Big data based analytic model to predict and classify breast cancer using improved fractional rough fuzzy K‐means clustering and labeled ensemble classifier algorithm
Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary to predict and classify this deadly disease for early diagnosis. There exist numerous data mining techniques for early prediction and c...
Saved in:
| Published in | Concurrency and computation Vol. 34; no. 10 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2022
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.6715 |
Cover
| Abstract | Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary to predict and classify this deadly disease for early diagnosis. There exist numerous data mining techniques for early prediction and classification of this disease. The big data based analytical model provides the better solution for storing, manipulating, and analyzing a great number of mammographic images. In this article, a new improved fractional rough fuzzy K‐means clustering strategy is considered for disease prediction. Then, a new Tunicate Swarm Algorithm (TSA) is introduced to optimize the weight parameters. TSA is a bio‐inspired metaheuristic optimization approach. Finally, the labeled ensemble classifier (LEC) is utilized for classifying the stages of breast cancer as malignant and benign. Here, the data is randomly generated from breast cancer Wisconsin dataset (diagnosis) obtainable on UCI machine learning repository. The proposed strategy is compared with different existing strategies, like Logistic Regression Classifier, Random Forest Classifier. From the analysis, it is observed that the proposed big data based analytical model using LEC provides 99.3% accuracy that is very high when compared to the accuracy of existing approaches. |
|---|---|
| AbstractList | Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary to predict and classify this deadly disease for early diagnosis. There exist numerous data mining techniques for early prediction and classification of this disease. The big data based analytical model provides the better solution for storing, manipulating, and analyzing a great number of mammographic images. In this article, a new improved fractional rough fuzzy K‐means clustering strategy is considered for disease prediction. Then, a new Tunicate Swarm Algorithm (TSA) is introduced to optimize the weight parameters. TSA is a bio‐inspired metaheuristic optimization approach. Finally, the labeled ensemble classifier (LEC) is utilized for classifying the stages of breast cancer as malignant and benign. Here, the data is randomly generated from breast cancer Wisconsin dataset (diagnosis) obtainable on UCI machine learning repository. The proposed strategy is compared with different existing strategies, like Logistic Regression Classifier, Random Forest Classifier. From the analysis, it is observed that the proposed big data based analytical model using LEC provides 99.3% accuracy that is very high when compared to the accuracy of existing approaches. |
| Author | Zahoor Ul Huq, S. K, Srikanth Siva Kumar, A. P. |
| Author_xml | – sequence: 1 givenname: Srikanth orcidid: 0000-0002-6549-4481 surname: K fullname: K, Srikanth email: srikanthkphd@gmail.com organization: JNTUA – sequence: 2 givenname: S. surname: Zahoor Ul Huq fullname: Zahoor Ul Huq, S. organization: G Pulla Reddy Engineering College (Autonomous) – sequence: 3 givenname: A. P. surname: Siva Kumar fullname: Siva Kumar, A. P. organization: JNTUA |
| BookMark | eNp1kU1O5DAQRi3ESPzMSHMES2zYBGwnTpoltGAGgcQs2Edlu9IYOXFjO6D0iiNwDM7FSXDTwG5WLsmvXunTt0e2Bz8gIb85O-KMiWO9xKO64XKL7HJZioLVZbX9PYt6h-zFeM8Y56zku-T1zC6ogQRUQURDYQA3Jatp7w06mjxdBjRWp_xjqHYQo-0mqgJCTFTDoDHQMdphQW2_DP4xO7oAOlmfTTT4cXFHu3G1mujV2_NLjzDErBljwrBeWlsdKHR5D4eIvXL4dcZmNbiFDzbd9T_Jjw5cxF-f7z65vTi_nf8trm_-XM5PrwstZCWLSijZNDkcAFNa1FzUUle6AjwpdYMNR6GMVlzP6kY3SlbCMFYZ1imQM1OX--Rgo81ZHkaMqb33Y8hRYivqqpEln53wTB1uKB18jAG7dhlsD2FqOWvXNbS5hnZdQ0aLDfpkHU7_5dr5v_MP_h1MGI9G |
| Cites_doi | 10.1186/s40537-019-0217-0 10.1007/s10257-017-0362-y 10.1007/s41019-016-0022-0 10.1016/j.jbusres.2016.08.002 10.1007/978-3-319-10665-6 10.1016/j.compeleceng.2020.106958 10.1016/j.jbusres.2016.08.001 10.1109/ACCESS.2018.2843443 10.2217/pme.15.5 10.1016/j.engappai.2020.103541 10.33430/V27N1THIE-2018-0024 10.1016/j.bdr.2016.05.002 10.1016/S0933-3657(02)00028-3 10.4137/BII.S31559 10.1109/TFUZZ.2019.2928509 10.1016/j.bspc.2021.102682 10.18280/ejee.224-509 10.1108/IJPCC-09-2020-0136 10.1016/j.tele.2017.01.007 10.1016/j.bdr.2015.01.006 10.1007/s10916-019-1397-z 10.1377/hlthaff.2014.0041 10.1016/j.cmpb.2017.12.011 10.1007/978-981-15-0978-0_43 10.1016/j.patrec.2018.11.004 10.12785/amis/070442 10.1145/2628194.2628251 10.1007/978-981-15-5258-8_65 10.1016/j.jbusres.2016.08.009 10.1109/TFUZZ.2019.2924402 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6715 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6715 CPE6715 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AFZJQ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2545-42b577110aa0bc261265c4c4ae93c7e71e2bdcb1c867c7b542d004d0fba58d63 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Fri Jul 25 05:34:48 EDT 2025 Wed Oct 01 00:59:51 EDT 2025 Wed Jan 22 16:25:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2545-42b577110aa0bc261265c4c4ae93c7e71e2bdcb1c867c7b542d004d0fba58d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6549-4481 |
| PQID | 2647531891 |
| PQPubID | 2045170 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2647531891 crossref_primary_10_1002_cpe_6715 wiley_primary_10_1002_cpe_6715_CPE6715 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 1 May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 1 May 2022 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2015; 2 2015; 12 2021; 68 2019; 6 2020; 17 2007 2013; 7 2021; 90 2016; 4 2018; 6 2018; 155 2002; 25 2020; 4 2016; 1 2017; 70 2021 2020 2019; 43 2020; 132 2017; 34 2020; 90 2019; 28 2020; 27 2015 2020; 22 2019; 1‐3 2018; 16 2016; 8 2014; 33 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 Sloan FA (e_1_2_8_20_1) 2007 e_1_2_8_4_1 e_1_2_8_7_1 Thota MK (e_1_2_8_11_1) 2020; 17 Supriya M (e_1_2_8_3_1) 2019; 1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 Savargiv M (e_1_2_8_32_1) 2020 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 90 year: 2020 article-title: Tunicate swarm algorithm: a new bio‐inspired based metaheuristic paradigm for global optimization publication-title: Eng Appl Artif Intel – volume: 7 start-page: 1563 issue: 4 year: 2013 end-page: 1574 article-title: Fuzzy ontology for distributed document clustering based on genetic algorithm publication-title: Appl Math Inf Sci – year: 2020 article-title: Trusted secure geographic routing protocol: outsider attack detection in mobile ad hoc networks by adopting trusted secure geographic routing protocol publication-title: Int J Pervas Comput Commun – year: 2007 – volume: 16 start-page: 547 issue: 3 year: 2018 end-page: 578 article-title: Big data analytics capabilities: a systematic literature review and research agenda publication-title: Inf Syst e‐Bus Manag – volume: 155 start-page: 199 year: 2018 end-page: 208 article-title: Breast cancer data analysis for survivability studies and prediction publication-title: Comput Methods Programs Biomed – volume: 28 start-page: 1925 issue: 9 year: 2019 end-page: 1939 article-title: Interval type‐2 fuzzy local enhancement based rough K‐means clustering considering imbalanced clusters publication-title: IEEE Trans Fuzzy Syst – volume: 43 start-page: 1 issue: 8 year: 2019 end-page: 1 article-title: Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression publication-title: J Med Syst – volume: 70 start-page: 287 year: 2017 end-page: 299 article-title: Exploring the path to big data analytics success in healthcare publication-title: J Bus Res – volume: 27 start-page: 25 issue: 1 year: 2020 end-page: 37 article-title: Ideal position and size selection of unified power flow controllers (UPFCs) to upgrade the dynamic stability of systems: an antlion optimiser and invasive weed optimisation algorithm publication-title: HKIE Trans – volume: 2 start-page: 59 issue: 2 year: 2015 end-page: 64 article-title: Significance and challenges of big data research publication-title: Big Data Res – volume: 25 start-page: 265 issue: 3 year: 2002 end-page: 281 article-title: An evolutionary artificial neural networks approach for breast cancer diagnosis publication-title: Artif Intell Med – volume: 4 start-page: 44 year: 2016 end-page: 58 article-title: Towards a comprehensive data analytics framework for smart healthcare services publication-title: Big Data Res – volume: 17 start-page: 331 issue: 4 year: 2020 end-page: 344 article-title: Survey on software defect prediction techniques publication-title: Int J Appl Sci Eng – volume: 33 start-page: 1123 issue: 7 year: 2014 end-page: 1131 article-title: Big data in health care: using analytics to identify and manage high‐risk and high‐cost patients publication-title: Health Aff – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 25 article-title: Big data in healthcare: management, analysis and future prospects publication-title: J Big Data – volume: 6 start-page: 29637 year: 2018 end-page: 29647 article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction publication-title: IEEE Access – volume: 1‐3 start-page: 414 year: 2019 end-page: 426 article-title: A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment publication-title: Health Care Manag Sci – volume: 34 start-page: 133 issue: 4 year: 2017 end-page: 144 article-title: A knowledge‐based system for breast cancer classification using fuzzy logic method publication-title: Telemat Inform – volume: 70 start-page: 356 year: 2017 end-page: 365 article-title: Big data analytics and firm performance: effects of dynamic capabilities publication-title: J Bus Res – volume: 12 start-page: 371 issue: 4 year: 2015 end-page: 387 article-title: Machine learning for biomarker identification in cancer research–developments toward its clinical application publication-title: Pers Med – volume: 90 year: 2021 article-title: An automated breast cancer diagnosis using feature selection and parameter optimization in ANN publication-title: Comput Electr Eng – volume: 4 start-page: 435 year: 2020 end-page: 442 – volume: 132 start-page: 123 year: 2020 end-page: 131 article-title: A new nested ensemble technique for automated diagnosis of breast cancer publication-title: Pattern Recognit Lett – volume: 8 year: 2016 article-title: Big data application in biomedical research and health care: a literature review publication-title: Biomed Inform Insights – volume: 28 start-page: 1940 issue: 9 year: 2019 end-page: 1950 article-title: An interval type‐3 fuzzy system and a new online fractional‐order learning algorithm: theory and practice publication-title: IEEE Trans Fuzzy Syst – start-page: 1 year: 2020 end-page: 16 article-title: A new ensemble learning method based on learning automata publication-title: J Ambient Intell Humaniz Comput Secur – start-page: 703 year: 2021 end-page: 711 – volume: 22 start-page: 224 issue: 4–5 year: 2020 end-page: 509 article-title: A multi‐objective hybrid algorithm for planning electrical distribution system publication-title: Eur J Electr Eng – volume: 1 start-page: 265 issue: 4 year: 2016 end-page: 284 article-title: Big data reduction methods: a survey publication-title: Data Sci Eng – year: 2015 – volume: 68 year: 2021 article-title: An efficient classification framework for breast cancer using hyper parameter tuned random decision Forest classifier and Bayesian optimization publication-title: Biomed Signal Process Control – volume: 70 start-page: 263 year: 2017 end-page: 286 article-title: Critical analysis of big data challenges and analytical methods publication-title: J Bus Res – ident: e_1_2_8_21_1 doi: 10.1186/s40537-019-0217-0 – ident: e_1_2_8_10_1 doi: 10.1007/s10257-017-0362-y – ident: e_1_2_8_9_1 doi: 10.1007/s41019-016-0022-0 – ident: e_1_2_8_15_1 doi: 10.1016/j.jbusres.2016.08.002 – ident: e_1_2_8_13_1 doi: 10.1007/978-3-319-10665-6 – ident: e_1_2_8_27_1 doi: 10.1016/j.compeleceng.2020.106958 – ident: e_1_2_8_28_1 doi: 10.1016/j.jbusres.2016.08.001 – start-page: 1 year: 2020 ident: e_1_2_8_32_1 article-title: A new ensemble learning method based on learning automata publication-title: J Ambient Intell Humaniz Comput Secur – ident: e_1_2_8_34_1 doi: 10.1109/ACCESS.2018.2843443 – volume: 17 start-page: 331 issue: 4 year: 2020 ident: e_1_2_8_11_1 article-title: Survey on software defect prediction techniques publication-title: Int J Appl Sci Eng – ident: e_1_2_8_17_1 doi: 10.2217/pme.15.5 – ident: e_1_2_8_33_1 doi: 10.1016/j.engappai.2020.103541 – ident: e_1_2_8_4_1 doi: 10.33430/V27N1THIE-2018-0024 – ident: e_1_2_8_16_1 doi: 10.1016/j.bdr.2016.05.002 – volume: 1 start-page: 414 year: 2019 ident: e_1_2_8_3_1 article-title: A novel approach for breast cancer prediction using optimized ANN classifier based on big data environment publication-title: Health Care Manag Sci – ident: e_1_2_8_36_1 doi: 10.1016/S0933-3657(02)00028-3 – ident: e_1_2_8_19_1 doi: 10.4137/BII.S31559 – ident: e_1_2_8_30_1 doi: 10.1109/TFUZZ.2019.2928509 – ident: e_1_2_8_35_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.bspc.2021.102682 – ident: e_1_2_8_6_1 doi: 10.18280/ejee.224-509 – ident: e_1_2_8_8_1 doi: 10.1108/IJPCC-09-2020-0136 – ident: e_1_2_8_7_1 doi: 10.1016/j.tele.2017.01.007 – ident: e_1_2_8_18_1 doi: 10.1016/j.bdr.2015.01.006 – ident: e_1_2_8_24_1 doi: 10.1007/s10916-019-1397-z – ident: e_1_2_8_2_1 doi: 10.1377/hlthaff.2014.0041 – ident: e_1_2_8_5_1 doi: 10.1016/j.cmpb.2017.12.011 – ident: e_1_2_8_29_1 doi: 10.1007/978-981-15-0978-0_43 – volume-title: Cancer Control Opportunities in Low‐and Middle‐Income Countries year: 2007 ident: e_1_2_8_20_1 – ident: e_1_2_8_26_1 doi: 10.1016/j.patrec.2018.11.004 – ident: e_1_2_8_22_1 doi: 10.12785/amis/070442 – ident: e_1_2_8_14_1 doi: 10.1145/2628194.2628251 – ident: e_1_2_8_25_1 doi: 10.1007/978-981-15-5258-8_65 – ident: e_1_2_8_12_1 doi: 10.1016/j.jbusres.2016.08.009 – ident: e_1_2_8_31_1 doi: 10.1109/TFUZZ.2019.2924402 |
| SSID | ssj0011031 |
| Score | 2.3098502 |
| Snippet | Breast cancer is a very dangerous disease that mainly affects women. It is a deadliest disease that highly affects the women's life. Therefore, it is necessary... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Big Data Breast cancer Classification Classifiers Clustering Data analysis Data mining Diagnosis ensemble classifier Heuristic methods Image manipulation K‐means clustering Machine learning Mathematical models Optimization swarm intelligence algorithm |
| Title | Big data based analytic model to predict and classify breast cancer using improved fractional rough fuzzy K‐means clustering and labeled ensemble classifier algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6715 https://www.proquest.com/docview/2647531891 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241028 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADB4hTr0U6EMsj8qVqt6y5DmTHAsCoVatKkQlpB6i8cxku4J9KGQP7Kk_gZ_B7-KXYE8SKJWQEKdISTyTjO3YntifhfgUSqwM5i5wJMJBipUKCpljECZ0Fi3pnwd7_v5DHv9Kv55lZ11WJdfCtPgQ9xturBn-e80KrvFy7wE01MzdUCpfXx4l0kdTJ_fIURF3L2ihUuMgJKe9x50N472e8LElenAv_3VSvZU5WhO_--drk0vOh4sGh2b5H3Tjy15gXbzunE_40krLhlhx0zdirW_sAJ2evxU3--MRcO4osJGzoBm5hGjA982BZgbzmn_wNHTFgmEHfFxdAXKCewOGBakGzqgfwdhvWtAYVd2WUND8vjMQVIvl8gq-3f69njiylzTMgkEbmIhHJekki2iBwmw3wQvXT0NmHPTFaFaPmz-Td-L06PD04DjoWjoEhiLRLEhjzJQi7mgdomH4MpmZ1KTaFYlRTkUuRmswMrlURmGWxpa02IYV6iy3MnkvVqezqdsUkOiiKiJMEi2T1GqjK-liZVKpdV5kqAbiY8_dct4Cd5QtRHNc0sqXvPIDsdOzvexU97IkD5FCuCgvooH47Pn3JH158POQj1vPvXFbvIq5fMInTO6I1aZeuF1yahr84MX3DmVP-RI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLaqcoAL5SkWChgJccs2j8lMIk5QtVroQwgtUg9I0byyrOg-FLKH7omfwM_gd_FLsCebFpCQEKdISTyTjO3YntifAZ7H0tTWFD7yJMKRMLWKSlmYKM7orHGkfwHs-eRUjj6It2f52Ra87GthOnyIyw031ozwvWYF5w3pvSvUULv0Q6m4wPyakBSmsEf0_hI7KuH-BR1YahrF5Lb3yLNxutdT_m6LrhzMX93UYGcOd-Bj_4Rdesnn4ao1Q7v-A7zxP1_hFtzc-J_4qhOY27Dl53dgp-_tgBtVvwvfX08nyOmjyHbOoWbwEqLB0DoH2wUuG_7H09IVh5Z98Gl9gYZz3Fu0LEsNclL9BKdh34LGqJuuioLmD82BsF6t1xd49OPrt5knk0nDrBi3gYl4VBJQMooOKdL2M3Pu-2nIkqM-nyyaaftpdg_Ghwfj_VG06eoQWQpG80ikJleK2KN1bCwjmMncCiu0LzOrvEp8apw1iS2kssrkInWkyC6ujc4LJ7P7sD1fzP0DwEyXdZmYLNMyE05bXUufKiuk1kWZGzWAZz17q2WH3VF1KM1pRStf8coPYLfne7XR3i8VOYkUxSVFmQzgRWDgX-mr_XcHfHz4rzc-heuj8clxdfzm9OgR3Ei5miLkT-7Cdtus_GPycVrzJMjyT-tp_TM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtRADB5VRUJcKBQQC20xEuKWbX4mM4l6grarQqGqUJF6QIrmd7ui-6OQPXRPfQQeo8_Fk9SebNqChIQ4RUrimWRsx_bE_szYm1hob3ThIociHHHtZVSKQkdxhme1Rf0LYM-fj8TBV_7xND9dYTtdLUyLD3Gz4UaaEb7XpOBuZv32LWqombm-kFRgfo_nZUH5fHtfbrCjEupf0IKlplGMbnuHPBun2x3l77bo1sG866YGOzNYY9-6J2zTS773543um8Uf4I3_-QqP2MOl_wnvWoF5zFbcZJ2tdb0dYKnqT9jV-9EQKH0UyM5ZUARegjQQWudAM4VZTf94GrxiwZAPPvIXoCnHvQFDslQDJdUPYRT2LXAMX7dVFDh_aA4Efr5YXMDhr8ufY4cmE4eZE24DEdGoKKBoFC1gpO3G-tx106AlB3U-nNaj5mz8lJ0M9k92D6JlV4fIYDCaRzzVuZTIHqVibQjBTOSGG65cmRnpZOJSbY1OTCGkkTrnqUVFtrHXKi-syJ6x1cl04p4zyFTpy0RnmRIZt8ooL1wqDRdKFWWuZY-97thbzVrsjqpFaU4rXPmKVr7HNjq-V0vt_VGhk4hRXFKUSY-9DQz8K321e7xPxxf_euMrdv94b1B9-nB0-JI9SKmYIqRPbrDVpp67TXRxGr0VRPkamT38tw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+based+analytic+model+to+predict+and+classify+breast+cancer+using+improved+fractional+rough+fuzzy+K%E2%80%90means+clustering+and+labeled+ensemble+classifier+algorithm&rft.jtitle=Concurrency+and+computation&rft.au=K%2C+Srikanth&rft.au=Zahoor+Ul+Huq%2C+S.&rft.au=Siva+Kumar%2C+A.+P.&rft.date=2022-05-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=10&rft_id=info:doi/10.1002%2Fcpe.6715&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6715 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |