; 141
2014; 30
1992; 21
2012; 46
2005; 17
2018; 37
2003; 23
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
Rodriguez M (e_1_2_8_30_1) 2021; 19
e_1_2_8_3_1
e_1_2_8_2_1
Wright T (e_1_2_8_6_1) 2012
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_42_1
Olleros J (e_1_2_8_16_1) 1991; 6
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Azorin F (e_1_2_8_25_1) 1986
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_37_1
Dodge HF (e_1_2_8_21_1) 2014
Halcoussis D (e_1_2_8_5_1) 2018
Plachky D (e_1_2_8_17_1) 2003; 23
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 13
  start-page: 170
  year: 1968
  end-page: 190
  article-title: Some properties of the negative hypergeometric distribution and its limit distributions
  publication-title: Metrika
– year: 2011
– volume: 19
  start-page: 399
  year: 2021
  end-page: 420
  article-title: An asymmetric area model‐based approach for small area estimation applied to survey data
  publication-title: REVSTAT: Stat J
– volume: 21
  start-page: 5352
  year: 2021
  article-title: A two‐stage location problem with order solved using a Lagrangian algorithm and stochastic programming for a potential use in COVID‐19 vaccination based on sensor‐related data
  publication-title: Sensors
– year: 2022
  article-title: Products of two series and implications
  publication-title: Math Methods Appl Sci
– volume: 9
  start-page: 2058
  year: 2021
  article-title: A new algorithm for computing disjoint orthogonal components in the parallel factor analysis model with simulations and applications to real‐world data
  publication-title: Mathematics
– volume: 42
  start-page: 5718
  year: 2019
  end-page: 5735
  article-title: Series representations for densities functions of a family of distributions—application to sums of independent random variables
  publication-title: Math Methods Appl Sci
– volume: 13
  start-page: 926
  year: 2021
  article-title: Optimal sample size for the Birnbaum‐Saunders distribution under decision theory with symmetric and asymmetric loss functions
  publication-title: Symmetry
– year: 2005
– volume: 26
  start-page: 463
  year: 2015
  end-page: 476
  article-title: A criterion for environmental assessment using Birnbaum‐Saunders attribute control charts
  publication-title: Environmetrics
– year: 2001
– volume: 63
  start-page: 919
  year: 2022
  end-page: 942
  article-title: Robust beta regression modeling with errors‐in‐variables: A Bayesian approach and numerical applications
  publication-title: Stat Pap
– volume: 21
  start-page: 4094
  year: 2021
  article-title: Disjoint and functional principal component analysis for infected cases and deaths due to COVID‐19 in South American countries with sensor‐related data
  publication-title: Sensors
– volume: 40
  start-page: 255
  year: 2017
  end-page: 273
  article-title: Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions
  publication-title: Math Methods Appl Sci
– year: 2018
– year: 2014
– volume: 65
  start-page: 816
  year: 2016
  end-page: 827
  article-title: A multivariate log‐linear model for Birnbaum‐Saunders distributions
  publication-title: IEEE Trans Reliab
– year: 2012
– volume: 141
  start-page: 597
  year: 2011
  end-page: 601
  article-title: Simple random sampling with over‐replacement
  publication-title: J Stat Plan Infer
– year: 1986
– volume: 24
  start-page: 523
  year: 1993
  end-page: 526
  article-title: Presenting the negative hypergeometric distribution to the introductory statistics courses
  publication-title: Int J Math Educ Sci Technol
– volume: 427
  start-page: 2549
  year: 2013
  end-page: 2553
  article-title: Improved negative binomial approximation for negative hypergeometric distribution
  publication-title: Appl Mech Mater
– volume: 21
  start-page: 5198
  year: 2021
  article-title: Lot‐size models with uncertain demand considering its skewness/kurtosis and stochastic programming applied to hospital pharmacy with sensor‐related COVID‐19 data
  publication-title: Sensors
– volume: 141
  start-page: 2175
  year: 2011
  end-page: 2190
  article-title: On some mixture models based on the Birnbaum‐Saunders distribution and associated inference
  publication-title: J Stat Plan Infer
– volume: 35
  start-page: 1969
  year: 2021
  end-page: 1984
  article-title: A new principal component analysis by particle swarm optimization with an environmental application for data science
  publication-title: Stoch Env Res Risk A
– volume: 30
  start-page: 115
  year: 2014
  end-page: 131
  article-title: Diagnostics in Birnbaum‐Saunders accelerated life models with an application to fatigue data
  publication-title: Appl Stoch Model Bus Ind
– volume: 46
  start-page: 1021
  year: 2019
  end-page: 1042
  article-title: Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data
  publication-title: J Appl Stat
– volume: 190
  start-page: 55
  year: 2019
  end-page: 68
  article-title: On a partial least squares regression model for asymmetric data with a chemical application in mining
  publication-title: Chemom Intell Lab Syst
– volume: 43
  start-page: 2337
  year: 2019
  end-page: 2353
  article-title: An approach to negative hypergeometric distribution by generating function for special numbers and polynomials
  publication-title: Turk J Math
– volume: 46
  start-page: 253
  year: 2012
  end-page: 272
  article-title: A latent variable representation of count data models to accommodate spatial and temporal dependence: Application to predicting crash frequency at intersections
  publication-title: Transp Res B
– volume: 177
  start-page: 114
  year: 2018
  end-page: 128
  article-title: Birnbaum‐Saunders spatial regression models: diagnostics and application to chemical data
  publication-title: Chemom Intell Lab Syst
– volume: 50
  start-page: 3106
  year: 2019
  end-page: 3122
  article-title: On uniform‐negative binomial distribution including Gauss hypergeometric function and its application in count regression modeling
  publication-title: Commun Stat: Theory Methods
– volume: 56
  start-page: 3887
  year: 2012
  end-page: 3897
  article-title: Shape and change point analyses of the Birnbaum‐Saunders‐t hazard rate and associated estimation
  publication-title: Comput Stat Data Anal
– volume: 31
  start-page: 373
  year: 1979
  end-page: 390
  article-title: Generalized hypergeometric, digamma and trigamma distributions
  publication-title: Ann Inst Stat Math
– volume: 37
  start-page: 4421
  year: 2018
  end-page: 4440
  article-title: Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data
  publication-title: Stat Med
– volume: 17
  start-page: 399
  year: 2005
  end-page: 404
  article-title: Average run length and the OC curve of sampling plans
  publication-title: Qual Eng
– year: 2020
– volume: 60
  start-page: 1605
  year: 2019
  end-page: 1629
  article-title: Birnbaum‐Saunders autoregressive conditional duration models applied to high‐frequency financial data
  publication-title: Stat Pap
– volume: 49
  start-page: 133
  year: 2008
  end-page: 137
  article-title: On inverse sampling without replacement
  publication-title: Stat Pap
– volume: 6
  start-page: 35
  year: 1991
  end-page: 43
  article-title: The hypergeometric distribution as a Poisson binomial
  publication-title: TEST
– volume: 18
  start-page: 453
  year: 1987
  end-page: 459
  article-title: On the negative hypergeometric distribution
  publication-title: Int J Math Educ Sci Technol
– volume: 83
  start-page: 1216
  year: 1996
  end-page: 1218
  article-title: Exact confidence limits for population proportions based on the negative hypergeometric probability distribution
  publication-title: Percept Mot Skills
– year: 2017
– volume: 21
  start-page: 301
  year: 1992
  end-page: 332
  article-title: The negative hypergeometric distribution and estimation by moments
  publication-title: Commun Stat: Simul Comput
– volume: 23
  start-page: 1
  year: 2003
  end-page: 6
  article-title: Relationships between the negative binomial and negative hypergeometric distributions, with applications to testing and estimation
  publication-title: Am J Math Manag Sci
– volume: 32
  start-page: 625
  year: 2003
  end-page: 641
  article-title: Influence diagnostics for multivariate elliptic regression linear models
  publication-title: Commun Stat: Theory Methods
– ident: e_1_2_8_12_1
  doi: 10.2466/pms.1996.83.3f.1216
– ident: e_1_2_8_36_1
  doi: 10.1016/j.trb.2011.09.007
– ident: e_1_2_8_8_1
  doi: 10.1007/BF02613383
– ident: e_1_2_8_32_1
  doi: 10.1007/s00362-021-01260-1
– volume-title: Exact Confidence Bounds When Sampling From Small Finite Universes: An Easy Reference Based on the Hypergeometric Distribution
  year: 2012
  ident: e_1_2_8_6_1
– ident: e_1_2_8_15_1
  doi: 10.1080/0020739930240403
– ident: e_1_2_8_13_1
  doi: 10.1007/s00362-006-0376-x
– ident: e_1_2_8_31_1
  doi: 10.1002/sim.7929
– ident: e_1_2_8_9_1
  doi: 10.1007/BF02480295
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jspi.2010.12.005
– volume-title: Sample Size Illustrations, Confidence Intervals, and Margins of Error: Hypergeometric Distribution Tables for Attorneys an Experts: 99 Percent Confidence Level
  year: 2018
  ident: e_1_2_8_5_1
– volume-title: Sample Inspection Tables: Single and Double Sampling
  year: 2014
  ident: e_1_2_8_21_1
– ident: e_1_2_8_41_1
  doi: 10.1109/TR.2015.2499964
– ident: e_1_2_8_2_1
  doi: 10.1002/0471715816
– ident: e_1_2_8_45_1
  doi: 10.3390/math9172058
– ident: e_1_2_8_43_1
  doi: 10.1007/s00477-020-01961-3
– ident: e_1_2_8_26_1
  doi: 10.1007/978-3-642-04898-2_291
– volume: 19
  start-page: 399
  year: 2021
  ident: e_1_2_8_30_1
  article-title: An asymmetric area model‐based approach for small area estimation applied to survey data
  publication-title: REVSTAT: Stat J
– ident: e_1_2_8_20_1
  doi: 10.3906/mat-1906-6
– ident: e_1_2_8_3_1
  doi: 10.1002/mma.5463
– ident: e_1_2_8_4_1
  doi: 10.1080/02664763.2018.1531978
– ident: e_1_2_8_22_1
  doi: 10.1081/QEN-200059865
– volume: 6
  start-page: 35
  year: 1991
  ident: e_1_2_8_16_1
  article-title: The hypergeometric distribution as a Poisson binomial
  publication-title: TEST
– ident: e_1_2_8_38_1
  doi: 10.1002/asmb.1944
– ident: e_1_2_8_19_1
  doi: 10.1080/03610926.2019.1682163
– ident: e_1_2_8_27_1
  doi: 10.1002/env.2349
– ident: e_1_2_8_39_1
  doi: 10.1007/s00362-017-0888-6
– ident: e_1_2_8_10_1
  doi: 10.1080/0020739870180316
– ident: e_1_2_8_24_1
– volume: 23
  start-page: 1
  year: 2003
  ident: e_1_2_8_17_1
  article-title: Relationships between the negative binomial and negative hypergeometric distributions, with applications to testing and estimation
  publication-title: Am J Math Manag Sci
– volume-title: Methods and Application of Sampling
  year: 1986
  ident: e_1_2_8_25_1
– ident: e_1_2_8_11_1
  doi: 10.1080/03610919208813021
– ident: e_1_2_8_18_1
  doi: 10.4028/www.scientific.net/AMM.427-429.2549
– ident: e_1_2_8_7_1
  doi: 10.1002/mma.3986
– ident: e_1_2_8_44_1
  doi: 10.3390/s21124094
– ident: e_1_2_8_42_1
  doi: 10.1081/STA-120018555
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jspi.2010.06.029
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-031-02425-2
– ident: e_1_2_8_34_1
  doi: 10.1016/j.csda.2012.05.007
– ident: e_1_2_8_23_1
  doi: 10.1201/9781315120744
– ident: e_1_2_8_28_1
  doi: 10.3390/s21155198
– ident: e_1_2_8_46_1
  doi: 10.1002/mma.855
– ident: e_1_2_8_37_1
  doi: 10.1016/j.chemolab.2018.03.012
– ident: e_1_2_8_35_1
  doi: 10.3390/sym13060926
– ident: e_1_2_8_40_1
  doi: 10.1016/j.chemolab.2019.04.013
– ident: e_1_2_8_29_1
  doi: 10.3390/s21165352
SSID ssj0008112
Score 2.3121603
Snippet In this article, we introduce a novel univariate discrete distribution called the r‐hypergeometric model. This distribution has the sampling characteristics...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 5208
SubjectTerms Algorithms
applied sciences
binomial
Binomial distribution
f‐binomial and hypergeometric distributions
Kurtosis
Mathematical analysis
no‐order sampling
python and R computer languages
random numbers
Random variables
Sampling
sampling with replacement
Simulation
Title The r‐hypergeometric distribution: Characterization, mathematical methods, simulations, and applications in sciences and engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.8826
https://www.proquest.com/docview/2785244764
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: AMVHM
  dateStart: 20120715
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0170-4214
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EL3rwLa4vIogoWG3TNNv1toiyCPUgKoKHkklSFWmV7Xrx5Mmzv9FfYtKmuyoI4qmENGWayXS-aTLfAGxpxpUKVcfT6DOP0Yx7iLHvxZJxKjshBlXWe3LGe5fs9Dq6dqcqbS5MzQ8x_OFmLaP6XlsDF1gejEhD81wYLVPLth2EvIqmzkfMUXFQbXRadhgjQcAa3lmfHjQDv3uiEbz8ClIrL3MyAzeNfPXhkof95wHuy5cf1I3_e4FZmHbgk3Tr1TIHY7qYhxkHRIkz83IeppIhmatpzTUdZMeRVO8uwJtZX6T_8fp-ZwLZ_q1-zG1pLkmUJeJ1NbQOydGQDrrO9twj-fDJRpC6fHW5R8r73JURMw1RKPJ1X53cF6RsRLCdesShuAiXJ8cXRz3P1XTwpGXe9yQXsWwbpyiV8YQs8zPW8SkGiglBecwjiYxqLk3Y3g4yxjCyYTPaDUXsRCoLl2C8eCz0MpA4xjBiGGqBnEXSR-RC-KFUBpQoM64Fm41-06eauiOtSZppauY-tXPfgrVG8akz3jKl7TgyqKfNWQu2Kw3-Oj5Nkq69rvz1xlWYtAXrq6xGfw3GB_1nvW5gzQA3YKKbXPWSjWohfwJ65fj8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagHH6vi-owgomDXNk3TVk8iyvqoB1HwIJTmURVpV7brxZMnz_5Gf4lJX7sKgngqIU2ZZjKdb5LONwCbklAhbOEbkpnEIDimBmOeaXicUMx9m1l51ntwSTs35OzWuR2BgyoXpuCHqDfctGXk32tt4HpDem_AGpokkVIzpqMwRqgKUzQiuhpwR3lWftSp-WGUDBapmGdNvFeN_O6LBgBzGKbmfuZkGu4qCYvfS57aL33W5q8_yBv_-QozMFXiT3RYLJhZGJFpE6ZLLIpKS8-aMBnUfK6qNVt1oO2Sp3pnDt7VEkO9z7ePBxXL9u5lN9HVuTgSmou3LKO1j45qRugi4XMXJfWTlSBFBetsF2WPSVlJTDWiVKDho3X0mKKsEkF3ygGN4jzcnBxfH3WMsqyDwTX5vsFp5HFX-UUulDMksRkT38TMEiSKMPWowxnBknIVubtWTAhzdOTM9Jki8x0R2wvQSLupXATkecx2CLNlxChxuMkYjSLT5kLhEqHGtWCjUnD4XLB3hAVPMw7V3Id67luwUmk-LO03C7HrOQr4uJS0YCtX4a_jwyA41Nelv964DuOd6-AivDi9PF-GCV2_Pk9yNFeg0e-9yFWFcvpsLV_NXysm-4E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOhBXR-4PiOIKNjdNk2zqZ5kdfG1IqLgQSjNo7pIq2zXiydPnv2N_hKTPnZVEMRTCWnKNJPpfNNkvgHYUIRK6UrfUtwmFsERtThntsUEoVj4LneyrPf2OT26Jic33s0Q7JW5MDk_RP-Hm7GM7HttDFw9yag-YA2N41CrGdNhGCWez8x5voPLAXcUc7KtTsMPo2VwSMk8a-N6OfK7LxoAzK8wNfMzrSm4LSXMj5c81J57vCZefpA3_vMVpmGywJ9oP18wFRhSyQxMFVgUFZaezsBEu8_nqluVsgNtFTzV27PwppcY6n68vt_rWLZ7px5jU51LIGm4eIsyWruo2WeEzhM-d1Dcf7IWJK9gne6gtBMXlcR0I0wk-rq1jjoJSksRTKca0CjOwXXr8Kp5ZBVlHSxhyPctQUMmGtovCqmdIYnsiPg25o4kYYgpo57gBCsqdOTecCJCuGciZ272FLnvycidh5HkMVELgBjjrke4q0JOiSdszmkY2q6QGpdIPa4K66WCg6ecvSPIeZpxoOc-MHNfheVS80Fhv2mAG8zTwKdBSRU2MxX-Oj5ot_fNdfGvN67B2MVBKzg7Pj9dgnFTvj7LcbSXYaTXfVYrGuT0-Gq2mD8B2l77BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+r%E2%80%90hypergeometric+distribution%3A+Characterization%2C+mathematical+methods%2C+simulations%2C+and+applications+in+sciences+and+engineering&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=D%C3%ADaz%E2%80%90Rodr%C3%ADguez%2C+Mart%C3%ADn&rft.au=Leiva%2C+V%C3%ADctor&rft.au=Martin%E2%80%90Barreiro%2C+Carlos&rft.au=Cabezas%2C+Xavier&rft.date=2023-03-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=5&rft.spage=5208&rft.epage=5233&rft_id=info:doi/10.1002%2Fmma.8826&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_8826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon