Neural Network‐Based Adaptive Finite‐Time Command‐Filter Control for Nonlinear Systems With Input Delay and Input Saturation
ABSTRACT This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage i...
Saved in:
| Published in | International journal of adaptive control and signal processing Vol. 39; no. 1; pp. 231 - 243 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2025
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0890-6327 1099-1115 |
| DOI | 10.1002/acs.3936 |
Cover
| Abstract | ABSTRACT
This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage input delay. To mitigate the issue of “explosion of complexity,” the command filter method is applied. By leveraging command filter technology and backstepping technique, an adaptive finite‐time control scheme is developed using NN approximation. The proposed control scheme demonstrates that the closed‐loop signals achieve semi‐global practical finite‐time stable (SGPFS), ensuring that the tracking error converges within a finite time to a small region around the origin. The effectiveness of the proposed scheme is validated through two simulation examples.
This study addresses adaptive finite‐time control for nonstrict‐feedback nonlinear systems with input delay and saturation. Neural networks are employed to approximate unknown functions, while Padé approximation effectively handles input delay. The command filter method mitigates the “explosion of complexity.” By integrating command filtering with the backstepping technique, an adaptive control scheme is developed. The proposed approach ensures semi‐global practical finite‐time stability (SGPFS), with tracking errors converging to a small region near the origin. Its effectiveness is validated through two simulation examples. |
|---|---|
| AbstractList | ABSTRACT
This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage input delay. To mitigate the issue of “explosion of complexity,” the command filter method is applied. By leveraging command filter technology and backstepping technique, an adaptive finite‐time control scheme is developed using NN approximation. The proposed control scheme demonstrates that the closed‐loop signals achieve semi‐global practical finite‐time stable (SGPFS), ensuring that the tracking error converges within a finite time to a small region around the origin. The effectiveness of the proposed scheme is validated through two simulation examples.
This study addresses adaptive finite‐time control for nonstrict‐feedback nonlinear systems with input delay and saturation. Neural networks are employed to approximate unknown functions, while Padé approximation effectively handles input delay. The command filter method mitigates the “explosion of complexity.” By integrating command filtering with the backstepping technique, an adaptive control scheme is developed. The proposed approach ensures semi‐global practical finite‐time stability (SGPFS), with tracking errors converging to a small region near the origin. Its effectiveness is validated through two simulation examples. This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage input delay. To mitigate the issue of “explosion of complexity,” the command filter method is applied. By leveraging command filter technology and backstepping technique, an adaptive finite‐time control scheme is developed using NN approximation. The proposed control scheme demonstrates that the closed‐loop signals achieve semi‐global practical finite‐time stable (SGPFS), ensuring that the tracking error converges within a finite time to a small region around the origin. The effectiveness of the proposed scheme is validated through two simulation examples. |
| Author | Kharrat, Mohamed |
| Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0009-0007-0867-9598 surname: Kharrat fullname: Kharrat, Mohamed email: mkharrat@ju.edu.sa organization: College of Science, Jouf University |
| BookMark | eNp1kEFOwzAQRS1UJFpA4giW2LAJ2LGT2MtSKFRCZVEQy8gkE2FI7GI7oOwQJ-CMnARDu2Uzo_nzZr70J2hkrAGEjig5pYSkZ6ryp0yyfAeNKZEyoZRmIzQmQpIkZ2mxhybePxMSd5SN0ecSeqdavITwbt3L98fXufJQ42mt1kG_AZ5rowNE_U53gGe265Sp4zjXbQAXBROcbXFjHV5a02oDyuHV4AN0Hj_o8IQXZt0HfAGtGnC83c4rFaJx0NYcoN1GtR4Ot30f3c8v72bXyc3t1WI2vUmqNON5rAXPeSVFWou6qnNOK6IaJhiDokqBMyaF4I-QNwx4IWSWNbyW6lEoqaCQBdtHx5u_a2dfe_ChfLa9M9GyZDSjeSE4p5E62VCVs947aMq1051yQ0lJ-ZtwGRMufxOOaLJB33ULw79cOZ2t_vgfb-eCOg |
| Cites_doi | 10.1109/TNNLS.2022.3213566 10.1002/rnc.5717 10.1177/01423312221086063 10.1016/j.ins.2021.01.026 10.1109/TCYB.2021.3063139 10.1002/acs.3819 10.1016/j.fss.2019.06.014 10.1109/TFUZZ.2020.3003499 10.1109/TAC.2021.3089626 10.1109/TFUZZ.2020.2989265 10.1007/s11071-020-05693-5 10.1002/acs.3287 10.1002/acs.3036 10.1007/s11071-018-4167-4 10.1016/j.jfranklin.2019.07.021 10.1016/j.isatra.2020.08.038 10.1109/TNNLS.2020.3047945 10.1109/TFUZZ.2023.3289795 10.1109/TCYB.2020.3034146 10.1109/TCYB.2019.2902868 10.1109/TFUZZ.2020.2967295 10.1109/TCYB.2023.3249154 10.1002/rnc.4887 10.1007/s12555-021-0221-y 10.1007/s11071-024-09749-8 10.1109/TCSII.2020.2966298 10.1177/01423312221110437 10.1016/j.neunet.2021.05.014 10.1007/s11071-020-05536-3 10.1007/s40815-023-01527-9 10.1109/TNNLS.2021.3107600 10.1109/TSMC.2021.3051352 10.3934/math.2024668 10.1109/TCYB.2018.2799683 10.1016/j.ins.2020.06.061 10.1016/j.amc.2023.127992 10.1002/rnc.5510 10.1007/s11071-022-07731-w 10.1016/j.ins.2019.09.043 10.1016/j.fss.2015.11.015 10.1109/TNNLS.2022.3178366 10.1109/TFUZZ.2020.2973950 10.1016/j.amc.2020.125756 10.1109/TCYB.2020.3000920 10.1007/s40815-019-00749-0 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/acs.3936 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1115 |
| EndPage | 243 |
| ExternalDocumentID | 10_1002_acs_3936 ACS3936 |
| Genre | researchArticle |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY AIQQE CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2546-c27464c982d8dcd641c0af3833e7c2e4339884be6f3e478955f4d9ab8a9ae7973 |
| IEDL.DBID | DR2 |
| ISSN | 0890-6327 |
| IngestDate | Tue Jul 22 18:41:44 EDT 2025 Wed Oct 01 04:20:02 EDT 2025 Wed Jun 11 08:25:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2546-c27464c982d8dcd641c0af3833e7c2e4339884be6f3e478955f4d9ab8a9ae7973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-0867-9598 |
| PQID | 3151678441 |
| PQPubID | 996374 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3151678441 crossref_primary_10_1002_acs_3936 wiley_primary_10_1002_acs_3936_ACS3936 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
| PublicationTitle | International journal of adaptive control and signal processing |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2023; 53 2023; 31 2022; 110 2021; 67 2019; 50 2021; 544 2019; 33 2021; 108 2020; 100 2021; 142 2022; 20 2016; 302 2022; 44 2021; 561 2021; 52 2024; 38 2018; 49 2021; 35 2023; 25 2021; 31 2021; 34 2021; 33 2023; 45 2023; 450 2020; 52 2020; 30 2020; 51 2019; 21 2024; 9 2020; 392 2020; 28 2018; 92 2022; 35 2020; 357 2020; 514 2021; 393 2024; 112 2020; 67 2020; 29 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 33 start-page: 2965 issue: 7 year: 2021 end-page: 2979 article-title: Neural‐Network‐Based Distributed Asynchronous Event‐Triggered Consensus Tracking of a Class of Uncertain Nonlinear Multi‐Agent Systems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 92 start-page: 1845 year: 2018 end-page: 1856 article-title: Adaptive NN Finite‐Time Tracking Control of Output Constrained Nonlinear System With Input Saturation publication-title: Nonlinear Dynamics – volume: 52 start-page: 2479 issue: 4 year: 2021 end-page: 2490 article-title: Composite Adaptive Fuzzy Finite‐Time Quantized Control for Full State‐Constrained Nonlinear Systems and Its Application publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 51 start-page: 5279 issue: 11 year: 2020 end-page: 5290 article-title: Adaptive Fuzzy Output‐Constrained Control for Nonlinear Stochastic Systems With Input Delay and Unknown Control Coefficients publication-title: IEEE Transactions on Cybernetics – volume: 52 start-page: 1280 issue: 2 year: 2020 end-page: 1291 article-title: Adaptive Fuzzy Control for Nontriangular Stochastic High‐Order Nonlinear Systems Subject to Asymmetric Output Constraints publication-title: IEEE Transactions on Cybernetics – volume: 29 start-page: 1273 issue: 5 year: 2020 end-page: 1283 article-title: Event‐Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Systems With Unmeasured States and Unknown Backlash‐Like Hysteresis publication-title: IEEE Transactions on Fuzzy Systems – volume: 21 start-page: 2575 year: 2019 end-page: 2587 article-title: Finite‐Time Adaptive Fuzzy Command Filtered Backstepping Control for a Class of Nonlinear Systems publication-title: International Journal of Fuzzy Systems – volume: 67 start-page: 2973 issue: 6 year: 2021 end-page: 2980 article-title: Command Filter Adaptive Asymptotic Tracking of Uncertain Nonlinear Systems With Time‐Varying Parameters and Disturbances publication-title: IEEE Transactions on Automatic Control – volume: 544 start-page: 97 year: 2021 end-page: 116 article-title: Prescribed Performance Based Model‐Free Adaptive Sliding Mode Constrained Control for a Class of Nonlinear Systems publication-title: Information Sciences – volume: 450 year: 2023 article-title: Adaptive Fuzzy Finite‐Time Tracking Control of Nonlinear Systems With Unmodeled Dynamics publication-title: Applied Mathematics and Computation – volume: 100 start-page: 3485 issue: 4 year: 2020 end-page: 3496 article-title: Finite‐Time Adaptive Switched Gain Control for Non‐strict Feedback Nonlinear Systems via Nonlinear Command Filter publication-title: Nonlinear Dynamics – volume: 28 start-page: 3161 issue: 12 year: 2020 end-page: 3170 article-title: Command Filter‐Based Finite‐Time Adaptive Fuzzy Control for Uncertain Nonlinear Systems With Prescribed Performance publication-title: IEEE Transactions on Fuzzy Systems – volume: 30 start-page: 2593 issue: 7 year: 2020 end-page: 2610 article-title: Adaptive Neural Network Tracking Control for Uncertain Nonlinear Systems With Input Delay and Saturation publication-title: International Journal of Robust and Nonlinear Control – volume: 357 start-page: 11518 issue: 16 year: 2020 end-page: 11544 article-title: Observed‐Based Adaptive Finite‐Time Tracking Control for a Class of Nonstrict‐Feedback Nonlinear Systems With Input Saturation publication-title: Journal of the Franklin Institute – volume: 110 start-page: 2401 issue: 3 year: 2022 end-page: 2414 article-title: Fixed‐Time Adaptive Fuzzy Command Filtering Control for a Class of Uncertain Nonlinear Systems With Input Saturation and Dead Zone publication-title: Nonlinear Dynamics – volume: 9 start-page: 13689 issue: 6 year: 2024 end-page: 13711 article-title: Neural Networks‐Based Adaptive Fault‐Tolerant Control for a Class of Nonstrict‐Feedback Nonlinear Systems With Actuator Faults and Input Delay publication-title: AIMS Mathematics – volume: 38 start-page: 2570 issue: 7 year: 2024 end-page: 2587 article-title: Fuzzy Finite‐Time Adaptive Control of Switched Nonlinear Systems With Input Nonlinearities publication-title: International Journal of Adaptive Control and Signal Processing – volume: 100 start-page: 493 issue: 1 year: 2020 end-page: 507 article-title: Finite‐Time Adaptive Fuzzy Command Filtered Control for Nonlinear Systems With Indifferentiable Non‐affine Functions publication-title: Nonlinear Dynamics – volume: 31 start-page: 7764 issue: 16 year: 2021 end-page: 7784 article-title: Robust Adaptive Control of Uncertain Nonlinear Systems With Unmodeled Dynamics Using Command Filter publication-title: International Journal of Robust and Nonlinear Control – volume: 29 start-page: 1942 issue: 7 year: 2020 end-page: 1952 article-title: Disturbance‐Observer‐Based Adaptive Fuzzy Control for Strict‐Feedback Switched Nonlinear Systems With Input Delay publication-title: IEEE Transactions on Fuzzy Systems – volume: 302 start-page: 52 year: 2016 end-page: 64 article-title: Adaptive Control for a Class of Uncertain Strict‐Feedback Nonlinear Systems Based on a Generalized Fuzzy Hyperbolic Model publication-title: Fuzzy Sets and Systems – volume: 52 start-page: 10420 issue: 10 year: 2021 end-page: 10429 article-title: Adaptive Fuzzy Finite‐Time Control for Nonstrict‐Feedback Nonlinear Systems publication-title: IEEE Transactions on Cybernetics – volume: 50 start-page: 1786 issue: 5 year: 2019 end-page: 1797 article-title: Adaptive Fuzzy Finite‐Time Control of Nonlinear Systems With Actuator Faults publication-title: IEEE Transactions on Cybernetics – volume: 49 start-page: 1249 issue: 4 year: 2018 end-page: 1258 article-title: Neural Networks‐Based Adaptive Control for Nonlinear State Constrained Systems With Input Delay publication-title: IEEE Transactions on Cybernetics – volume: 35 start-page: 1409 issue: 1 year: 2022 end-page: 1414 article-title: Adaptive Neural Finite‐Time Control of Non‐Strict Feedback Nonlinear Systems With Non‐symmetrical Dead‐Zone publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 393 year: 2021 article-title: Finite‐Time Adaptive Neural Control for Nonstrict‐Feedback Stochastic Nonlinear Systems With Input Delay and Output Constraints publication-title: Applied Mathematics and Computation – volume: 561 start-page: 152 year: 2021 end-page: 167 article-title: Disturbance‐Observer‐Based Finite‐Time Adaptive Fuzzy Control for Non‐triangular Switched Nonlinear Systems With Input Saturation publication-title: Information Sciences – volume: 34 start-page: 2732 issue: 6 year: 2021 end-page: 2741 article-title: Adaptive Neural Network Control for a Class of Nonlinear Systems With Function Constraints on States publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 31 start-page: 4764 issue: 10 year: 2021 end-page: 4781 article-title: Adaptive Finite‐Time Event‐Triggered Control for Nonlinear Systems With Quantized Input Signals publication-title: International Journal of Robust and Nonlinear Control – volume: 35 start-page: 3278 issue: 3 year: 2022 end-page: 3290 article-title: Hamiltonian‐Driven Adaptive Dynamic Programming With Efficient Experience Replay publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 33 start-page: 1344 issue: 9 year: 2019 end-page: 1358 article-title: Adaptive Control for Switched Uncertain Nonlinear Systems With Time‐Varying Output Constraint and Input Saturation publication-title: International Journal of Adaptive Control and Signal Processing – volume: 142 start-page: 288 year: 2021 end-page: 302 article-title: Event‐Triggered Adaptive Neural Networks Control for Fractional‐Order Nonstrict‐Feedback Nonlinear Systems With Unmodeled Dynamics and Input Saturation publication-title: Neural Networks – volume: 53 start-page: 7406 issue: 11 year: 2023 end-page: 7416 article-title: Adaptive Neural Network Event‐Triggered Output‐Feedback Containment Control for Nonlinear MASs With Input Quantization publication-title: IEEE Transactions on Cybernetics – volume: 108 start-page: 10 year: 2021 end-page: 17 article-title: Indirect Adaptive Robust Control of Nonstrict Feedback Nonlinear Systems by a Fuzzy Approximation Strategy publication-title: ISA Transactions – volume: 112 start-page: 1 issue: 15 year: 2024 end-page: 18 article-title: Adaptive Fault‐Tolerant Control for a Class of Nonstrict‐Feedback Nonlinear Systems With Unmodeled Dynamics and Dead‐Zone Output Using Multi‐Dimensional Taylor Networks publication-title: Nonlinear Dynamics – volume: 20 start-page: 1428 issue: 5 year: 2022 end-page: 1438 article-title: Observer‐Based Finite‐Time Adaptive Prescribed Performance Control for Nonlinear Systems With Input Delay publication-title: International Journal of Control, Automation and Systems – volume: 45 start-page: 374 issue: 2 year: 2023 end-page: 390 article-title: Finite Time Adaptive Neural Tracking Control for Non‐strict‐Feedback Uncertain Non‐linear Systems With Disturbance and Input Delay publication-title: Transactions of the Institute of Measurement and Control – volume: 392 start-page: 77 year: 2020 end-page: 92 article-title: Disturbance‐Observer‐Based Adaptive Fuzzy Control for Nonlinear State Constrained Systems With Input Saturation and Input Delay publication-title: Fuzzy Sets and Systems – volume: 514 start-page: 605 year: 2020 end-page: 616 article-title: Adaptive Neural Control for Non‐strict‐Feedback Nonlinear Systems With Input Delay publication-title: Information Sciences – volume: 67 start-page: 3152 issue: 12 year: 2020 end-page: 3156 article-title: Adaptive Tracking Control for Switched Uncertain Nonlinear Systems With Input Saturation and Unmodeled Dynamics publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 44 start-page: 2443 issue: 12 year: 2022 end-page: 2453 article-title: Fixed‐Time Consensus Disturbance Rejection for High‐Order Nonlinear Multi‐Agent Systems With Input Saturation publication-title: Transactions of the Institute of Measurement and Control – volume: 31 start-page: 4529 issue: 12 year: 2023 end-page: 4541 article-title: Event‐Trigger‐Based Finite‐Time Adaptive Fuzzy Control for Stochastic Nonlinear Systems With Unmeasured States publication-title: IEEE Transactions on Fuzzy Systems – volume: 25 start-page: 2488 issue: 6 year: 2023 end-page: 2500 article-title: Output‐Feedback Adaptive Fuzzy Control for Nonlinear Systems Under Time‐Varying State Constraints publication-title: International Journal of Fuzzy Systems – volume: 29 start-page: 2553 issue: 9 year: 2020 end-page: 2564 article-title: Command Filter Based Adaptive Fuzzy Finite‐Time Control for a Class of Uncertain Nonlinear Systems With Hysteresis publication-title: IEEE Transactions on Fuzzy Systems – volume: 35 start-page: 1754 issue: 9 year: 2021 end-page: 1767 article-title: Finite‐Time Adaptive Control for Nonlinear Systems With Uncertain Parameters Based on the Command Filters publication-title: International Journal of Adaptive Control and Signal Processing – ident: e_1_2_9_28_1 doi: 10.1109/TNNLS.2022.3213566 – ident: e_1_2_9_29_1 doi: 10.1002/rnc.5717 – ident: e_1_2_9_42_1 doi: 10.1177/01423312221086063 – ident: e_1_2_9_44_1 doi: 10.1016/j.ins.2021.01.026 – ident: e_1_2_9_13_1 doi: 10.1109/TCYB.2021.3063139 – ident: e_1_2_9_14_1 doi: 10.1002/acs.3819 – ident: e_1_2_9_39_1 doi: 10.1016/j.fss.2019.06.014 – ident: e_1_2_9_25_1 doi: 10.1109/TFUZZ.2020.3003499 – ident: e_1_2_9_24_1 doi: 10.1109/TAC.2021.3089626 – ident: e_1_2_9_33_1 doi: 10.1109/TFUZZ.2020.2989265 – ident: e_1_2_9_20_1 doi: 10.1007/s11071-020-05693-5 – ident: e_1_2_9_23_1 doi: 10.1002/acs.3287 – ident: e_1_2_9_37_1 doi: 10.1002/acs.3036 – ident: e_1_2_9_38_1 doi: 10.1007/s11071-018-4167-4 – ident: e_1_2_9_43_1 doi: 10.1016/j.jfranklin.2019.07.021 – ident: e_1_2_9_2_1 doi: 10.1016/j.isatra.2020.08.038 – ident: e_1_2_9_10_1 doi: 10.1109/TNNLS.2020.3047945 – ident: e_1_2_9_17_1 doi: 10.1109/TFUZZ.2023.3289795 – ident: e_1_2_9_35_1 doi: 10.1109/TCYB.2020.3034146 – ident: e_1_2_9_15_1 doi: 10.1109/TCYB.2019.2902868 – ident: e_1_2_9_26_1 doi: 10.1109/TFUZZ.2020.2967295 – ident: e_1_2_9_7_1 doi: 10.1109/TCYB.2023.3249154 – ident: e_1_2_9_31_1 doi: 10.1002/rnc.4887 – ident: e_1_2_9_36_1 doi: 10.1007/s12555-021-0221-y – ident: e_1_2_9_8_1 doi: 10.1007/s11071-024-09749-8 – ident: e_1_2_9_40_1 doi: 10.1109/TCSII.2020.2966298 – ident: e_1_2_9_46_1 doi: 10.1177/01423312221110437 – ident: e_1_2_9_41_1 doi: 10.1016/j.neunet.2021.05.014 – ident: e_1_2_9_27_1 doi: 10.1007/s11071-020-05536-3 – ident: e_1_2_9_5_1 doi: 10.1007/s40815-023-01527-9 – ident: e_1_2_9_9_1 doi: 10.1109/TNNLS.2021.3107600 – ident: e_1_2_9_19_1 doi: 10.1109/TSMC.2021.3051352 – ident: e_1_2_9_32_1 doi: 10.3934/math.2024668 – ident: e_1_2_9_34_1 doi: 10.1109/TCYB.2018.2799683 – ident: e_1_2_9_4_1 doi: 10.1016/j.ins.2020.06.061 – ident: e_1_2_9_16_1 doi: 10.1016/j.amc.2023.127992 – ident: e_1_2_9_18_1 doi: 10.1002/rnc.5510 – ident: e_1_2_9_22_1 doi: 10.1007/s11071-022-07731-w – ident: e_1_2_9_6_1 doi: 10.1016/j.ins.2019.09.043 – ident: e_1_2_9_3_1 doi: 10.1016/j.fss.2015.11.015 – ident: e_1_2_9_45_1 doi: 10.1109/TNNLS.2022.3178366 – ident: e_1_2_9_12_1 doi: 10.1109/TFUZZ.2020.2973950 – ident: e_1_2_9_30_1 doi: 10.1016/j.amc.2020.125756 – ident: e_1_2_9_11_1 doi: 10.1109/TCYB.2020.3000920 – ident: e_1_2_9_21_1 doi: 10.1007/s40815-019-00749-0 |
| SSID | ssj0009913 |
| Score | 2.3993058 |
| Snippet | ABSTRACT
This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and... This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 231 |
| SubjectTerms | Adaptive control Adaptive systems Control systems Delay Feedback control systems finite‐time stability input delay Neural networks Nonlinear control Nonlinear systems Pade approximation pendulum system saturation Simulation Tracking errors |
| Title | Neural Network‐Based Adaptive Finite‐Time Command‐Filter Control for Nonlinear Systems With Input Delay and Input Saturation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3936 https://www.proquest.com/docview/3151678441 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0890-6327 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009913 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xfVFBPFW7aZpkx7X1WUV3IMPFDyUvIqLUpe1e9CT-Av8jf4SZ_pwV0EQLy1pE8h7vsnMfCFkl8vIhb4OPSFt5HHJYk-F2veYMCC8rXbM4tHAWS_qXvHTm_Cm8qrEWJiSH-LrwA1XRrFf4wJX-ulgTBqqzBMo7AGybTeDqNCmzsfMUQB7CuOyjEE7CpioeWd9dlAX_C6JxvByEqQWUqYzT27r-pXOJff7o1zvm5cf1I3_a8ACmavAJ22Vs2WRTLlsicxOUBIukzdk64A8vdI9_OP1_RDknKUtqwa4M9JOH1EqfMfgEYrxJSqzkOz00e5O26XrOwUsTHtlLdWQVrzo9Lqf39GTbDDK6ZF7UM8UylbpC2QYLabJCrnqHF-2u151T4NnkE0fnoJH3MSSWWmNjXjT-CoF1TdwwjDHgyCWkmsXpYHjQsZhmHIbKy2RGVzEIlgl09lj5tYIDYXxncJIa19xl0bKxFr7aEp0Lg2brkF26jFLBiUdR1ISL7ME-jPB_myQzXowk2pBwg9ANiCXAfw1yF4xKr-WT1rtC3yv_zXjBplheCtwcTCzSabz4chtAVTJ9XYxKT8BXCjpnQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Remh7gNIWdXkUV6p6CwTHiR1xWpaultceCggOSJFfUVet0hVkD3BC_AJ-I7-EmTy6tBJSxSWRE1uyPbbnm7HnM8AXoRIfhyYOpHJJIBRPAx2bMODSovJ2xnNHroHDYTI4EXtn8dkMbLWxMDU_xB-HG82Mar2mCU4O6Y0pa6i2l2ixR8kLeCkSNFMIEX2fckch8Km2l1WK9lHEZcs8G_KNtuTfumgKMB_D1ErP9OfhvK1hfbzk5_qkNOv2-h_yxmc24S3MNfiTdesBswAzvngHbx6xEr6HWyLswDzD-oT4_c3dNqo6x7pOj2lxZP0RAVX8TvEjjEJMdOEw2R_R1jvr1affGcJhNqyrqS9YQ43OTkflD7ZbjCcl2_G_9BXDsk36iEhGq5HyAU763457g6C5qiGwRKiPT4kysKniTjnrErFpQ52j9Rt5abkXUZQqJYxP8sgLqdI4zoVLtVFEDi5TGS3CbPG78B-BxdKGXlOwdaiFzxNtU2NC2k30Po83fQc-t0LLxjUjR1ZzL_MM-zOj_uzASivNrJmT-APBDapmxH8d-FqJ5cnyWbd3RO-l_824Bq8Gx4cH2cHucH8ZXnO6JLjy06zAbHkx8auIXErzqRqhD_Pr7b4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiF64I26UMBIiFva1LFjW5yWXaKWxwpRKnpAivyKWLUKq5I9tCfEL-A38kuYyYMtSEiISyIntmR7bM_n8cxngCdC51GmTiZKhzwRmpvESpcmXHlU3sFFHsg08GaW7x2Kl0fyaA2eDbEwHT_EL4MbzYx2vaYJHheh2lmxhlr_BXfsWX4JLgtpNPnzTd-tuKMQ-LTHy9rg_ijjamCeTfnOUPJ3XbQCmBdhaqtniuvwcahh515yvL1s3LY__4O88T-bcAOu9fiTjbsBcxPWYn0LNi6wEt6Gb0TYgXlmnYf4j6_fn6OqC2wc7IIWR1bMCajid4ofYRRiYuuAyWJOR-9s0nm_M4TDbNZV056ynhqdfZg3n9h-vVg2bBpP7BnDsn36gEhG25FyBw6LF-8ne0l_VUPiiVAfn0rkwhvNgw4-5GLXp7bC3W8WledRZJnRWriYV1kUShspKxGMdZrIwZVR2V1Yrz_XcROYVD6NloKtUytilVtvnEvpNDHGSu7GETwehFYuOkaOsuNe5iX2Z0n9OYKtQZplPyfxB4IbVM2I_0bwtBXLX8uX48kBve_9a8ZHcOXttChf789e3YernO4Ibs00W7DenC7jAwQujXvYDtCftnPtQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network%E2%80%90Based+Adaptive+Finite%E2%80%90Time+Command%E2%80%90Filter+Control+for+Nonlinear+Systems+With+Input+Delay+and+Input+Saturation&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Kharrat%2C+Mohamed&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=39&rft.issue=1&rft.spage=231&rft.epage=243&rft_id=info:doi/10.1002%2Facs.3936&rft.externalDBID=10.1002%252Facs.3936&rft.externalDocID=ACS3936 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |