Big data based analytic model to predict and classify breast cancer using improved fractional rough fuzzy K‐means clustering and labeled ensemble classifier algorithm

Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary to predict and classify this deadly disease for early diagnosis. There exist numerous data mining techniques for early prediction and c...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 34; no. 10
Main Authors K, Srikanth, Zahoor Ul Huq, S., Siva Kumar, A. P.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.6715

Cover

Abstract Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary to predict and classify this deadly disease for early diagnosis. There exist numerous data mining techniques for early prediction and classification of this disease. The big data based analytical model provides the better solution for storing, manipulating, and analyzing a great number of mammographic images. In this article, a new improved fractional rough fuzzy K‐means clustering strategy is considered for disease prediction. Then, a new Tunicate Swarm Algorithm (TSA) is introduced to optimize the weight parameters. TSA is a bio‐inspired metaheuristic optimization approach. Finally, the labeled ensemble classifier (LEC) is utilized for classifying the stages of breast cancer as malignant and benign. Here, the data is randomly generated from breast cancer Wisconsin dataset (diagnosis) obtainable on UCI machine learning repository. The proposed strategy is compared with different existing strategies, like Logistic Regression Classifier, Random Forest Classifier. From the analysis, it is observed that the proposed big data based analytical model using LEC provides 99.3% accuracy that is very high when compared to the accuracy of existing approaches.
AbstractList Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary to predict and classify this deadly disease for early diagnosis. There exist numerous data mining techniques for early prediction and classification of this disease. The big data based analytical model provides the better solution for storing, manipulating, and analyzing a great number of mammographic images. In this article, a new improved fractional rough fuzzy K‐means clustering strategy is considered for disease prediction. Then, a new Tunicate Swarm Algorithm (TSA) is introduced to optimize the weight parameters. TSA is a bio‐inspired metaheuristic optimization approach. Finally, the labeled ensemble classifier (LEC) is utilized for classifying the stages of breast cancer as malignant and benign. Here, the data is randomly generated from breast cancer Wisconsin dataset (diagnosis) obtainable on UCI machine learning repository. The proposed strategy is compared with different existing strategies, like Logistic Regression Classifier, Random Forest Classifier. From the analysis, it is observed that the proposed big data based analytical model using LEC provides 99.3% accuracy that is very high when compared to the accuracy of existing approaches.
Author Zahoor Ul Huq, S.
K, Srikanth
Siva Kumar, A. P.
Author_xml – sequence: 1
  givenname: Srikanth
  orcidid: 0000-0002-6549-4481
  surname: K
  fullname: K, Srikanth
  email: srikanthkphd@gmail.com
  organization: JNTUA
– sequence: 2
  givenname: S.
  surname: Zahoor Ul Huq
  fullname: Zahoor Ul Huq, S.
  organization: G Pulla Reddy Engineering College (Autonomous)
– sequence: 3
  givenname: A. P.
  surname: Siva Kumar
  fullname: Siva Kumar, A. P.
  organization: JNTUA
BookMark eNp1kU1O5DAQRi3ESPzMSHMES2zYBGwnTpoltGAGgcQs2Edlu9IYOXFjO6D0iiNwDM7FSXDTwG5WLsmvXunTt0e2Bz8gIb85O-KMiWO9xKO64XKL7HJZioLVZbX9PYt6h-zFeM8Y56zku-T1zC6ogQRUQURDYQA3Jatp7w06mjxdBjRWp_xjqHYQo-0mqgJCTFTDoDHQMdphQW2_DP4xO7oAOlmfTTT4cXFHu3G1mujV2_NLjzDErBljwrBeWlsdKHR5D4eIvXL4dcZmNbiFDzbd9T_Jjw5cxF-f7z65vTi_nf8trm_-XM5PrwstZCWLSijZNDkcAFNa1FzUUle6AjwpdYMNR6GMVlzP6kY3SlbCMFYZ1imQM1OX--Rgo81ZHkaMqb33Y8hRYivqqpEln53wTB1uKB18jAG7dhlsD2FqOWvXNbS5hnZdQ0aLDfpkHU7_5dr5v_MP_h1MGI9G
Cites_doi 10.1186/s40537-019-0217-0
10.1007/s10257-017-0362-y
10.1007/s41019-016-0022-0
10.1016/j.jbusres.2016.08.002
10.1007/978-3-319-10665-6
10.1016/j.compeleceng.2020.106958
10.1016/j.jbusres.2016.08.001
10.1109/ACCESS.2018.2843443
10.2217/pme.15.5
10.1016/j.engappai.2020.103541
10.33430/V27N1THIE-2018-0024
10.1016/j.bdr.2016.05.002
10.1016/S0933-3657(02)00028-3
10.4137/BII.S31559
10.1109/TFUZZ.2019.2928509
10.1016/j.bspc.2021.102682
10.18280/ejee.224-509
10.1108/IJPCC-09-2020-0136
10.1016/j.tele.2017.01.007
10.1016/j.bdr.2015.01.006
10.1007/s10916-019-1397-z
10.1377/hlthaff.2014.0041
10.1016/j.cmpb.2017.12.011
10.1007/978-981-15-0978-0_43
10.1016/j.patrec.2018.11.004
10.12785/amis/070442
10.1145/2628194.2628251
10.1007/978-981-15-5258-8_65
10.1016/j.jbusres.2016.08.009
10.1109/TFUZZ.2019.2924402
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6715
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6715
CPE6715
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AFZJQ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2545-42b577110aa0bc261265c4c4ae93c7e71e2bdcb1c867c7b542d004d0fba58d63
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Jul 25 05:34:48 EDT 2025
Wed Oct 01 00:59:51 EDT 2025
Wed Jan 22 16:25:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2545-42b577110aa0bc261265c4c4ae93c7e71e2bdcb1c867c7b542d004d0fba58d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6549-4481
PQID 2647531891
PQPubID 2045170
PageCount 21
ParticipantIDs proquest_journals_2647531891
crossref_primary_10_1002_cpe_6715
wiley_primary_10_1002_cpe_6715_CPE6715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 1 May 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 2
2015; 12
2021; 68
2019; 6
2020; 17
2007
2013; 7
2021; 90
2016; 4
2018; 6
2018; 155
2002; 25
2020; 4
2016; 1
2017; 70
2021
2020
2019; 43
2020; 132
2017; 34
2020; 90
2019; 28
2020; 27
2015
2020; 22
2019; 1‐3
2018; 16
2016; 8
2014; 33
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
Sloan FA (e_1_2_8_20_1) 2007
e_1_2_8_4_1
e_1_2_8_7_1
Thota MK (e_1_2_8_11_1) 2020; 17
Supriya M (e_1_2_8_3_1) 2019; 1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Savargiv M (e_1_2_8_32_1) 2020
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 90
  year: 2020
  article-title: Tunicate swarm algorithm: a new bio‐inspired based metaheuristic paradigm for global optimization
  publication-title: Eng Appl Artif Intel
– volume: 7
  start-page: 1563
  issue: 4
  year: 2013
  end-page: 1574
  article-title: Fuzzy ontology for distributed document clustering based on genetic algorithm
  publication-title: Appl Math Inf Sci
– year: 2020
  article-title: Trusted secure geographic routing protocol: outsider attack detection in mobile ad hoc networks by adopting trusted secure geographic routing protocol
  publication-title: Int J Pervas Comput Commun
– year: 2007
– volume: 16
  start-page: 547
  issue: 3
  year: 2018
  end-page: 578
  article-title: Big data analytics capabilities: a systematic literature review and research agenda
  publication-title: Inf Syst e‐Bus Manag
– volume: 155
  start-page: 199
  year: 2018
  end-page: 208
  article-title: Breast cancer data analysis for survivability studies and prediction
  publication-title: Comput Methods Programs Biomed
– volume: 28
  start-page: 1925
  issue: 9
  year: 2019
  end-page: 1939
  article-title: Interval type‐2 fuzzy local enhancement based rough K‐means clustering considering imbalanced clusters
  publication-title: IEEE Trans Fuzzy Syst
– volume: 43
  start-page: 1
  issue: 8
  year: 2019
  end-page: 1
  article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression
  publication-title: J Med Syst
– volume: 70
  start-page: 287
  year: 2017
  end-page: 299
  article-title: Exploring the path to big data analytics success in healthcare
  publication-title: J Bus Res
– volume: 27
  start-page: 25
  issue: 1
  year: 2020
  end-page: 37
  article-title: Ideal position and size selection of unified power flow controllers (UPFCs) to upgrade the dynamic stability of systems: an antlion optimiser and invasive weed optimisation algorithm
  publication-title: HKIE Trans
– volume: 2
  start-page: 59
  issue: 2
  year: 2015
  end-page: 64
  article-title: Significance and challenges of big data research
  publication-title: Big Data Res
– volume: 25
  start-page: 265
  issue: 3
  year: 2002
  end-page: 281
  article-title: An evolutionary artificial neural networks approach for breast cancer diagnosis
  publication-title: Artif Intell Med
– volume: 4
  start-page: 44
  year: 2016
  end-page: 58
  article-title: Towards a comprehensive data analytics framework for smart healthcare services
  publication-title: Big Data Res
– volume: 17
  start-page: 331
  issue: 4
  year: 2020
  end-page: 344
  article-title: Survey on software defect prediction techniques
  publication-title: Int J Appl Sci Eng
– volume: 33
  start-page: 1123
  issue: 7
  year: 2014
  end-page: 1131
  article-title: Big data in health care: using analytics to identify and manage high‐risk and high‐cost patients
  publication-title: Health Aff
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 25
  article-title: Big data in healthcare: management, analysis and future prospects
  publication-title: J Big Data
– volume: 6
  start-page: 29637
  year: 2018
  end-page: 29647
  article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction
  publication-title: IEEE Access
– volume: 1‐3
  start-page: 414
  year: 2019
  end-page: 426
  article-title: A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment
  publication-title: Health Care Manag Sci
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  end-page: 144
  article-title: A knowledge‐based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat Inform
– volume: 70
  start-page: 356
  year: 2017
  end-page: 365
  article-title: Big data analytics and firm performance: effects of dynamic capabilities
  publication-title: J Bus Res
– volume: 12
  start-page: 371
  issue: 4
  year: 2015
  end-page: 387
  article-title: Machine learning for biomarker identification in cancer research–developments toward its clinical application
  publication-title: Pers Med
– volume: 90
  year: 2021
  article-title: An automated breast cancer diagnosis using feature selection and parameter optimization in ANN
  publication-title: Comput Electr Eng
– volume: 4
  start-page: 435
  year: 2020
  end-page: 442
– volume: 132
  start-page: 123
  year: 2020
  end-page: 131
  article-title: A new nested ensemble technique for automated diagnosis of breast cancer
  publication-title: Pattern Recognit Lett
– volume: 8
  year: 2016
  article-title: Big data application in biomedical research and health care: a literature review
  publication-title: Biomed Inform Insights
– volume: 28
  start-page: 1940
  issue: 9
  year: 2019
  end-page: 1950
  article-title: An interval type‐3 fuzzy system and a new online fractional‐order learning algorithm: theory and practice
  publication-title: IEEE Trans Fuzzy Syst
– start-page: 1
  year: 2020
  end-page: 16
  article-title: A new ensemble learning method based on learning automata
  publication-title: J Ambient Intell Humaniz Comput Secur
– start-page: 703
  year: 2021
  end-page: 711
– volume: 22
  start-page: 224
  issue: 4–5
  year: 2020
  end-page: 509
  article-title: A multi‐objective hybrid algorithm for planning electrical distribution system
  publication-title: Eur J Electr Eng
– volume: 1
  start-page: 265
  issue: 4
  year: 2016
  end-page: 284
  article-title: Big data reduction methods: a survey
  publication-title: Data Sci Eng
– year: 2015
– volume: 68
  year: 2021
  article-title: An efficient classification framework for breast cancer using hyper parameter tuned random decision Forest classifier and Bayesian optimization
  publication-title: Biomed Signal Process Control
– volume: 70
  start-page: 263
  year: 2017
  end-page: 286
  article-title: Critical analysis of big data challenges and analytical methods
  publication-title: J Bus Res
– ident: e_1_2_8_21_1
  doi: 10.1186/s40537-019-0217-0
– ident: e_1_2_8_10_1
  doi: 10.1007/s10257-017-0362-y
– ident: e_1_2_8_9_1
  doi: 10.1007/s41019-016-0022-0
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jbusres.2016.08.002
– ident: e_1_2_8_13_1
  doi: 10.1007/978-3-319-10665-6
– ident: e_1_2_8_27_1
  doi: 10.1016/j.compeleceng.2020.106958
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jbusres.2016.08.001
– start-page: 1
  year: 2020
  ident: e_1_2_8_32_1
  article-title: A new ensemble learning method based on learning automata
  publication-title: J Ambient Intell Humaniz Comput Secur
– ident: e_1_2_8_34_1
  doi: 10.1109/ACCESS.2018.2843443
– volume: 17
  start-page: 331
  issue: 4
  year: 2020
  ident: e_1_2_8_11_1
  article-title: Survey on software defect prediction techniques
  publication-title: Int J Appl Sci Eng
– ident: e_1_2_8_17_1
  doi: 10.2217/pme.15.5
– ident: e_1_2_8_33_1
  doi: 10.1016/j.engappai.2020.103541
– ident: e_1_2_8_4_1
  doi: 10.33430/V27N1THIE-2018-0024
– ident: e_1_2_8_16_1
  doi: 10.1016/j.bdr.2016.05.002
– volume: 1
  start-page: 414
  year: 2019
  ident: e_1_2_8_3_1
  article-title: A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment
  publication-title: Health Care Manag Sci
– ident: e_1_2_8_36_1
  doi: 10.1016/S0933-3657(02)00028-3
– ident: e_1_2_8_19_1
  doi: 10.4137/BII.S31559
– ident: e_1_2_8_30_1
  doi: 10.1109/TFUZZ.2019.2928509
– ident: e_1_2_8_35_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.bspc.2021.102682
– ident: e_1_2_8_6_1
  doi: 10.18280/ejee.224-509
– ident: e_1_2_8_8_1
  doi: 10.1108/IJPCC-09-2020-0136
– ident: e_1_2_8_7_1
  doi: 10.1016/j.tele.2017.01.007
– ident: e_1_2_8_18_1
  doi: 10.1016/j.bdr.2015.01.006
– ident: e_1_2_8_24_1
  doi: 10.1007/s10916-019-1397-z
– ident: e_1_2_8_2_1
  doi: 10.1377/hlthaff.2014.0041
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cmpb.2017.12.011
– ident: e_1_2_8_29_1
  doi: 10.1007/978-981-15-0978-0_43
– volume-title: Cancer Control Opportunities in Low‐and Middle‐Income Countries
  year: 2007
  ident: e_1_2_8_20_1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.patrec.2018.11.004
– ident: e_1_2_8_22_1
  doi: 10.12785/amis/070442
– ident: e_1_2_8_14_1
  doi: 10.1145/2628194.2628251
– ident: e_1_2_8_25_1
  doi: 10.1007/978-981-15-5258-8_65
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jbusres.2016.08.009
– ident: e_1_2_8_31_1
  doi: 10.1109/TFUZZ.2019.2924402
SSID ssj0011031
Score 2.3098502
Snippet Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Big Data
Breast cancer
Classification
Classifiers
Clustering
Data analysis
Data mining
Diagnosis
ensemble classifier
Heuristic methods
Image manipulation
K‐means clustering
Machine learning
Mathematical models
Optimization
swarm intelligence algorithm
Title Big data based analytic model to predict and classify breast cancer using improved fractional rough fuzzy K‐means clustering and labeled ensemble classifier algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6715
https://www.proquest.com/docview/2647531891
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADB4hTr0U6EMsj8qVqt6y5DmTHAsCoVatKkQlpB6i8cxku4J9KGQP7Kk_gZ_B7-KXYE8SKJWQEKdISTyTjO3YntifhfgUSqwM5i5wJMJBipUKCpljECZ0Fi3pnwd7_v5DHv9Kv55lZ11WJdfCtPgQ9xturBn-e80KrvFy7wE01MzdUCpfXx4l0kdTJ_fIURF3L2ihUuMgJKe9x50N472e8LElenAv_3VSvZU5WhO_--drk0vOh4sGh2b5H3Tjy15gXbzunE_40krLhlhx0zdirW_sAJ2evxU3--MRcO4osJGzoBm5hGjA982BZgbzmn_wNHTFgmEHfFxdAXKCewOGBakGzqgfwdhvWtAYVd2WUND8vjMQVIvl8gq-3f69njiylzTMgkEbmIhHJekki2iBwmw3wQvXT0NmHPTFaFaPmz-Td-L06PD04DjoWjoEhiLRLEhjzJQi7mgdomH4MpmZ1KTaFYlRTkUuRmswMrlURmGWxpa02IYV6iy3MnkvVqezqdsUkOiiKiJMEi2T1GqjK-liZVKpdV5kqAbiY8_dct4Cd5QtRHNc0sqXvPIDsdOzvexU97IkD5FCuCgvooH47Pn3JH158POQj1vPvXFbvIq5fMInTO6I1aZeuF1yahr84MX3DmVP-RI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLaqcoAL5SkWChgJccs2j8lMIk5QtVroQwgtUg9I0byyrOg-FLKH7omfwM_gd_FLsCebFpCQEKdISTyTjO3YntifAZ7H0tTWFD7yJMKRMLWKSlmYKM7orHGkfwHs-eRUjj6It2f52Ra87GthOnyIyw031ozwvWYF5w3pvSvUULv0Q6m4wPyakBSmsEf0_hI7KuH-BR1YahrF5Lb3yLNxutdT_m6LrhzMX93UYGcOd-Bj_4Rdesnn4ao1Q7v-A7zxP1_hFtzc-J_4qhOY27Dl53dgp-_tgBtVvwvfX08nyOmjyHbOoWbwEqLB0DoH2wUuG_7H09IVh5Z98Gl9gYZz3Fu0LEsNclL9BKdh34LGqJuuioLmD82BsF6t1xd49OPrt5knk0nDrBi3gYl4VBJQMooOKdL2M3Pu-2nIkqM-nyyaaftpdg_Ghwfj_VG06eoQWQpG80ikJleK2KN1bCwjmMncCiu0LzOrvEp8apw1iS2kssrkInWkyC6ujc4LJ7P7sD1fzP0DwEyXdZmYLNMyE05bXUufKiuk1kWZGzWAZz17q2WH3VF1KM1pRStf8coPYLfne7XR3i8VOYkUxSVFmQzgRWDgX-mr_XcHfHz4rzc-heuj8clxdfzm9OgR3Ei5miLkT-7Cdtus_GPycVrzJMjyT-tp_TM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtRADB5VRUJcKBQQC20xEuKWbX4mM4l6grarQqGqUJF6QIrmd7ui-6OQPXRPfQQeo8_Fk9SebNqChIQ4RUrimWRsx_bE_szYm1hob3ThIociHHHtZVSKQkdxhme1Rf0LYM-fj8TBV_7xND9dYTtdLUyLD3Gz4UaaEb7XpOBuZv32LWqombm-kFRgfo_nZUH5fHtfbrCjEupf0IKlplGMbnuHPBun2x3l77bo1sG866YGOzNYY9-6J2zTS773543um8Uf4I3_-QqP2MOl_wnvWoF5zFbcZJ2tdb0dYKnqT9jV-9EQKH0UyM5ZUARegjQQWudAM4VZTf94GrxiwZAPPvIXoCnHvQFDslQDJdUPYRT2LXAMX7dVFDh_aA4Efr5YXMDhr8ufY4cmE4eZE24DEdGoKKBoFC1gpO3G-tx106AlB3U-nNaj5mz8lJ0M9k92D6JlV4fIYDCaRzzVuZTIHqVibQjBTOSGG65cmRnpZOJSbY1OTCGkkTrnqUVFtrHXKi-syJ6x1cl04p4zyFTpy0RnmRIZt8ooL1wqDRdKFWWuZY-97thbzVrsjqpFaU4rXPmKVr7HNjq-V0vt_VGhk4hRXFKUSY-9DQz8K321e7xPxxf_euMrdv94b1B9-nB0-JI9SKmYIqRPbrDVpp67TXRxGr0VRPkamT38tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+based+analytic+model+to+predict+and+classify+breast+cancer+using+improved+fractional+rough+fuzzy+K%E2%80%90means+clustering+and+labeled+ensemble+classifier+algorithm&rft.jtitle=Concurrency+and+computation&rft.au=K%2C+Srikanth&rft.au=Zahoor+Ul+Huq%2C+S.&rft.au=Siva+Kumar%2C+A.+P.&rft.date=2022-05-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=10&rft_id=info:doi/10.1002%2Fcpe.6715&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon