Neural Network‐Based Adaptive Finite‐Time Command‐Filter Control for Nonlinear Systems With Input Delay and Input Saturation

ABSTRACT This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of adaptive control and signal processing Vol. 39; no. 1; pp. 231 - 243
Main Author Kharrat, Mohamed
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0890-6327
1099-1115
DOI10.1002/acs.3936

Cover

Abstract ABSTRACT This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage input delay. To mitigate the issue of “explosion of complexity,” the command filter method is applied. By leveraging command filter technology and backstepping technique, an adaptive finite‐time control scheme is developed using NN approximation. The proposed control scheme demonstrates that the closed‐loop signals achieve semi‐global practical finite‐time stable (SGPFS), ensuring that the tracking error converges within a finite time to a small region around the origin. The effectiveness of the proposed scheme is validated through two simulation examples. This study addresses adaptive finite‐time control for nonstrict‐feedback nonlinear systems with input delay and saturation. Neural networks are employed to approximate unknown functions, while Padé approximation effectively handles input delay. The command filter method mitigates the “explosion of complexity.” By integrating command filtering with the backstepping technique, an adaptive control scheme is developed. The proposed approach ensures semi‐global practical finite‐time stability (SGPFS), with tracking errors converging to a small region near the origin. Its effectiveness is validated through two simulation examples.
AbstractList ABSTRACT This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage input delay. To mitigate the issue of “explosion of complexity,” the command filter method is applied. By leveraging command filter technology and backstepping technique, an adaptive finite‐time control scheme is developed using NN approximation. The proposed control scheme demonstrates that the closed‐loop signals achieve semi‐global practical finite‐time stable (SGPFS), ensuring that the tracking error converges within a finite time to a small region around the origin. The effectiveness of the proposed scheme is validated through two simulation examples. This study addresses adaptive finite‐time control for nonstrict‐feedback nonlinear systems with input delay and saturation. Neural networks are employed to approximate unknown functions, while Padé approximation effectively handles input delay. The command filter method mitigates the “explosion of complexity.” By integrating command filtering with the backstepping technique, an adaptive control scheme is developed. The proposed approach ensures semi‐global practical finite‐time stability (SGPFS), with tracking errors converging to a small region near the origin. Its effectiveness is validated through two simulation examples.
This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation. Neural networks (NNs) are utilized to handle unknown nonlinear functions, and Padé approximation is employed to effectively manage input delay. To mitigate the issue of “explosion of complexity,” the command filter method is applied. By leveraging command filter technology and backstepping technique, an adaptive finite‐time control scheme is developed using NN approximation. The proposed control scheme demonstrates that the closed‐loop signals achieve semi‐global practical finite‐time stable (SGPFS), ensuring that the tracking error converges within a finite time to a small region around the origin. The effectiveness of the proposed scheme is validated through two simulation examples.
Author Kharrat, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0009-0007-0867-9598
  surname: Kharrat
  fullname: Kharrat, Mohamed
  email: mkharrat@ju.edu.sa
  organization: College of Science, Jouf University
BookMark eNp1kEFOwzAQRS1UJFpA4giW2LAJ2LGT2MtSKFRCZVEQy8gkE2FI7GI7oOwQJ-CMnARDu2Uzo_nzZr70J2hkrAGEjig5pYSkZ6ryp0yyfAeNKZEyoZRmIzQmQpIkZ2mxhybePxMSd5SN0ecSeqdavITwbt3L98fXufJQ42mt1kG_AZ5rowNE_U53gGe265Sp4zjXbQAXBROcbXFjHV5a02oDyuHV4AN0Hj_o8IQXZt0HfAGtGnC83c4rFaJx0NYcoN1GtR4Ot30f3c8v72bXyc3t1WI2vUmqNON5rAXPeSVFWou6qnNOK6IaJhiDokqBMyaF4I-QNwx4IWSWNbyW6lEoqaCQBdtHx5u_a2dfe_ChfLa9M9GyZDSjeSE4p5E62VCVs947aMq1051yQ0lJ-ZtwGRMufxOOaLJB33ULw79cOZ2t_vgfb-eCOg
Cites_doi 10.1109/TNNLS.2022.3213566
10.1002/rnc.5717
10.1177/01423312221086063
10.1016/j.ins.2021.01.026
10.1109/TCYB.2021.3063139
10.1002/acs.3819
10.1016/j.fss.2019.06.014
10.1109/TFUZZ.2020.3003499
10.1109/TAC.2021.3089626
10.1109/TFUZZ.2020.2989265
10.1007/s11071-020-05693-5
10.1002/acs.3287
10.1002/acs.3036
10.1007/s11071-018-4167-4
10.1016/j.jfranklin.2019.07.021
10.1016/j.isatra.2020.08.038
10.1109/TNNLS.2020.3047945
10.1109/TFUZZ.2023.3289795
10.1109/TCYB.2020.3034146
10.1109/TCYB.2019.2902868
10.1109/TFUZZ.2020.2967295
10.1109/TCYB.2023.3249154
10.1002/rnc.4887
10.1007/s12555-021-0221-y
10.1007/s11071-024-09749-8
10.1109/TCSII.2020.2966298
10.1177/01423312221110437
10.1016/j.neunet.2021.05.014
10.1007/s11071-020-05536-3
10.1007/s40815-023-01527-9
10.1109/TNNLS.2021.3107600
10.1109/TSMC.2021.3051352
10.3934/math.2024668
10.1109/TCYB.2018.2799683
10.1016/j.ins.2020.06.061
10.1016/j.amc.2023.127992
10.1002/rnc.5510
10.1007/s11071-022-07731-w
10.1016/j.ins.2019.09.043
10.1016/j.fss.2015.11.015
10.1109/TNNLS.2022.3178366
10.1109/TFUZZ.2020.2973950
10.1016/j.amc.2020.125756
10.1109/TCYB.2020.3000920
10.1007/s40815-019-00749-0
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.3936
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1115
EndPage 243
ExternalDocumentID 10_1002_acs_3936
ACS3936
Genre researchArticle
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2546-c27464c982d8dcd641c0af3833e7c2e4339884be6f3e478955f4d9ab8a9ae7973
IEDL.DBID DR2
ISSN 0890-6327
IngestDate Tue Jul 22 18:41:44 EDT 2025
Wed Oct 01 04:20:02 EDT 2025
Wed Jun 11 08:25:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2546-c27464c982d8dcd641c0af3833e7c2e4339884be6f3e478955f4d9ab8a9ae7973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-0867-9598
PQID 3151678441
PQPubID 996374
PageCount 13
ParticipantIDs proquest_journals_3151678441
crossref_primary_10_1002_acs_3936
wiley_primary_10_1002_acs_3936_ACS3936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 53
2023; 31
2022; 110
2021; 67
2019; 50
2021; 544
2019; 33
2021; 108
2020; 100
2021; 142
2022; 20
2016; 302
2022; 44
2021; 561
2021; 52
2024; 38
2018; 49
2021; 35
2023; 25
2021; 31
2021; 34
2021; 33
2023; 45
2023; 450
2020; 52
2020; 30
2020; 51
2019; 21
2024; 9
2020; 392
2020; 28
2018; 92
2022; 35
2020; 357
2020; 514
2021; 393
2024; 112
2020; 67
2020; 29
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 33
  start-page: 2965
  issue: 7
  year: 2021
  end-page: 2979
  article-title: Neural‐Network‐Based Distributed Asynchronous Event‐Triggered Consensus Tracking of a Class of Uncertain Nonlinear Multi‐Agent Systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 92
  start-page: 1845
  year: 2018
  end-page: 1856
  article-title: Adaptive NN Finite‐Time Tracking Control of Output Constrained Nonlinear System With Input Saturation
  publication-title: Nonlinear Dynamics
– volume: 52
  start-page: 2479
  issue: 4
  year: 2021
  end-page: 2490
  article-title: Composite Adaptive Fuzzy Finite‐Time Quantized Control for Full State‐Constrained Nonlinear Systems and Its Application
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 51
  start-page: 5279
  issue: 11
  year: 2020
  end-page: 5290
  article-title: Adaptive Fuzzy Output‐Constrained Control for Nonlinear Stochastic Systems With Input Delay and Unknown Control Coefficients
  publication-title: IEEE Transactions on Cybernetics
– volume: 52
  start-page: 1280
  issue: 2
  year: 2020
  end-page: 1291
  article-title: Adaptive Fuzzy Control for Nontriangular Stochastic High‐Order Nonlinear Systems Subject to Asymmetric Output Constraints
  publication-title: IEEE Transactions on Cybernetics
– volume: 29
  start-page: 1273
  issue: 5
  year: 2020
  end-page: 1283
  article-title: Event‐Triggered Adaptive Fuzzy Control for Stochastic Nonlinear Systems With Unmeasured States and Unknown Backlash‐Like Hysteresis
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 21
  start-page: 2575
  year: 2019
  end-page: 2587
  article-title: Finite‐Time Adaptive Fuzzy Command Filtered Backstepping Control for a Class of Nonlinear Systems
  publication-title: International Journal of Fuzzy Systems
– volume: 67
  start-page: 2973
  issue: 6
  year: 2021
  end-page: 2980
  article-title: Command Filter Adaptive Asymptotic Tracking of Uncertain Nonlinear Systems With Time‐Varying Parameters and Disturbances
  publication-title: IEEE Transactions on Automatic Control
– volume: 544
  start-page: 97
  year: 2021
  end-page: 116
  article-title: Prescribed Performance Based Model‐Free Adaptive Sliding Mode Constrained Control for a Class of Nonlinear Systems
  publication-title: Information Sciences
– volume: 450
  year: 2023
  article-title: Adaptive Fuzzy Finite‐Time Tracking Control of Nonlinear Systems With Unmodeled Dynamics
  publication-title: Applied Mathematics and Computation
– volume: 100
  start-page: 3485
  issue: 4
  year: 2020
  end-page: 3496
  article-title: Finite‐Time Adaptive Switched Gain Control for Non‐strict Feedback Nonlinear Systems via Nonlinear Command Filter
  publication-title: Nonlinear Dynamics
– volume: 28
  start-page: 3161
  issue: 12
  year: 2020
  end-page: 3170
  article-title: Command Filter‐Based Finite‐Time Adaptive Fuzzy Control for Uncertain Nonlinear Systems With Prescribed Performance
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 30
  start-page: 2593
  issue: 7
  year: 2020
  end-page: 2610
  article-title: Adaptive Neural Network Tracking Control for Uncertain Nonlinear Systems With Input Delay and Saturation
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 357
  start-page: 11518
  issue: 16
  year: 2020
  end-page: 11544
  article-title: Observed‐Based Adaptive Finite‐Time Tracking Control for a Class of Nonstrict‐Feedback Nonlinear Systems With Input Saturation
  publication-title: Journal of the Franklin Institute
– volume: 110
  start-page: 2401
  issue: 3
  year: 2022
  end-page: 2414
  article-title: Fixed‐Time Adaptive Fuzzy Command Filtering Control for a Class of Uncertain Nonlinear Systems With Input Saturation and Dead Zone
  publication-title: Nonlinear Dynamics
– volume: 9
  start-page: 13689
  issue: 6
  year: 2024
  end-page: 13711
  article-title: Neural Networks‐Based Adaptive Fault‐Tolerant Control for a Class of Nonstrict‐Feedback Nonlinear Systems With Actuator Faults and Input Delay
  publication-title: AIMS Mathematics
– volume: 38
  start-page: 2570
  issue: 7
  year: 2024
  end-page: 2587
  article-title: Fuzzy Finite‐Time Adaptive Control of Switched Nonlinear Systems With Input Nonlinearities
  publication-title: International Journal of Adaptive Control and Signal Processing
– volume: 100
  start-page: 493
  issue: 1
  year: 2020
  end-page: 507
  article-title: Finite‐Time Adaptive Fuzzy Command Filtered Control for Nonlinear Systems With Indifferentiable Non‐affine Functions
  publication-title: Nonlinear Dynamics
– volume: 31
  start-page: 7764
  issue: 16
  year: 2021
  end-page: 7784
  article-title: Robust Adaptive Control of Uncertain Nonlinear Systems With Unmodeled Dynamics Using Command Filter
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 29
  start-page: 1942
  issue: 7
  year: 2020
  end-page: 1952
  article-title: Disturbance‐Observer‐Based Adaptive Fuzzy Control for Strict‐Feedback Switched Nonlinear Systems With Input Delay
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 302
  start-page: 52
  year: 2016
  end-page: 64
  article-title: Adaptive Control for a Class of Uncertain Strict‐Feedback Nonlinear Systems Based on a Generalized Fuzzy Hyperbolic Model
  publication-title: Fuzzy Sets and Systems
– volume: 52
  start-page: 10420
  issue: 10
  year: 2021
  end-page: 10429
  article-title: Adaptive Fuzzy Finite‐Time Control for Nonstrict‐Feedback Nonlinear Systems
  publication-title: IEEE Transactions on Cybernetics
– volume: 50
  start-page: 1786
  issue: 5
  year: 2019
  end-page: 1797
  article-title: Adaptive Fuzzy Finite‐Time Control of Nonlinear Systems With Actuator Faults
  publication-title: IEEE Transactions on Cybernetics
– volume: 49
  start-page: 1249
  issue: 4
  year: 2018
  end-page: 1258
  article-title: Neural Networks‐Based Adaptive Control for Nonlinear State Constrained Systems With Input Delay
  publication-title: IEEE Transactions on Cybernetics
– volume: 35
  start-page: 1409
  issue: 1
  year: 2022
  end-page: 1414
  article-title: Adaptive Neural Finite‐Time Control of Non‐Strict Feedback Nonlinear Systems With Non‐symmetrical Dead‐Zone
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 393
  year: 2021
  article-title: Finite‐Time Adaptive Neural Control for Nonstrict‐Feedback Stochastic Nonlinear Systems With Input Delay and Output Constraints
  publication-title: Applied Mathematics and Computation
– volume: 561
  start-page: 152
  year: 2021
  end-page: 167
  article-title: Disturbance‐Observer‐Based Finite‐Time Adaptive Fuzzy Control for Non‐triangular Switched Nonlinear Systems With Input Saturation
  publication-title: Information Sciences
– volume: 34
  start-page: 2732
  issue: 6
  year: 2021
  end-page: 2741
  article-title: Adaptive Neural Network Control for a Class of Nonlinear Systems With Function Constraints on States
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 31
  start-page: 4764
  issue: 10
  year: 2021
  end-page: 4781
  article-title: Adaptive Finite‐Time Event‐Triggered Control for Nonlinear Systems With Quantized Input Signals
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 35
  start-page: 3278
  issue: 3
  year: 2022
  end-page: 3290
  article-title: Hamiltonian‐Driven Adaptive Dynamic Programming With Efficient Experience Replay
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 33
  start-page: 1344
  issue: 9
  year: 2019
  end-page: 1358
  article-title: Adaptive Control for Switched Uncertain Nonlinear Systems With Time‐Varying Output Constraint and Input Saturation
  publication-title: International Journal of Adaptive Control and Signal Processing
– volume: 142
  start-page: 288
  year: 2021
  end-page: 302
  article-title: Event‐Triggered Adaptive Neural Networks Control for Fractional‐Order Nonstrict‐Feedback Nonlinear Systems With Unmodeled Dynamics and Input Saturation
  publication-title: Neural Networks
– volume: 53
  start-page: 7406
  issue: 11
  year: 2023
  end-page: 7416
  article-title: Adaptive Neural Network Event‐Triggered Output‐Feedback Containment Control for Nonlinear MASs With Input Quantization
  publication-title: IEEE Transactions on Cybernetics
– volume: 108
  start-page: 10
  year: 2021
  end-page: 17
  article-title: Indirect Adaptive Robust Control of Nonstrict Feedback Nonlinear Systems by a Fuzzy Approximation Strategy
  publication-title: ISA Transactions
– volume: 112
  start-page: 1
  issue: 15
  year: 2024
  end-page: 18
  article-title: Adaptive Fault‐Tolerant Control for a Class of Nonstrict‐Feedback Nonlinear Systems With Unmodeled Dynamics and Dead‐Zone Output Using Multi‐Dimensional Taylor Networks
  publication-title: Nonlinear Dynamics
– volume: 20
  start-page: 1428
  issue: 5
  year: 2022
  end-page: 1438
  article-title: Observer‐Based Finite‐Time Adaptive Prescribed Performance Control for Nonlinear Systems With Input Delay
  publication-title: International Journal of Control, Automation and Systems
– volume: 45
  start-page: 374
  issue: 2
  year: 2023
  end-page: 390
  article-title: Finite Time Adaptive Neural Tracking Control for Non‐strict‐Feedback Uncertain Non‐linear Systems With Disturbance and Input Delay
  publication-title: Transactions of the Institute of Measurement and Control
– volume: 392
  start-page: 77
  year: 2020
  end-page: 92
  article-title: Disturbance‐Observer‐Based Adaptive Fuzzy Control for Nonlinear State Constrained Systems With Input Saturation and Input Delay
  publication-title: Fuzzy Sets and Systems
– volume: 514
  start-page: 605
  year: 2020
  end-page: 616
  article-title: Adaptive Neural Control for Non‐strict‐Feedback Nonlinear Systems With Input Delay
  publication-title: Information Sciences
– volume: 67
  start-page: 3152
  issue: 12
  year: 2020
  end-page: 3156
  article-title: Adaptive Tracking Control for Switched Uncertain Nonlinear Systems With Input Saturation and Unmodeled Dynamics
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 44
  start-page: 2443
  issue: 12
  year: 2022
  end-page: 2453
  article-title: Fixed‐Time Consensus Disturbance Rejection for High‐Order Nonlinear Multi‐Agent Systems With Input Saturation
  publication-title: Transactions of the Institute of Measurement and Control
– volume: 31
  start-page: 4529
  issue: 12
  year: 2023
  end-page: 4541
  article-title: Event‐Trigger‐Based Finite‐Time Adaptive Fuzzy Control for Stochastic Nonlinear Systems With Unmeasured States
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 25
  start-page: 2488
  issue: 6
  year: 2023
  end-page: 2500
  article-title: Output‐Feedback Adaptive Fuzzy Control for Nonlinear Systems Under Time‐Varying State Constraints
  publication-title: International Journal of Fuzzy Systems
– volume: 29
  start-page: 2553
  issue: 9
  year: 2020
  end-page: 2564
  article-title: Command Filter Based Adaptive Fuzzy Finite‐Time Control for a Class of Uncertain Nonlinear Systems With Hysteresis
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 35
  start-page: 1754
  issue: 9
  year: 2021
  end-page: 1767
  article-title: Finite‐Time Adaptive Control for Nonlinear Systems With Uncertain Parameters Based on the Command Filters
  publication-title: International Journal of Adaptive Control and Signal Processing
– ident: e_1_2_9_28_1
  doi: 10.1109/TNNLS.2022.3213566
– ident: e_1_2_9_29_1
  doi: 10.1002/rnc.5717
– ident: e_1_2_9_42_1
  doi: 10.1177/01423312221086063
– ident: e_1_2_9_44_1
  doi: 10.1016/j.ins.2021.01.026
– ident: e_1_2_9_13_1
  doi: 10.1109/TCYB.2021.3063139
– ident: e_1_2_9_14_1
  doi: 10.1002/acs.3819
– ident: e_1_2_9_39_1
  doi: 10.1016/j.fss.2019.06.014
– ident: e_1_2_9_25_1
  doi: 10.1109/TFUZZ.2020.3003499
– ident: e_1_2_9_24_1
  doi: 10.1109/TAC.2021.3089626
– ident: e_1_2_9_33_1
  doi: 10.1109/TFUZZ.2020.2989265
– ident: e_1_2_9_20_1
  doi: 10.1007/s11071-020-05693-5
– ident: e_1_2_9_23_1
  doi: 10.1002/acs.3287
– ident: e_1_2_9_37_1
  doi: 10.1002/acs.3036
– ident: e_1_2_9_38_1
  doi: 10.1007/s11071-018-4167-4
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jfranklin.2019.07.021
– ident: e_1_2_9_2_1
  doi: 10.1016/j.isatra.2020.08.038
– ident: e_1_2_9_10_1
  doi: 10.1109/TNNLS.2020.3047945
– ident: e_1_2_9_17_1
  doi: 10.1109/TFUZZ.2023.3289795
– ident: e_1_2_9_35_1
  doi: 10.1109/TCYB.2020.3034146
– ident: e_1_2_9_15_1
  doi: 10.1109/TCYB.2019.2902868
– ident: e_1_2_9_26_1
  doi: 10.1109/TFUZZ.2020.2967295
– ident: e_1_2_9_7_1
  doi: 10.1109/TCYB.2023.3249154
– ident: e_1_2_9_31_1
  doi: 10.1002/rnc.4887
– ident: e_1_2_9_36_1
  doi: 10.1007/s12555-021-0221-y
– ident: e_1_2_9_8_1
  doi: 10.1007/s11071-024-09749-8
– ident: e_1_2_9_40_1
  doi: 10.1109/TCSII.2020.2966298
– ident: e_1_2_9_46_1
  doi: 10.1177/01423312221110437
– ident: e_1_2_9_41_1
  doi: 10.1016/j.neunet.2021.05.014
– ident: e_1_2_9_27_1
  doi: 10.1007/s11071-020-05536-3
– ident: e_1_2_9_5_1
  doi: 10.1007/s40815-023-01527-9
– ident: e_1_2_9_9_1
  doi: 10.1109/TNNLS.2021.3107600
– ident: e_1_2_9_19_1
  doi: 10.1109/TSMC.2021.3051352
– ident: e_1_2_9_32_1
  doi: 10.3934/math.2024668
– ident: e_1_2_9_34_1
  doi: 10.1109/TCYB.2018.2799683
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ins.2020.06.061
– ident: e_1_2_9_16_1
  doi: 10.1016/j.amc.2023.127992
– ident: e_1_2_9_18_1
  doi: 10.1002/rnc.5510
– ident: e_1_2_9_22_1
  doi: 10.1007/s11071-022-07731-w
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ins.2019.09.043
– ident: e_1_2_9_3_1
  doi: 10.1016/j.fss.2015.11.015
– ident: e_1_2_9_45_1
  doi: 10.1109/TNNLS.2022.3178366
– ident: e_1_2_9_12_1
  doi: 10.1109/TFUZZ.2020.2973950
– ident: e_1_2_9_30_1
  doi: 10.1016/j.amc.2020.125756
– ident: e_1_2_9_11_1
  doi: 10.1109/TCYB.2020.3000920
– ident: e_1_2_9_21_1
  doi: 10.1007/s40815-019-00749-0
SSID ssj0009913
Score 2.3993058
Snippet ABSTRACT This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and...
This study focuses on addressing the challenge of adaptive finite‐time control for nonstrict‐feedback nonlinear systems subject to input delay and saturation....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 231
SubjectTerms Adaptive control
Adaptive systems
Control systems
Delay
Feedback control systems
finite‐time stability
input delay
Neural networks
Nonlinear control
Nonlinear systems
Pade approximation
pendulum system
saturation
Simulation
Tracking errors
Title Neural Network‐Based Adaptive Finite‐Time Command‐Filter Control for Nonlinear Systems With Input Delay and Input Saturation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3936
https://www.proquest.com/docview/3151678441
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0890-6327
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009913
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xfVFBPFW7aZpkx7X1WUV3IMPFDyUvIqLUpe1e9CT-Av8jf4SZ_pwV0EQLy1pE8h7vsnMfCFkl8vIhb4OPSFt5HHJYk-F2veYMCC8rXbM4tHAWS_qXvHTm_Cm8qrEWJiSH-LrwA1XRrFf4wJX-ulgTBqqzBMo7AGybTeDqNCmzsfMUQB7CuOyjEE7CpioeWd9dlAX_C6JxvByEqQWUqYzT27r-pXOJff7o1zvm5cf1I3_a8ACmavAJ22Vs2WRTLlsicxOUBIukzdk64A8vdI9_OP1_RDknKUtqwa4M9JOH1EqfMfgEYrxJSqzkOz00e5O26XrOwUsTHtlLdWQVrzo9Lqf39GTbDDK6ZF7UM8UylbpC2QYLabJCrnqHF-2u151T4NnkE0fnoJH3MSSWWmNjXjT-CoF1TdwwjDHgyCWkmsXpYHjQsZhmHIbKy2RGVzEIlgl09lj5tYIDYXxncJIa19xl0bKxFr7aEp0Lg2brkF26jFLBiUdR1ISL7ME-jPB_myQzXowk2pBwg9ANiCXAfw1yF4xKr-WT1rtC3yv_zXjBplheCtwcTCzSabz4chtAVTJ9XYxKT8BXCjpnQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Remh7gNIWdXkUV6p6CwTHiR1xWpaultceCggOSJFfUVet0hVkD3BC_AJ-I7-EmTy6tBJSxSWRE1uyPbbnm7HnM8AXoRIfhyYOpHJJIBRPAx2bMODSovJ2xnNHroHDYTI4EXtn8dkMbLWxMDU_xB-HG82Mar2mCU4O6Y0pa6i2l2ixR8kLeCkSNFMIEX2fckch8Km2l1WK9lHEZcs8G_KNtuTfumgKMB_D1ErP9OfhvK1hfbzk5_qkNOv2-h_yxmc24S3MNfiTdesBswAzvngHbx6xEr6HWyLswDzD-oT4_c3dNqo6x7pOj2lxZP0RAVX8TvEjjEJMdOEw2R_R1jvr1affGcJhNqyrqS9YQ43OTkflD7ZbjCcl2_G_9BXDsk36iEhGq5HyAU763457g6C5qiGwRKiPT4kysKniTjnrErFpQ52j9Rt5abkXUZQqJYxP8sgLqdI4zoVLtVFEDi5TGS3CbPG78B-BxdKGXlOwdaiFzxNtU2NC2k30Po83fQc-t0LLxjUjR1ZzL_MM-zOj_uzASivNrJmT-APBDapmxH8d-FqJ5cnyWbd3RO-l_824Bq8Gx4cH2cHucH8ZXnO6JLjy06zAbHkx8auIXErzqRqhD_Pr7b4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiF64I26UMBIiFva1LFjW5yWXaKWxwpRKnpAivyKWLUKq5I9tCfEL-A38kuYyYMtSEiISyIntmR7bM_n8cxngCdC51GmTiZKhzwRmpvESpcmXHlU3sFFHsg08GaW7x2Kl0fyaA2eDbEwHT_EL4MbzYx2vaYJHheh2lmxhlr_BXfsWX4JLgtpNPnzTd-tuKMQ-LTHy9rg_ijjamCeTfnOUPJ3XbQCmBdhaqtniuvwcahh515yvL1s3LY__4O88T-bcAOu9fiTjbsBcxPWYn0LNi6wEt6Gb0TYgXlmnYf4j6_fn6OqC2wc7IIWR1bMCajid4ofYRRiYuuAyWJOR-9s0nm_M4TDbNZV056ynhqdfZg3n9h-vVg2bBpP7BnDsn36gEhG25FyBw6LF-8ne0l_VUPiiVAfn0rkwhvNgw4-5GLXp7bC3W8WledRZJnRWriYV1kUShspKxGMdZrIwZVR2V1Yrz_XcROYVD6NloKtUytilVtvnEvpNDHGSu7GETwehFYuOkaOsuNe5iX2Z0n9OYKtQZplPyfxB4IbVM2I_0bwtBXLX8uX48kBve_9a8ZHcOXttChf789e3YernO4Ibs00W7DenC7jAwQujXvYDtCftnPtQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network%E2%80%90Based+Adaptive+Finite%E2%80%90Time+Command%E2%80%90Filter+Control+for+Nonlinear+Systems+With+Input+Delay+and+Input+Saturation&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Kharrat%2C+Mohamed&rft.date=2025-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=39&rft.issue=1&rft.spage=231&rft.epage=243&rft_id=info:doi/10.1002%2Facs.3936&rft.externalDBID=10.1002%252Facs.3936&rft.externalDocID=ACS3936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon