Concurrent event‐triggered adaptive neural control for MASS under cross‐water scenarios
This article discusses the control problem of marine autonomous surface ships (MASS) under cross‐water scenarios, that is, from open water to restricted water, where several practical facts, such as uncertain dynamic, unknown disturbance and actuator wear suppression, are taken into account. To reso...
Saved in:
| Published in | International journal of robust and nonlinear control Vol. 34; no. 15; pp. 10609 - 10627 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Wiley Subscription Services, Inc
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1049-8923 1099-1239 |
| DOI | 10.1002/rnc.7534 |
Cover
| Abstract | This article discusses the control problem of marine autonomous surface ships (MASS) under cross‐water scenarios, that is, from open water to restricted water, where several practical facts, such as uncertain dynamic, unknown disturbance and actuator wear suppression, are taken into account. To resolve such a control design challenge, the predefined performance control (PPC)‐based and barrier Lyapunov function (BLF)‐based ideas are employed, and a prespecified performance function (PPF) is designed to implement the transformation of cross‐water design. Under the adaptive backstepping design framework, with aid of PPC‐based and BLF‐based design ideas, an adaptive neural control solution is developed for MASS under cross‐water scenarios. Furthermore, to reduce the actuator wear and tear caused by high‐frequency corresponding control commands and hull vibration, a new multichannel concurrent event‐triggered protocol (ETP) is constructed in the controller‐actuator (C‐A) channel. Finally, a concurrent event‐triggered adaptive neural control scheme is proposed for MASS under cross‐water scenarios. The theoretical analysis indicates that all signals in the control system are ultimately bounded, and the Zeno behavior is avoided. The simulation and comparison results verify the effectiveness and superiority of the developed control scheme. |
|---|---|
| AbstractList | This article discusses the control problem of marine autonomous surface ships (MASS) under cross‐water scenarios, that is, from open water to restricted water, where several practical facts, such as uncertain dynamic, unknown disturbance and actuator wear suppression, are taken into account. To resolve such a control design challenge, the predefined performance control (PPC)‐based and barrier Lyapunov function (BLF)‐based ideas are employed, and a prespecified performance function (PPF) is designed to implement the transformation of cross‐water design. Under the adaptive backstepping design framework, with aid of PPC‐based and BLF‐based design ideas, an adaptive neural control solution is developed for MASS under cross‐water scenarios. Furthermore, to reduce the actuator wear and tear caused by high‐frequency corresponding control commands and hull vibration, a new multichannel concurrent event‐triggered protocol (ETP) is constructed in the controller‐actuator (C‐A) channel. Finally, a concurrent event‐triggered adaptive neural control scheme is proposed for MASS under cross‐water scenarios. The theoretical analysis indicates that all signals in the control system are ultimately bounded, and the Zeno behavior is avoided. The simulation and comparison results verify the effectiveness and superiority of the developed control scheme. |
| Author | Zhu, Guibing Ye, Xiang Chen, Chao Hu, Xin |
| Author_xml | – sequence: 1 givenname: Xiang surname: Ye fullname: Ye, Xiang organization: Zhejiang Ocean University – sequence: 2 givenname: Chao surname: Chen fullname: Chen, Chao email: chenchaogh@zjou.edu.cn organization: Zhejiang Ocean University – sequence: 3 givenname: Guibing orcidid: 0000-0002-8267-9437 surname: Zhu fullname: Zhu, Guibing email: zhuguibing2003@163.com organization: Zhejiang Ocean University – sequence: 4 givenname: Xin orcidid: 0000-0001-9043-9639 surname: Hu fullname: Hu, Xin organization: Ludong University |
| BookMark | eNp1kMtKw0AUhgdRsK2CjzDgxk3q3DJpliV4g6pgdeVimCQnJSXO1JOkpTsfwWf0SZy2bt2cC-c7t39Ijp13QMgFZ2POmLhGV4yTWKojMuAsTSMuZHq8i1UaTVIhT8mwbZeMhZpQA_KeeVf0iOA6Cutgf76-O6wXC0AoqS3tqqvXQB30aBtaeNehb2jlkT5O53PauxKQFujbNjRubBeytgBnsfbtGTmpbNPC-Z8fkbfbm9fsPpo93z1k01lUiFipCJQEzkBXLM8nrLBaQs6ltaWouBJJmUjBpCxZrrUVoONSVjpJhVXhCZlIK0fk8jB3hf6zh7YzS9-jCyuN5DxlE6Z1HKirA7W_FqEyK6w_LG4NZ2YnnQnSmZ10AY0O6KZuYPsvZ16esj3_C5yRc5g |
| Cites_doi | 10.1016/j.oceaneng.2022.111278 10.1016/j.oceaneng.2019.106526 10.1002/rnc.5915 10.1002/rnc.5032 10.1016/j.oceaneng.2018.04.016 10.1109/TNNLS.2020.3027689 10.1016/j.neucom.2015.12.027 10.1109/TAC.2007.904277 10.1016/j.isatra.2018.02.003 10.1016/j.oceaneng.2019.106726 10.1109/TITS.2020.2976567 10.1016/S1474-6670(17)31732-9 10.1016/j.oceaneng.2021.109712 10.1109/TSMC.2023.3256538 10.1016/j.jfranklin.2019.07.019 10.1109/9.486648 10.1016/j.jfranklin.2020.04.057 10.1016/j.oceaneng.2023.113641 10.1016/j.conengprac.2020.104675 10.1016/j.neucom.2019.10.044 10.1016/j.neucom.2019.08.090 10.1016/j.isatra.2018.11.001 10.1016/j.automatica.2021.109595 10.1109/TIE.2015.2504553 10.1016/S0167-6911(97)00068-6 10.1109/TAC.2008.929402 10.1016/j.isatra.2018.12.047 10.1016/j.oceaneng.2020.108283 10.1016/j.automatica.2014.02.020 10.1016/j.neucom.2018.07.025 10.1016/j.apor.2023.103628 10.1109/.2005.1469806 10.1016/j.automatica.2008.11.017 10.1109/TVT.2021.3063687 10.3390/jmse7120438 10.1016/j.isatra.2022.06.011 10.1109/TITS.2021.3066461 10.1109/TFUZZ.2020.3028907 10.1109/TII.2021.3080841 10.1007/s11424-021-0150-0 10.1016/j.oceaneng.2022.111319 10.1002/rnc.6623 10.1002/rnc.6970 10.1109/TITS.2022.3217152 10.1016/j.jfranklin.2017.01.012 10.1109/TAC.2015.2502145 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1002/rnc.7534 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1239 |
| EndPage | 10627 |
| ExternalDocumentID | 10_1002_rnc_7534 RNC7534 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52261160383 – fundername: Bureau of Science and Technology Project of Zhoushan funderid: 2022C41006 – fundername: Natural Science Foundation of Zhejiang Province, China funderid: LY21E090005 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2544-e43e10e6f0bb80ca63eb13aad2f1427d732033d0b66a2e65d3f6792a4000373a3 |
| IEDL.DBID | DR2 |
| ISSN | 1049-8923 |
| IngestDate | Fri Jul 25 12:23:07 EDT 2025 Wed Oct 01 01:47:53 EDT 2025 Wed Jan 22 17:15:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2544-e43e10e6f0bb80ca63eb13aad2f1427d732033d0b66a2e65d3f6792a4000373a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8267-9437 0000-0001-9043-9639 |
| PQID | 3119080665 |
| PQPubID | 1026344 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3119080665 crossref_primary_10_1002_rnc_7534 wiley_primary_10_1002_rnc_7534_RNC7534 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal of robust and nonlinear control |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2023; 53 2009; 45 2019; 7 2019; 90 2022; 253 2019; 191 2023; 33 2021; 23 2021; 227 2021; 106 2021; 129 2022; 24 2005 2024; 34 2008; 53 2007; 52 2020; 32 2016; 182 2017; 354 2021; 70 2023; 270 2019; 86 2018; 315 2020; 195 2020; 30 1997; 32 2015; 61 2021; 238 2021; 18 2015; 63 2004; 37 2018; 159 2023; 132 2020; 357 2023; 138 2020; 379 2022; 35 2018 1996; 41 2015 2020; 22 2022; 32 2020; 377 2014; 50 2018; 75 2020; 29 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 Maritime UK (e_1_2_9_3_1) 2018 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Shenoi RA (e_1_2_9_2_1) 2015 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 52 start-page: 1680 issue: 9 year: 2007 end-page: 1685 article-title: Event‐triggered real‐time scheduling of stabilizing control tasks publication-title: IEEE Trans Autom Control – volume: 182 start-page: 267 year: 2016 end-page: 273 article-title: Event triggered trajectory tracking control approach for fully actuated surface vessel publication-title: Neurocomputing – volume: 132 start-page: 267 year: 2023 end-page: 277 article-title: Global fixed‐time trajectory tracking control of underactuated USV based on fixed‐time extended state observer publication-title: ISA Trans – volume: 29 start-page: 3822 issue: 12 year: 2020 end-page: 3832 article-title: COLREGs‐constrained adaptive fuzzy event‐triggered control for underactuated surface vessels with the actuator failures publication-title: IEEE Trans Fuzzy Syst – volume: 75 start-page: 137 year: 2018 end-page: 156 article-title: Multi‐objective path planning for unmanned surface vehicle with currents effects publication-title: ISA Trans – volume: 33 start-page: 4504 issue: 8 year: 2023 end-page: 4522 article-title: Adaptive optimal formation control for unmanned surface vehicles with guaranteed performance using actorâeuro;x00090;critic learning architecture publication-title: Int J Robust Nonlinear Control – volume: 357 start-page: 11472 issue: 16 year: 2020 end-page: 11495 article-title: Finite‐time trajectory tracking control of unmanned surface vessel with error constraints and input saturations publication-title: J Frank Inst – volume: 354 start-page: 2167 issue: 5 year: 2017 end-page: 2182 article-title: Trajectory tracking passivity‐based control for marine vehicles subject to disturbances publication-title: J Frank Inst – volume: 315 start-page: 310 year: 2018 end-page: 321 article-title: Event‐triggered neuroadaptive control for postcapture spacecraft with ultralow‐frequency actuator updates publication-title: Neurocomputing – volume: 61 start-page: 2682 issue: 9 year: 2015 end-page: 2687 article-title: Stabilization of nonlinear systems using event‐triggered output feedback controllers publication-title: IEEE Trans Autom Control – start-page: 1512 year: 2005 end-page: 1517 – volume: 22 start-page: 2834 issue: 5 year: 2020 end-page: 2845 article-title: A formation autonomous navigation system for unmanned surface vehicles with distributed control strategy publication-title: IEEE Trans Intell Transp Syst – volume: 32 start-page: 5416 issue: 12 year: 2020 end-page: 5426 article-title: Adaptive finite‐time neural network control of nonlinear systems with multiple objective constraints and application to electromechanical system publication-title: IEEE Trans Neural Networks Learn Syst – volume: 32 start-page: 2925 issue: 5 year: 2022 end-page: 2949 article-title: Finite‐time rotation‐matrix‐based tracking control for autonomous underwater vehicle with input saturation and actuator faults publication-title: Int J Robust Nonlinear Control – volume: 23 start-page: 7045 issue: 7 year: 2021 end-page: 7057 article-title: Event‐triggered adaptive neural fault‐tolerant control of underactuated MSVs with input saturation publication-title: IEEE Trans Intell Transp Syst – year: 2018 – volume: 45 start-page: 918 issue: 4 year: 2009 end-page: 927 article-title: Barrier Lyapunov functions for the control of output‐constrained nonlinear systems publication-title: Automatica – volume: 37 start-page: 203 issue: 10 year: 2004 end-page: 208 article-title: Modeling, identification, and adaptive maneuvering of Cybership II: A complete design with experiments publication-title: IFAC Proc Vol – volume: 138 year: 2023 article-title: Finite‐time control for USV path tracking under input saturation with random disturbances publication-title: Appl Ocean Res – volume: 379 start-page: 203 year: 2020 end-page: 213 article-title: Adaptive NN event‐triggered control for path following of underactuated vessels with finite‐time convergence publication-title: Neurocomputing – volume: 41 start-page: 447 issue: 3 year: 1996 end-page: 451 article-title: Stable adaptive neural control scheme for nonlinear systems publication-title: IEEE Trans Autom Control – volume: 195 year: 2020 article-title: FAILOS guidance law based adaptive fuzzy finite‐time path following control for underactuated MSV publication-title: Ocean Eng – volume: 24 start-page: 787 issue: 1 year: 2022 end-page: 800 article-title: Dynamic event‐triggered adaptive neural output feedback control for MSVs using composite learning publication-title: IEEE Trans Intell Transp Syst – volume: 159 start-page: 219 year: 2018 end-page: 227 article-title: Finite‐time extended state observer‐based distributed formation control for marine surface vehicles with input saturation and disturbances publication-title: Ocean Eng – volume: 32 start-page: 143 issue: 3 year: 1997 end-page: 150 article-title: Stochastic nonlinear stabilizationâeuro–I: A backstepping design publication-title: Syst Control Lett – volume: 18 start-page: 911 issue: 2 year: 2021 end-page: 921 article-title: Relative threshold‐based event‐triggered control for nonlinear constrained systems with application to aircraft wing rock motion publication-title: IEEE Trans Industr Inform – volume: 253 year: 2022 article-title: Event‐triggered‐based nonlinear model predictive control for trajectory tracking of underactuated ship with multi‐obstacle avoidance publication-title: Ocean Eng – volume: 34 start-page: 270 issue: 1 year: 2024 end-page: 295 article-title: Synchronized tracking control for dynamic positioning vessel publication-title: Int J Robust Nonlinear Control – volume: 30 start-page: 5004 issue: 13 year: 2020 end-page: 5020 article-title: Adaptive disturbance estimation and cancelation for ships under thruster saturation publication-title: Int J Robust Nonlinear Control – volume: 191 year: 2019 article-title: High performance super‐twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP‐based adaptive gains and time delay estimation publication-title: Ocean Eng – volume: 70 start-page: 2994 issue: 4 year: 2021 end-page: 3006 article-title: Adaptive neural output feedback control for MSVs with predefined performance publication-title: IEEE Trans Veh Technol – volume: 90 start-page: 30 year: 2019 end-page: 40 article-title: An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer publication-title: ISA Trans – volume: 238 year: 2021 article-title: Adaptive finite‐time event‐triggered control of marine surface vehicles with prescribed performance and output constraints publication-title: Ocean Eng – volume: 357 start-page: 6805 issue: 11 year: 2020 end-page: 6823 article-title: Fault‐tolerant tracking control with guaranteed performance for nonlinearly parameterized systems under uncertain initial conditions publication-title: J Frank Inst – volume: 270 year: 2023 article-title: Indirect adaptive neural tracking control of USVs under injection and deception attacks publication-title: Ocean Eng – volume: 129 year: 2021 article-title: Time‐varying IBLFs‐based adaptive control of uncertain nonlinear systems with full state constraints publication-title: Automatica – volume: 63 start-page: 1717 issue: 3 year: 2015 end-page: 1727 article-title: Neural learning control of marine surface vessels with guaranteed transient tracking performance publication-title: IEEE Trans Ind Electron – volume: 53 start-page: 4922 issue: 8 year: 2023 end-page: 4933 article-title: Event‐triggered adaptive PID fault‐tolerant control of underactuated ASVs under saturation constraint publication-title: IEEE Trans Syst Man Cybern Syst – volume: 253 year: 2022 article-title: Dynamic surface control for tracking of unmanned surface vessel with prescribed performance and asymmetric time‐varying full state constraints publication-title: Ocean Eng – volume: 7 start-page: 438 issue: 12 year: 2019 article-title: State‐of‐the‐art research on motion control of maritime autonomous surface ships publication-title: J Marine Sci Eng – volume: 35 start-page: 820 year: 2022 end-page: 838 article-title: Distributed event‐triggered formation control of USVs with prescribed performance publication-title: J Syst Sci Complex – volume: 227 year: 2021 article-title: Coordinated target tracking by multiple unmanned surface vehicles with communication delays based on a distributed event‐triggered extended state observer publication-title: Ocean Eng – volume: 50 start-page: 1217 issue: 4 year: 2014 end-page: 1226 article-title: A low‐complexity global approximation‐free control scheme with prescribed performance for unknown pure feedback systems publication-title: Automatica – year: 2015 – volume: 377 start-page: 103 year: 2020 end-page: 112 article-title: MLP neural network‐based recursive sliding mode dynamic surface control for trajectory tracking of fully actuated surface vessel subject to unknown dynamics and input saturation publication-title: Neurocomputing – volume: 53 start-page: 2090 issue: 9 year: 2008 end-page: 2099 article-title: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance publication-title: IEEE Trans Autom Control – volume: 106 year: 2021 article-title: Neural network based adaptive event trigger control for a class of electromagnetic suspension systems publication-title: Control Eng Pract – volume: 86 start-page: 144 year: 2019 end-page: 152 article-title: Grid index subspace constructed locally weighted learning identification modeling for high dimensional ship maneuvering system publication-title: ISA Trans – ident: e_1_2_9_31_1 doi: 10.1016/j.oceaneng.2022.111278 – ident: e_1_2_9_6_1 doi: 10.1016/j.oceaneng.2019.106526 – ident: e_1_2_9_13_1 doi: 10.1002/rnc.5915 – ident: e_1_2_9_14_1 doi: 10.1002/rnc.5032 – ident: e_1_2_9_17_1 doi: 10.1016/j.oceaneng.2018.04.016 – ident: e_1_2_9_43_1 doi: 10.1109/TNNLS.2020.3027689 – ident: e_1_2_9_35_1 doi: 10.1016/j.neucom.2015.12.027 – ident: e_1_2_9_33_1 doi: 10.1109/TAC.2007.904277 – ident: e_1_2_9_5_1 doi: 10.1016/j.isatra.2018.02.003 – ident: e_1_2_9_20_1 doi: 10.1016/j.oceaneng.2019.106726 – volume-title: Global marine technology trends 2030 year: 2015 ident: e_1_2_9_2_1 – ident: e_1_2_9_12_1 doi: 10.1109/TITS.2020.2976567 – ident: e_1_2_9_49_1 doi: 10.1016/S1474-6670(17)31732-9 – ident: e_1_2_9_27_1 doi: 10.1016/j.oceaneng.2021.109712 – ident: e_1_2_9_18_1 doi: 10.1109/TSMC.2023.3256538 – ident: e_1_2_9_26_1 doi: 10.1016/j.jfranklin.2019.07.019 – ident: e_1_2_9_41_1 doi: 10.1109/9.486648 – ident: e_1_2_9_46_1 doi: 10.1016/j.jfranklin.2020.04.057 – ident: e_1_2_9_23_1 doi: 10.1016/j.oceaneng.2023.113641 – ident: e_1_2_9_39_1 doi: 10.1016/j.conengprac.2020.104675 – ident: e_1_2_9_36_1 doi: 10.1016/j.neucom.2019.10.044 – ident: e_1_2_9_22_1 doi: 10.1016/j.neucom.2019.08.090 – ident: e_1_2_9_7_1 doi: 10.1016/j.isatra.2018.11.001 – ident: e_1_2_9_28_1 doi: 10.1016/j.automatica.2021.109595 – ident: e_1_2_9_48_1 doi: 10.1109/TIE.2015.2504553 – ident: e_1_2_9_42_1 doi: 10.1016/S0167-6911(97)00068-6 – ident: e_1_2_9_25_1 doi: 10.1109/TAC.2008.929402 – ident: e_1_2_9_15_1 doi: 10.1016/j.isatra.2018.12.047 – ident: e_1_2_9_38_1 doi: 10.1016/j.oceaneng.2020.108283 – ident: e_1_2_9_45_1 doi: 10.1016/j.automatica.2014.02.020 – ident: e_1_2_9_11_1 doi: 10.1016/j.neucom.2018.07.025 – ident: e_1_2_9_29_1 doi: 10.1016/j.apor.2023.103628 – ident: e_1_2_9_40_1 doi: 10.1109/.2005.1469806 – ident: e_1_2_9_24_1 doi: 10.1016/j.automatica.2008.11.017 – ident: e_1_2_9_4_1 doi: 10.1109/TVT.2021.3063687 – ident: e_1_2_9_8_1 doi: 10.3390/jmse7120438 – ident: e_1_2_9_16_1 doi: 10.1016/j.isatra.2022.06.011 – ident: e_1_2_9_47_1 doi: 10.1109/TITS.2021.3066461 – ident: e_1_2_9_21_1 doi: 10.1109/TFUZZ.2020.3028907 – ident: e_1_2_9_32_1 doi: 10.1109/TII.2021.3080841 – ident: e_1_2_9_37_1 doi: 10.1007/s11424-021-0150-0 – ident: e_1_2_9_30_1 doi: 10.1016/j.oceaneng.2022.111319 – ident: e_1_2_9_19_1 doi: 10.1002/rnc.6623 – ident: e_1_2_9_44_1 doi: 10.1002/rnc.6970 – volume-title: Maritime autonomous surface ships UK code of practice year: 2018 ident: e_1_2_9_3_1 – ident: e_1_2_9_10_1 doi: 10.1109/TITS.2022.3217152 – ident: e_1_2_9_9_1 doi: 10.1016/j.jfranklin.2017.01.012 – ident: e_1_2_9_34_1 doi: 10.1109/TAC.2015.2502145 |
| SSID | ssj0009924 |
| Score | 2.426154 |
| Snippet | This article discusses the control problem of marine autonomous surface ships (MASS) under cross‐water scenarios, that is, from open water to restricted water,... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 10609 |
| SubjectTerms | Actuators Adaptive control adaptive neural control barrier Lyapunov function concurrent event‐triggered protocol cross‐water scenarios Liapunov functions maritime autonomous surface ships (MASS) prespecified performance |
| Title | Concurrent event‐triggered adaptive neural control for MASS under cross‐water scenarios |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.7534 https://www.proquest.com/docview/3119080665 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1099-1239 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0009924 issn: 1049-8923 databaseCode: AMVHM dateStart: 20120801 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1049-8923 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1239 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009924 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDeNKDv8XplAjiLVubpGl7HMMxBHfYHAx2KEmaehC20XUInvwT_Bv9S3xJWzcFQTz10lea9_KSb9qXTxC6MVGcMqM0iYXKCKfaEMUzQ0wY-CJIQ5NmrkB2IPpjfj8JJlVVpd0LU_Ihvj642cxw47VNcKmW7TU0NIf8Aa1tUaA-E241NVyTo-K4PM8WBDCJQMTU3FmPtmvD7zPRWl5uilQ3y_T20bR-v7K45Lm1KlRLv_5AN_6vAQdorxKfuFP2lkO0ZWZHaHcDSXiMpt35TJfMJuzgTh9v7wWs4J_smZ5YpnJhx0dsMZjwpKrQHYPyxQ-d0QjbLWk5dg0GwxcQsjm2vChYkc-XJ2jcu3vs9kl1AAPRllxGDGfG94zIPKUiT0sBUfWZlCnNfE7DNGTUYyz1lBCSGggty0QYU8kd1oZJdoq2Z_OZOUNYGh1qGqVK-IobKaMoC7Qf84wrGOGU10DXdTCSRcnZSEqiMk3AUYl1VAM16yglVaYtE-aDpInsD6QGunXu_tU-GQ669nr-1xsv0A4FDVPW7jXRdpGvzCVokEJdud72CcvH3LI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfcx7Ug7_F6dQI4q2zTbK0xdMYjqlzh22CoFCSNPUgbGM_EDz5J_g3-pf40q5OBUE89dKUJi8v-SZ5-TyAExOEMTNKO6FQicOpNo7iiXGMX_VENfZNnKQBsm3RvOVXd9W7Apznd2EyPsTnhpv1jHS8tg5uN6TP5tTQEToQim2-AItc4DLFKqLOnB0VhllGW5TAToAyJifPuvQsL_l9LpoLzK8yNZ1nGmvwkP9hFl7yVJlOVEW__IA3_rMK67A605-klnWYDSiY_iasfKESbsF9fdDXGbaJpHyn99e3CS7iH21aTyJjObRDJLEkTPzSLNadoPglN7Vul9hbaSOS1hgLPqOWHRGLjMJF-WC8DbeNi1696cxyMDjawsscw5nxXCMSV6nA1VKgYT0mZUwTj1M_9hl1GYtdJYSkBq3LEuGHVPKUbMMk24Fif9A3u0Ck0b6mQayEp7iRMgiSqvZCnnCFg5xyS3CcWyMaZqiNKIMq0wgbKrINVYJybqZo5mzjiHmoagJ7hlSC07S9fy0fddp1-9z764tHsNTs3bSi1mX7eh-WKUqaLJSvDMXJaGoOUJJM1GHa9T4AnY3g0w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8QwEMcHHyB68C2uzwjirdomadriSVYXn4v4AEGh5OlB2F3WFcGTH8HP6Cdx0m5dFQTx1EtTmkxm8k87-Q3Apk0zw6zSQSaUCzjVNlDc2cAmcSRik1jjigTZpji85sc38c0Q7FZnYUo-xOcHN-8ZRbz2Dm47xu0MqKFddCAU23wYRnmcpT6fb_9iwI7KsrKiLUrgIEUZU5FnQ7pTtfy-Fg0E5leZWqwzjSm4q96wTC952H7qqW398gPe-M8uTMNkX3-SvXLCzMCQbc3CxBcq4Rzc1tstXWKbSMF3en996-Em_t6X9STSyI4PkcSTMPFJ_Vx3guKXnO1dXhJ_Kq1Lih5jw2fUsl3ikVG4KW8_zsN14-Cqfhj0azAE2sPLAsuZjUIrXKhUGmop0LARk9JQF3GamITRkDETKiEktWhd5kSSUckLsg2TbAFGWu2WXQQirU40TY0SkeJWyjR1sY4y7rjCIKfCGmxU1sg7JWojL6HKNMeByv1A1WClMlPed7bHnEWoalL_D6kGW8V4_9o-v2jW_XXprzeuw9j5fiM_PWqeLMM4RUVTZvKtwEiv-2RXUZH01Fox8z4Acd_gVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concurrent+event%E2%80%90triggered+adaptive+neural+control+for+MASS+under+cross%E2%80%90water+scenarios&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Ye%2C+Xiang&rft.au=Chen%2C+Chao&rft.au=Zhu%2C+Guibing&rft.au=Hu%2C+Xin&rft.date=2024-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=34&rft.issue=15&rft.spage=10609&rft.epage=10627&rft_id=info:doi/10.1002%2Frnc.7534&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |