Automation and Genetic Algorithm Optimization for Seismic Modeling and Analysis of Tall RC Buildings

This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 15; no. 19; p. 3618
Main Authors Cabrera, Piero A., Medina, Gianella M., Delgadillo, Rick M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 09.10.2025
Subjects
Online AccessGet full text
ISSN2075-5309
2075-5309
DOI10.3390/buildings15193618

Cover

Abstract This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R2 = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10−5, reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R2 = 0.9385 and an RMSE = 5.21742 × 10−5, demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence.
AbstractList This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R2 = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10−5, reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R2 = 0.9385 and an RMSE = 5.21742 × 10−5, demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence.
This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R[sup.2] = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10[sup.−5], reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R[sup.2] = 0.9385 and an RMSE = 5.21742 × 10[sup.−5], demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence.
Audience Academic
Author Cabrera, Piero A.
Medina, Gianella M.
Delgadillo, Rick M.
Author_xml – sequence: 1
  givenname: Piero A.
  orcidid: 0009-0000-0292-5689
  surname: Cabrera
  fullname: Cabrera, Piero A.
– sequence: 2
  givenname: Gianella M.
  orcidid: 0009-0007-6064-2952
  surname: Medina
  fullname: Medina, Gianella M.
– sequence: 3
  givenname: Rick M.
  orcidid: 0000-0002-9763-1938
  surname: Delgadillo
  fullname: Delgadillo, Rick M.
BookMark eNqNUcFu1DAUtFArtZR-QG-WOG-x4zixj2EFpVJRJWjPlmM_L14l8WInQtuv57UBhMSFd7H1NDOeGb8mJ1OagJArzq6F0Oxdv8TBx2lXuORaNFy9IucVa-VGCqZP_rqfkctS9gxHyaqS9Tnx3TKn0c4xTdROnt7ABHN0tBt2Kcf520jvD3Mc49MKCSnTrxDLiJDPycOAr77wuskOxxILTYE-2GGgX7b0_W9bb8hpsEOBy1_nBXn8-OFh-2lzd39zu-3uNg698E3Fed9bZ1kA8GhPaxAt505rxn3jKidV2zdOoHdguva8YZbj9JI51XgvLsjtquuT3ZtDjqPNR5NsNC-LlHfGZkw3gOGtr0EKsNJB7WroewctD1oF1aoQKtSqVq1lOtjjD4z0R5Az81y7-ad2JL1dSYecvi9QZrNPS8ZqihFVw5lsWvmMul5RO4tO4hTSnDG2sx6wV_zaEHHfKSxASqUlEvhKcDmVkiH8h5WfZRamuw
Cites_doi 10.1016/j.engappai.2024.108143
10.1016/j.aei.2022.101568
10.1016/j.engstruct.2023.117295
10.1016/j.jobe.2022.105493
10.1016/j.istruc.2022.05.008
10.1016/j.jobe.2024.110124
10.1016/j.engstruct.2023.117264
10.3390/s22103775
10.1016/j.istruc.2023.02.127
10.1016/j.enggeo.2024.107570
10.1016/j.jobe.2023.107485
10.1016/j.istruc.2023.105712
10.1016/j.asoc.2024.112026
10.1007/s11042-023-16931-4
10.1016/j.istruc.2023.05.057
10.1016/j.istruc.2024.106774
10.1016/j.ijdrr.2021.102677
10.1002/0471749214
10.1016/j.eswa.2024.124897
10.1016/j.engappai.2023.107388
10.1007/s43452-023-00631-9
10.1016/j.engstruct.2022.114638
10.5194/gmd-15-5481-2022
10.1016/j.engstruct.2024.118529
10.1016/j.jmva.2014.01.006
10.1016/j.soildyn.2023.108423
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
ADTOC
UNPAY
DOA
DOI 10.3390/buildings15193618
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_17d4e53ea5ce4c4ebbce71f98f878ff2
10.3390/buildings15193618
A859955895
10_3390_buildings15193618
GeographicLocations Peru
GeographicLocations_xml – name: Peru
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c2541-211bbaca0feed22599e3711c9901d6c2c587b6c3852e094d160a1111b50c86dd3
IEDL.DBID BENPR
ISSN 2075-5309
IngestDate Mon Oct 20 21:13:55 EDT 2025
Sun Oct 12 06:13:00 EDT 2025
Thu Oct 16 03:42:37 EDT 2025
Tue Oct 21 03:58:12 EDT 2025
Thu Oct 16 04:30:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2541-211bbaca0feed22599e3711c9901d6c2c587b6c3852e094d160a1111b50c86dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-0292-5689
0009-0007-6064-2952
0000-0002-9763-1938
OpenAccessLink https://www.proquest.com/docview/3261056758?pq-origsite=%requestingapplication%&accountid=15518
PQID 3261056758
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_17d4e53ea5ce4c4ebbce71f98f878ff2
unpaywall_primary_10_3390_buildings15193618
proquest_journals_3261056758
gale_infotracacademiconefile_A859955895
crossref_primary_10_3390_buildings15193618
PublicationCentury 2000
PublicationDate 2025-10-09
PublicationDateYYYYMMDD 2025-10-09
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-09
  day: 09
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kazemi (ref_13) 2024; 255
Ekmen (ref_8) 2024; 336
Angelucci (ref_2) 2024; 95
Luo (ref_14) 2022; 52
Nair (ref_16) 2024; 83
ref_19
Zhang (ref_22) 2024; 316
Cheng (ref_28) 2014; 126
Hodson (ref_29) 2022; 15
Wen (ref_20) 2022; 267
Miceli (ref_6) 2024; 164
Cosgun (ref_5) 2023; 50
Falcone (ref_9) 2022; 41
Asgarkhani (ref_3) 2024; 128
ref_25
Kazemi (ref_12) 2023; 23
ref_24
Parisi (ref_17) 2024; 59
Zhang (ref_23) 2024; 301
Demertzis (ref_7) 2023; 63
Xu (ref_21) 2024; 65
Ma (ref_15) 2024; 177
ref_27
ref_26
Ju (ref_11) 2024; 133
Stefanini (ref_18) 2022; 67
Gu (ref_10) 2023; 77
Aloisio (ref_1) 2024; 301
Chen (ref_4) 2023; 54
References_xml – volume: 133
  start-page: 108143
  year: 2024
  ident: ref_11
  article-title: Prediction framework of slope topographic amplification on seismic acceleration based on machine learning algorithms
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108143
– volume: 52
  start-page: 101568
  year: 2022
  ident: ref_14
  article-title: Artificial intelligence-enhanced seismic response prediction of reinforced concrete frames
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101568
– volume: 301
  start-page: 117295
  year: 2024
  ident: ref_1
  article-title: Machine learning predictions of code-based seismic vulnerability for reinforced concrete and masonry buildings: Insights from a 300-building database
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.117295
– ident: ref_24
– ident: ref_26
– volume: 63
  start-page: 105493
  year: 2023
  ident: ref_7
  article-title: An interpretable machine learning method for the prediction of R/C buildings’ seismic response
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.105493
– volume: 41
  start-page: 1220
  year: 2022
  ident: ref_9
  article-title: Artificial neural network for technical feasibility prediction of seismic retrofitting in existing RC structures
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.05.008
– volume: 95
  start-page: 110124
  year: 2024
  ident: ref_2
  article-title: Interpretable machine learning models for displacement demand prediction in reinforced concrete buildings under pulse-like earthquakes
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.110124
– volume: 301
  start-page: 117264
  year: 2024
  ident: ref_23
  article-title: Seismic response prediction of a damped structure based on data-driven machine learning methods
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.117264
– ident: ref_19
  doi: 10.3390/s22103775
– volume: 50
  start-page: 1994
  year: 2023
  ident: ref_5
  article-title: Machine learning for the prediction of evaluation of existing reinforced concrete structures performance against earthquakes
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.02.127
– volume: 336
  start-page: 107570
  year: 2024
  ident: ref_8
  article-title: Development of novel artificial intelligence functions based on 3D finite element method using February 6 Kahramanmaraş Seismic Records for earthquake effects prediction in various soils
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2024.107570
– volume: 77
  start-page: 107485
  year: 2023
  ident: ref_10
  article-title: Automated simplified structural modeling method for megatall buildings based on genetic algorithm
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2023.107485
– volume: 59
  start-page: 105712
  year: 2024
  ident: ref_17
  article-title: On the use of mechanics-informed models to structural engineering systems: Application of graph neural networks for structural analysis
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.105712
– volume: 164
  start-page: 112026
  year: 2024
  ident: ref_6
  article-title: Machine learning modelling of structural response for different seismic signal characteristics: A parametric analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112026
– volume: 83
  start-page: 42285
  year: 2024
  ident: ref_16
  article-title: Enhancing seismic performance prediction of RC frames using MFF-ANN model approach
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16931-4
– volume: 54
  start-page: 857
  year: 2023
  ident: ref_4
  article-title: Optimization of the seismic resistance of school buildings using artificial intelligence and sensitivity analysis theories—A Taiwan case study
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.05.057
– volume: 65
  start-page: 106774
  year: 2024
  ident: ref_21
  article-title: Seismic fragility analysis of RC frame structures based on IDA analysis and machine learning
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.106774
– volume: 67
  start-page: 102677
  year: 2022
  ident: ref_18
  article-title: Neural networks for the rapid seismic assessment of existing moment-frame RC buildings
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2021.102677
– ident: ref_25
  doi: 10.1002/0471749214
– volume: 255
  start-page: 124897
  year: 2024
  ident: ref_13
  article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124897
– ident: ref_27
– volume: 128
  start-page: 107388
  year: 2024
  ident: ref_3
  article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107388
– volume: 23
  start-page: 94
  year: 2023
  ident: ref_12
  article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1007/s43452-023-00631-9
– volume: 267
  start-page: 114638
  year: 2022
  ident: ref_20
  article-title: Rapid seismic response prediction of RC frames based on deep learning and limited building information
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114638
– volume: 15
  start-page: 5481
  year: 2022
  ident: ref_29
  article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-5481-2022
– volume: 316
  start-page: 118529
  year: 2024
  ident: ref_22
  article-title: Study on the evolution of dynamic characteristics and seismic damage of a self-centering concrete structure based on data-driven methods
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.118529
– volume: 126
  start-page: 137
  year: 2014
  ident: ref_28
  article-title: Coefficient of determination for multiple measurement error models
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2014.01.006
– volume: 177
  start-page: 108423
  year: 2024
  ident: ref_15
  article-title: Prediction on the seismic performance limits of reinforced concrete columns based on machine learning method
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2023.108423
SSID ssj0000852254
Score 2.3195798
Snippet This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3618
SubjectTerms Accuracy
Algorithms
application programming interface
Artificial intelligence
Automation
Concrete
Earthquakes
genetic algorithm
Genetic algorithms
Gravity
High rise buildings
Lead time
Machine learning
Material properties
Mean square errors
Modelling
Neural networks
Optimization
Optimization techniques
python
Reinforced concrete
Root-mean-square errors
Run time (computers)
Seismic analysis
Seismic response
Shear forces
Simulation
Skyscrapers
Stochastic processes
Structural members
Support vector machines
Tall buildings
Technology application
User interface
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC7Ey-pBdn1gXF36IAhKcGJ3-nEcZUX2sIIP8Nb0Kz6YyYgzg_jvrUoyEvDgxWuoQD2660FXfQWw75Q0TmueK654LjCI5EZGTftNBHfe--iaLt__8uJW_Lsr73qrvqgnrIUHbhV3XKgoUsmTK0MSQSTvQ1JFZXSlla6qxvsOtOkVU09t9xUeVNE-Y3Ks6499t2V6WlDOImnJRy8QNXj9n73yKvyY18_u7dWNRr2wc_4T1rp8kQ1bPn_BUqrXYbWHIrgBcTifTdoJRObqyAhJGqnZcHQ_wdL_Ycwu0S-Mu4FLhlkqu06P0zGS0CY0mkdv_lvgk7BJxW6QFXZ1xk4X8mzC7fnfm7OLvFuekAcUvMixsPPeBTeoMAqiLoxJXBVFoHewKMNJKLXyMnBUVMISLxZy4Mh9-nIQtIyRb8FyPanTNjAkDd4JUWJ8F6YKJgbl0DFIGSpMuIoMDheatM8tRobF2oLUbj-pPYNT0vUHIcFbNx_Q6LYzuv3K6BkckKUsXcLZC0rZzRIgvwRnZYeacNRKbcoMdhfGtN3tnFpMWTGtpFIpg6MPA3_N-8538P4bVk5ohzA1IZhdWJ69zNMeJjYz_6c5w-8wn_gh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gA98EYECvIBCQmUbhzHjn1CaUVVcSgIulI5RX6lXbGbrHazIPj1zORRregBIa7RRLIz45lv4plvCHllcqmNUjzOec7jDIJIrKVXON8k48Za601X5XsmT2fZhwtxsdPFj2WVkIrPOyedQjyLBU_0lIkp01MumZqufPXu-_AvieG1UsI5tq_vSQFofEL2Zmefiq84U258u7_MBKlkaodZ0xuGyEXiqI-dcNSx9t_0zfvk9rZemZ8_zGKxE3xO7hEzLruvOfl2uG3tofv1B6Pj_-zrPrk7IFNa9Kb0gNwK9UOyv8NX-Ij4Yts2fa8jNbWnyFkN0rRYXDbreXu1pB_BAy2H1k4KeJh-CfPNEkRw5hp2vnfvjUwotKnoOWyXfj6mR-M3e0xmJ-_Pj0_jYUxD7CC7ZDGkkNYaZ5IK4i24B60DzxlzeOPmpUudULmVjiuRBkgmPZOJQUdtReKU9J4_IZO6qcNTQkHUWZNlApBEpiunvcsNuCApXQXQjkXkzaitctWzcZSQxaBqyxuqjcgR6vNaEIm0uwfN-rIczmXJcp8FwYMRLmQuC9a6kLNKq0rlqqrSiLxGayjxuLdr2OXQtQDrReKsslDI2CaUFhE5GA2mHPzApgRwDAAWk7KIvL02or-v_dk_ST8nd1IcS4x1DfqATNr1NrwArNTal8Nx-A00vA7T
  priority: 102
  providerName: Unpaywall
Title Automation and Genetic Algorithm Optimization for Seismic Modeling and Analysis of Tall RC Buildings
URI https://www.proquest.com/docview/3261056758
https://www.mdpi.com/2075-5309/15/19/3618/pdf?version=1760003391
https://doaj.org/article/17d4e53ea5ce4c4ebbce71f98f878ff2
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB4S59DmUNIXVZuaPRQKLSKWtVrtHkKRQ9zQgxvSGNKT2JeSgi25tkzpv8-MLDmGQHuUGIndmd2Z2cd8H8AHnQqlpYzDNE7jkGMQCZVwkvhNeKyNMU43t3wn4mLKv90kN3sw6Wph6Fpl5xMbR-0qS3vkJ5hmEEk8prdfFr9DYo2i09WOQkO31ArutIEY24eDISFj9eBgdD65vNruumCCgQOYb443Y1zvn5iWfXoVUS4jiPxjJ0A1OP6PvfUhPFmXC_33j57NdsLR-AietXkkyzaGfw57vnwBhzvogi_BZeu62lQmMl06RgjTKM2y2S12rL6bs-_oL-ZtISbD7JX98L9WcxQhhjSqU2--63BLWFWwa2wKuzpjo64_r2A6Pr8-uwhbUoXQYsejEBd8xmirBwVGR9SFUj5Oo8jS-ZgTdmgTmRphY1SUx6Wfi8RAk1s1ycBK4Vz8GnplVfo3wFDUGs15gnGfq8IqZ1ONDkMIW6AVogA-dZrMFxvsjBzXHKT2_JHaAxiRrreCBHvdvKiWt3k7i_IoddwnsdeJ9dxyb4z1aVQoWchUFsUwgI9kqZwmZ73EXrY1BthegrnKM0n4aolUSQDHnTHzdtau8ocxFsDnrYH_3_a3__7ZO3g6JNZgunagjqFXL9f-PaYytenDvhx_7bejtN9sCODTdHKZ_bwHYar37w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDxFoIAPICRQ1E3sJPahQrul1ZaWBZWt1FvwKwVpN1n2oap_jt_GTDZZVqoEp16jiWXPjOdhe-YDeK2zVGkpeZjxjIcCnUioUicJ30RwbYxxun7lO0j75-LTRXKxAb_bWhh6VtnaxNpQu8rSGfkehhkEEo_h7YfJr5BQo-h2tYXQ0A20gtuvW4w1hR0n_voKU7jZ_vFHlPebOD46HB70wwZlILSYHEUhZkDGaKs7BboL1G6lPM-iyNKFkUttbBOZmdRymcQecyEXpR1NdsYkHStT5ziOewe2BBcKk7-t3uHg69nqlAcDGhxSLK9TOVedPdOgXc8iip1SAhtZc4g1bsBN77AD24tyoq-v9Gi05v6O7sO9Jm5l3aWiPYANXz6EnbVuho_AdRfzalkJyXTpGHW0RmrWHV0iI-c_xuwL2qdxU_jJMFpm3_zP2RhJCJGN6uLr_9o-Kawq2BCnws4OWK9dz2M4vxX2PoHNsir9U2BIao0WIsE4Q6jCKmczjQYqTW2BUo8CeNdyMp8se3XkmOMQ2_MbbA-gR7xeEVKb7fpDNb3Mm12bR5kTPuFeJ9YLK7wx1mdRoWQhM1kUcQBvSVI5GYP5FFfZ1DTgfKmtVt6V1M8tkSoJYLcVZt5YiVn-V6cDeL8S8P_n_uzfg72C7f7w82l-ejw4eQ53Y0IspicPahc259OFf4Fh1Ny8bHSVwffb3h5_AGCKMA8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUMAHEBIo2k3sxM4BoW3L0lJUELRSb8GvFKTdZNnNqupf49cxk8eyUiU49Ro5lj0ez3xje-YDeKFlmmmleCi55KFAJxJmqVPEbyK4NsY43bzyPUr3T8TH0-R0A373uTD0rLK3iY2hdpWlM_IBwgwiiUd4Oyi6ZxFf9sbvZr9CYpCim9aeTqNVkUN_cY7h2-LtwR6u9cs4Hr8_3t0PO4aB0GJgFIUY_RijrR4W6CpQs7PMcxlFli6LXGpjmyhpUstVEnuMg1yUDjXZGJMMrUqd49jvNbguqYo7ZamPP6zOdxDKYIeivUjlPBsOTMdzvYgINaVEM7LmChvGgMt-YQtuLsuZvjjXk8ma4xvfgdsdYmWjVsXuwoYv78HWWh3D--BGy7pqcyCZLh2jWtbYmo0mZyi2-seUfUbLNO1SPhniZPbN_1xMsQlxsVFGfPNfXyGFVQU7xqGwr7tsp5_PAzi5EuE-hM2yKv0jYNjUGi1EgghDZIXNnJUaTVOa2gIhXxTA616S-ayt0pFjdENizy-JPYAdkvWqIRXYbj5U87O82695JJ3wCfc6sV5Y4Y2xXkZFpgolVVHEAbyilcrJDNRznGWXzYDjpYJa-UhRJbdEZUkA2_1i5p19WOR_tTmAN6sF_v_YH_-7s-dwAzdF_ung6PAJ3IqJqpjeOmTbsFnPl_4p4qfaPGsUlcH3q94ZfwAUfS2p
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gA98EYECvIBCQmUbhzHjn1CaUVVcSgIulI5RX6lXbGbrHazIPj1zORRregBIa7RRLIz45lv4plvCHllcqmNUjzOec7jDIJIrKVXON8k48Za601X5XsmT2fZhwtxsdPFj2WVkIrPOyedQjyLBU_0lIkp01MumZqufPXu-_AvieG1UsI5tq_vSQFofEL2Zmefiq84U258u7_MBKlkaodZ0xuGyEXiqI-dcNSx9t_0zfvk9rZemZ8_zGKxE3xO7hEzLruvOfl2uG3tofv1B6Pj_-zrPrk7IFNa9Kb0gNwK9UOyv8NX-Ij4Yts2fa8jNbWnyFkN0rRYXDbreXu1pB_BAy2H1k4KeJh-CfPNEkRw5hp2vnfvjUwotKnoOWyXfj6mR-M3e0xmJ-_Pj0_jYUxD7CC7ZDGkkNYaZ5IK4i24B60DzxlzeOPmpUudULmVjiuRBkgmPZOJQUdtReKU9J4_IZO6qcNTQkHUWZNlApBEpiunvcsNuCApXQXQjkXkzaitctWzcZSQxaBqyxuqjcgR6vNaEIm0uwfN-rIczmXJcp8FwYMRLmQuC9a6kLNKq0rlqqrSiLxGayjxuLdr2OXQtQDrReKsslDI2CaUFhE5GA2mHPzApgRwDAAWk7KIvL02or-v_dk_ST8nd1IcS4x1DfqATNr1NrwArNTal8Nx-A00vA7T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automation+and+Genetic+Algorithm+Optimization+for+Seismic+Modeling+and+Analysis+of+Tall+RC+Buildings&rft.jtitle=Buildings+%28Basel%29&rft.au=Cabrera%2C+Piero+A&rft.au=Medina%2C+Gianella+M&rft.au=Delgadillo%2C+Rick+M&rft.date=2025-10-09&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=15&rft.issue=19&rft.spage=3618&rft_id=info:doi/10.3390%2Fbuildings15193618&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon