Automation and Genetic Algorithm Optimization for Seismic Modeling and Analysis of Tall RC Buildings
This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels...
Saved in:
| Published in | Buildings (Basel) Vol. 15; no. 19; p. 3618 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
09.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-5309 2075-5309 |
| DOI | 10.3390/buildings15193618 |
Cover
| Abstract | This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R2 = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10−5, reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R2 = 0.9385 and an RMSE = 5.21742 × 10−5, demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence. |
|---|---|
| AbstractList | This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R2 = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10−5, reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R2 = 0.9385 and an RMSE = 5.21742 × 10−5, demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence. This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13 and the ETABS 22.1.0 API. The process begins with the collection of information on the base building, a structure of seventeen regular levels, which includes data from structural elements, material properties, geometric configuration, and seismic and gravitational loads. These data are organized in an Excel file for further processing. From this information, a code is developed in Python that automates the structural modeling in ETABS through its API. This code defines the sections, materials, edge conditions, and loads and models the elements according to their coordinates. The resulting base model is used as a starting point to generate an optimal solution using a genetic algorithm. The genetic algorithm adjusts column and beam sections using an approach that includes crossover and controlled mutation operations. Each solution is evaluated by the maximum displacement of the structure, calculating the fitness as the inverse of this displacement, favoring solutions with less deformation. The process is repeated across generations, selecting and crossing the best solutions. Finally, the model that generates the smallest displacement is saved as the optimal solution. Once the optimal solution has been obtained, it is implemented a second code in Python is implemented to perform static and dynamic seismic analysis. The key results, such as displacements, drifts, internal and basal shear forces, are processed and verified in accordance with the Peruvian Technical Standard E.030. The automated model with API shows a significant improvement in accuracy and efficiency compared to traditional methods, highlighting an R[sup.2] = 0.995 in the static analysis, indicating an almost perfect fit, and an RMSE = 1.93261 × 10[sup.−5], reflecting a near-zero error. In the dynamic drift analysis, the automated model reaches an R[sup.2] = 0.9385 and an RMSE = 5.21742 × 10[sup.−5], demonstrating its high precision. As for the lead time, the model automated completed the process in 13.2 min, which means a 99.5% reduction in comparison with the traditional method, which takes 3 h. On the other hand, the genetic algorithm had a run time of 191 min due to its stochastic nature and iterative process. The performance of the genetic algorithm shows that although the improvement is significant between Generation 1 and Generation 2, is stabilized in the following generations, with a slight decrease in Generation 5, suggesting that the algorithm has reached its level has reached a point of convergence. |
| Audience | Academic |
| Author | Cabrera, Piero A. Medina, Gianella M. Delgadillo, Rick M. |
| Author_xml | – sequence: 1 givenname: Piero A. orcidid: 0009-0000-0292-5689 surname: Cabrera fullname: Cabrera, Piero A. – sequence: 2 givenname: Gianella M. orcidid: 0009-0007-6064-2952 surname: Medina fullname: Medina, Gianella M. – sequence: 3 givenname: Rick M. orcidid: 0000-0002-9763-1938 surname: Delgadillo fullname: Delgadillo, Rick M. |
| BookMark | eNqNUcFu1DAUtFArtZR-QG-WOG-x4zixj2EFpVJRJWjPlmM_L14l8WInQtuv57UBhMSFd7H1NDOeGb8mJ1OagJArzq6F0Oxdv8TBx2lXuORaNFy9IucVa-VGCqZP_rqfkctS9gxHyaqS9Tnx3TKn0c4xTdROnt7ABHN0tBt2Kcf520jvD3Mc49MKCSnTrxDLiJDPycOAr77wuskOxxILTYE-2GGgX7b0_W9bb8hpsEOBy1_nBXn8-OFh-2lzd39zu-3uNg698E3Fed9bZ1kA8GhPaxAt505rxn3jKidV2zdOoHdguva8YZbj9JI51XgvLsjtquuT3ZtDjqPNR5NsNC-LlHfGZkw3gOGtr0EKsNJB7WroewctD1oF1aoQKtSqVq1lOtjjD4z0R5Az81y7-ad2JL1dSYecvi9QZrNPS8ZqihFVw5lsWvmMul5RO4tO4hTSnDG2sx6wV_zaEHHfKSxASqUlEvhKcDmVkiH8h5WfZRamuw |
| Cites_doi | 10.1016/j.engappai.2024.108143 10.1016/j.aei.2022.101568 10.1016/j.engstruct.2023.117295 10.1016/j.jobe.2022.105493 10.1016/j.istruc.2022.05.008 10.1016/j.jobe.2024.110124 10.1016/j.engstruct.2023.117264 10.3390/s22103775 10.1016/j.istruc.2023.02.127 10.1016/j.enggeo.2024.107570 10.1016/j.jobe.2023.107485 10.1016/j.istruc.2023.105712 10.1016/j.asoc.2024.112026 10.1007/s11042-023-16931-4 10.1016/j.istruc.2023.05.057 10.1016/j.istruc.2024.106774 10.1016/j.ijdrr.2021.102677 10.1002/0471749214 10.1016/j.eswa.2024.124897 10.1016/j.engappai.2023.107388 10.1007/s43452-023-00631-9 10.1016/j.engstruct.2022.114638 10.5194/gmd-15-5481-2022 10.1016/j.engstruct.2024.118529 10.1016/j.jmva.2014.01.006 10.1016/j.soildyn.2023.108423 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY ADTOC UNPAY DOA |
| DOI | 10.3390/buildings15193618 |
| DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2075-5309 |
| ExternalDocumentID | oai_doaj_org_article_17d4e53ea5ce4c4ebbce71f98f878ff2 10.3390/buildings15193618 A859955895 10_3390_buildings15193618 |
| GeographicLocations | Peru |
| GeographicLocations_xml | – name: Peru |
| GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c2541-211bbaca0feed22599e3711c9901d6c2c587b6c3852e094d160a1111b50c86dd3 |
| IEDL.DBID | BENPR |
| ISSN | 2075-5309 |
| IngestDate | Mon Oct 20 21:13:55 EDT 2025 Sun Oct 12 06:13:00 EDT 2025 Thu Oct 16 03:42:37 EDT 2025 Tue Oct 21 03:58:12 EDT 2025 Thu Oct 16 04:30:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2541-211bbaca0feed22599e3711c9901d6c2c587b6c3852e094d160a1111b50c86dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-0292-5689 0009-0007-6064-2952 0000-0002-9763-1938 |
| OpenAccessLink | https://www.proquest.com/docview/3261056758?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3261056758 |
| PQPubID | 2032422 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_17d4e53ea5ce4c4ebbce71f98f878ff2 unpaywall_primary_10_3390_buildings15193618 proquest_journals_3261056758 gale_infotracacademiconefile_A859955895 crossref_primary_10_3390_buildings15193618 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-09 |
| PublicationDateYYYYMMDD | 2025-10-09 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Buildings (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kazemi (ref_13) 2024; 255 Ekmen (ref_8) 2024; 336 Angelucci (ref_2) 2024; 95 Luo (ref_14) 2022; 52 Nair (ref_16) 2024; 83 ref_19 Zhang (ref_22) 2024; 316 Cheng (ref_28) 2014; 126 Hodson (ref_29) 2022; 15 Wen (ref_20) 2022; 267 Miceli (ref_6) 2024; 164 Cosgun (ref_5) 2023; 50 Falcone (ref_9) 2022; 41 Asgarkhani (ref_3) 2024; 128 ref_25 Kazemi (ref_12) 2023; 23 ref_24 Parisi (ref_17) 2024; 59 Zhang (ref_23) 2024; 301 Demertzis (ref_7) 2023; 63 Xu (ref_21) 2024; 65 Ma (ref_15) 2024; 177 ref_27 ref_26 Ju (ref_11) 2024; 133 Stefanini (ref_18) 2022; 67 Gu (ref_10) 2023; 77 Aloisio (ref_1) 2024; 301 Chen (ref_4) 2023; 54 |
| References_xml | – volume: 133 start-page: 108143 year: 2024 ident: ref_11 article-title: Prediction framework of slope topographic amplification on seismic acceleration based on machine learning algorithms publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108143 – volume: 52 start-page: 101568 year: 2022 ident: ref_14 article-title: Artificial intelligence-enhanced seismic response prediction of reinforced concrete frames publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101568 – volume: 301 start-page: 117295 year: 2024 ident: ref_1 article-title: Machine learning predictions of code-based seismic vulnerability for reinforced concrete and masonry buildings: Insights from a 300-building database publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.117295 – ident: ref_24 – ident: ref_26 – volume: 63 start-page: 105493 year: 2023 ident: ref_7 article-title: An interpretable machine learning method for the prediction of R/C buildings’ seismic response publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.105493 – volume: 41 start-page: 1220 year: 2022 ident: ref_9 article-title: Artificial neural network for technical feasibility prediction of seismic retrofitting in existing RC structures publication-title: Structures doi: 10.1016/j.istruc.2022.05.008 – volume: 95 start-page: 110124 year: 2024 ident: ref_2 article-title: Interpretable machine learning models for displacement demand prediction in reinforced concrete buildings under pulse-like earthquakes publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2024.110124 – volume: 301 start-page: 117264 year: 2024 ident: ref_23 article-title: Seismic response prediction of a damped structure based on data-driven machine learning methods publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.117264 – ident: ref_19 doi: 10.3390/s22103775 – volume: 50 start-page: 1994 year: 2023 ident: ref_5 article-title: Machine learning for the prediction of evaluation of existing reinforced concrete structures performance against earthquakes publication-title: Structures doi: 10.1016/j.istruc.2023.02.127 – volume: 336 start-page: 107570 year: 2024 ident: ref_8 article-title: Development of novel artificial intelligence functions based on 3D finite element method using February 6 Kahramanmaraş Seismic Records for earthquake effects prediction in various soils publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2024.107570 – volume: 77 start-page: 107485 year: 2023 ident: ref_10 article-title: Automated simplified structural modeling method for megatall buildings based on genetic algorithm publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.107485 – volume: 59 start-page: 105712 year: 2024 ident: ref_17 article-title: On the use of mechanics-informed models to structural engineering systems: Application of graph neural networks for structural analysis publication-title: Structures doi: 10.1016/j.istruc.2023.105712 – volume: 164 start-page: 112026 year: 2024 ident: ref_6 article-title: Machine learning modelling of structural response for different seismic signal characteristics: A parametric analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112026 – volume: 83 start-page: 42285 year: 2024 ident: ref_16 article-title: Enhancing seismic performance prediction of RC frames using MFF-ANN model approach publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16931-4 – volume: 54 start-page: 857 year: 2023 ident: ref_4 article-title: Optimization of the seismic resistance of school buildings using artificial intelligence and sensitivity analysis theories—A Taiwan case study publication-title: Structures doi: 10.1016/j.istruc.2023.05.057 – volume: 65 start-page: 106774 year: 2024 ident: ref_21 article-title: Seismic fragility analysis of RC frame structures based on IDA analysis and machine learning publication-title: Structures doi: 10.1016/j.istruc.2024.106774 – volume: 67 start-page: 102677 year: 2022 ident: ref_18 article-title: Neural networks for the rapid seismic assessment of existing moment-frame RC buildings publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2021.102677 – ident: ref_25 doi: 10.1002/0471749214 – volume: 255 start-page: 124897 year: 2024 ident: ref_13 article-title: Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124897 – ident: ref_27 – volume: 128 start-page: 107388 year: 2024 ident: ref_3 article-title: Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107388 – volume: 23 start-page: 94 year: 2023 ident: ref_12 article-title: Machine learning-based seismic response and performance assessment of reinforced concrete buildings publication-title: Arch. Civ. Mech. Eng. doi: 10.1007/s43452-023-00631-9 – volume: 267 start-page: 114638 year: 2022 ident: ref_20 article-title: Rapid seismic response prediction of RC frames based on deep learning and limited building information publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114638 – volume: 15 start-page: 5481 year: 2022 ident: ref_29 article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not publication-title: Geosci. Model Dev. doi: 10.5194/gmd-15-5481-2022 – volume: 316 start-page: 118529 year: 2024 ident: ref_22 article-title: Study on the evolution of dynamic characteristics and seismic damage of a self-centering concrete structure based on data-driven methods publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.118529 – volume: 126 start-page: 137 year: 2014 ident: ref_28 article-title: Coefficient of determination for multiple measurement error models publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2014.01.006 – volume: 177 start-page: 108423 year: 2024 ident: ref_15 article-title: Prediction on the seismic performance limits of reinforced concrete columns based on machine learning method publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2023.108423 |
| SSID | ssj0000852254 |
| Score | 2.3195798 |
| Snippet | This article presents an innovative approach to optimizing the seismic modeling and analysis of high-rise buildings by automating the process with Python 3.13... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 3618 |
| SubjectTerms | Accuracy Algorithms application programming interface Artificial intelligence Automation Concrete Earthquakes genetic algorithm Genetic algorithms Gravity High rise buildings Lead time Machine learning Material properties Mean square errors Modelling Neural networks Optimization Optimization techniques python Reinforced concrete Root-mean-square errors Run time (computers) Seismic analysis Seismic response Shear forces Simulation Skyscrapers Stochastic processes Structural members Support vector machines Tall buildings Technology application User interface |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC7Ey-pBdn1gXF36IAhKcGJ3-nEcZUX2sIIP8Nb0Kz6YyYgzg_jvrUoyEvDgxWuoQD2660FXfQWw75Q0TmueK654LjCI5EZGTftNBHfe--iaLt__8uJW_Lsr73qrvqgnrIUHbhV3XKgoUsmTK0MSQSTvQ1JFZXSlla6qxvsOtOkVU09t9xUeVNE-Y3Ks6499t2V6WlDOImnJRy8QNXj9n73yKvyY18_u7dWNRr2wc_4T1rp8kQ1bPn_BUqrXYbWHIrgBcTifTdoJRObqyAhJGqnZcHQ_wdL_Ycwu0S-Mu4FLhlkqu06P0zGS0CY0mkdv_lvgk7BJxW6QFXZ1xk4X8mzC7fnfm7OLvFuekAcUvMixsPPeBTeoMAqiLoxJXBVFoHewKMNJKLXyMnBUVMISLxZy4Mh9-nIQtIyRb8FyPanTNjAkDd4JUWJ8F6YKJgbl0DFIGSpMuIoMDheatM8tRobF2oLUbj-pPYNT0vUHIcFbNx_Q6LYzuv3K6BkckKUsXcLZC0rZzRIgvwRnZYeacNRKbcoMdhfGtN3tnFpMWTGtpFIpg6MPA3_N-8538P4bVk5ohzA1IZhdWJ69zNMeJjYz_6c5w-8wn_gh priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gA98EYECvIBCQmUbhzHjn1CaUVVcSgIulI5RX6lXbGbrHazIPj1zORRregBIa7RRLIz45lv4plvCHllcqmNUjzOec7jDIJIrKVXON8k48Za601X5XsmT2fZhwtxsdPFj2WVkIrPOyedQjyLBU_0lIkp01MumZqufPXu-_AvieG1UsI5tq_vSQFofEL2Zmefiq84U258u7_MBKlkaodZ0xuGyEXiqI-dcNSx9t_0zfvk9rZemZ8_zGKxE3xO7hEzLruvOfl2uG3tofv1B6Pj_-zrPrk7IFNa9Kb0gNwK9UOyv8NX-Ij4Yts2fa8jNbWnyFkN0rRYXDbreXu1pB_BAy2H1k4KeJh-CfPNEkRw5hp2vnfvjUwotKnoOWyXfj6mR-M3e0xmJ-_Pj0_jYUxD7CC7ZDGkkNYaZ5IK4i24B60DzxlzeOPmpUudULmVjiuRBkgmPZOJQUdtReKU9J4_IZO6qcNTQkHUWZNlApBEpiunvcsNuCApXQXQjkXkzaitctWzcZSQxaBqyxuqjcgR6vNaEIm0uwfN-rIczmXJcp8FwYMRLmQuC9a6kLNKq0rlqqrSiLxGayjxuLdr2OXQtQDrReKsslDI2CaUFhE5GA2mHPzApgRwDAAWk7KIvL02or-v_dk_ST8nd1IcS4x1DfqATNr1NrwArNTal8Nx-A00vA7T priority: 102 providerName: Unpaywall |
| Title | Automation and Genetic Algorithm Optimization for Seismic Modeling and Analysis of Tall RC Buildings |
| URI | https://www.proquest.com/docview/3261056758 https://www.mdpi.com/2075-5309/15/19/3618/pdf?version=1760003391 https://doaj.org/article/17d4e53ea5ce4c4ebbce71f98f878ff2 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB4S59DmUNIXVZuaPRQKLSKWtVrtHkKRQ9zQgxvSGNKT2JeSgi25tkzpv8-MLDmGQHuUGIndmd2Z2cd8H8AHnQqlpYzDNE7jkGMQCZVwkvhNeKyNMU43t3wn4mLKv90kN3sw6Wph6Fpl5xMbR-0qS3vkJ5hmEEk8prdfFr9DYo2i09WOQkO31ArutIEY24eDISFj9eBgdD65vNruumCCgQOYb443Y1zvn5iWfXoVUS4jiPxjJ0A1OP6PvfUhPFmXC_33j57NdsLR-AietXkkyzaGfw57vnwBhzvogi_BZeu62lQmMl06RgjTKM2y2S12rL6bs-_oL-ZtISbD7JX98L9WcxQhhjSqU2--63BLWFWwa2wKuzpjo64_r2A6Pr8-uwhbUoXQYsejEBd8xmirBwVGR9SFUj5Oo8jS-ZgTdmgTmRphY1SUx6Wfi8RAk1s1ycBK4Vz8GnplVfo3wFDUGs15gnGfq8IqZ1ONDkMIW6AVogA-dZrMFxvsjBzXHKT2_JHaAxiRrreCBHvdvKiWt3k7i_IoddwnsdeJ9dxyb4z1aVQoWchUFsUwgI9kqZwmZ73EXrY1BthegrnKM0n4aolUSQDHnTHzdtau8ocxFsDnrYH_3_a3__7ZO3g6JNZgunagjqFXL9f-PaYytenDvhx_7bejtN9sCODTdHKZ_bwHYar37w |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QDxFoIAPICRQ1E3sJPahQrul1ZaWBZWt1FvwKwVpN1n2oap_jt_GTDZZVqoEp16jiWXPjOdhe-YDeK2zVGkpeZjxjIcCnUioUicJ30RwbYxxun7lO0j75-LTRXKxAb_bWhh6VtnaxNpQu8rSGfkehhkEEo_h7YfJr5BQo-h2tYXQ0A20gtuvW4w1hR0n_voKU7jZ_vFHlPebOD46HB70wwZlILSYHEUhZkDGaKs7BboL1G6lPM-iyNKFkUttbBOZmdRymcQecyEXpR1NdsYkHStT5ziOewe2BBcKk7-t3uHg69nqlAcDGhxSLK9TOVedPdOgXc8iip1SAhtZc4g1bsBN77AD24tyoq-v9Gi05v6O7sO9Jm5l3aWiPYANXz6EnbVuho_AdRfzalkJyXTpGHW0RmrWHV0iI-c_xuwL2qdxU_jJMFpm3_zP2RhJCJGN6uLr_9o-Kawq2BCnws4OWK9dz2M4vxX2PoHNsir9U2BIao0WIsE4Q6jCKmczjQYqTW2BUo8CeNdyMp8se3XkmOMQ2_MbbA-gR7xeEVKb7fpDNb3Mm12bR5kTPuFeJ9YLK7wx1mdRoWQhM1kUcQBvSVI5GYP5FFfZ1DTgfKmtVt6V1M8tkSoJYLcVZt5YiVn-V6cDeL8S8P_n_uzfg72C7f7w82l-ejw4eQ53Y0IspicPahc259OFf4Fh1Ny8bHSVwffb3h5_AGCKMA8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUMAHEBIo2k3sxM4BoW3L0lJUELRSb8GvFKTdZNnNqupf49cxk8eyUiU49Ro5lj0ez3xje-YDeKFlmmmleCi55KFAJxJmqVPEbyK4NsY43bzyPUr3T8TH0-R0A373uTD0rLK3iY2hdpWlM_IBwgwiiUd4Oyi6ZxFf9sbvZr9CYpCim9aeTqNVkUN_cY7h2-LtwR6u9cs4Hr8_3t0PO4aB0GJgFIUY_RijrR4W6CpQs7PMcxlFli6LXGpjmyhpUstVEnuMg1yUDjXZGJMMrUqd49jvNbguqYo7ZamPP6zOdxDKYIeivUjlPBsOTMdzvYgINaVEM7LmChvGgMt-YQtuLsuZvjjXk8ma4xvfgdsdYmWjVsXuwoYv78HWWh3D--BGy7pqcyCZLh2jWtbYmo0mZyi2-seUfUbLNO1SPhniZPbN_1xMsQlxsVFGfPNfXyGFVQU7xqGwr7tsp5_PAzi5EuE-hM2yKv0jYNjUGi1EgghDZIXNnJUaTVOa2gIhXxTA616S-ayt0pFjdENizy-JPYAdkvWqIRXYbj5U87O82695JJ3wCfc6sV5Y4Y2xXkZFpgolVVHEAbyilcrJDNRznGWXzYDjpYJa-UhRJbdEZUkA2_1i5p19WOR_tTmAN6sF_v_YH_-7s-dwAzdF_ung6PAJ3IqJqpjeOmTbsFnPl_4p4qfaPGsUlcH3q94ZfwAUfS2p |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gA98EYECvIBCQmUbhzHjn1CaUVVcSgIulI5RX6lXbGbrHazIPj1zORRregBIa7RRLIz45lv4plvCHllcqmNUjzOec7jDIJIrKVXON8k48Za601X5XsmT2fZhwtxsdPFj2WVkIrPOyedQjyLBU_0lIkp01MumZqufPXu-_AvieG1UsI5tq_vSQFofEL2Zmefiq84U258u7_MBKlkaodZ0xuGyEXiqI-dcNSx9t_0zfvk9rZemZ8_zGKxE3xO7hEzLruvOfl2uG3tofv1B6Pj_-zrPrk7IFNa9Kb0gNwK9UOyv8NX-Ij4Yts2fa8jNbWnyFkN0rRYXDbreXu1pB_BAy2H1k4KeJh-CfPNEkRw5hp2vnfvjUwotKnoOWyXfj6mR-M3e0xmJ-_Pj0_jYUxD7CC7ZDGkkNYaZ5IK4i24B60DzxlzeOPmpUudULmVjiuRBkgmPZOJQUdtReKU9J4_IZO6qcNTQkHUWZNlApBEpiunvcsNuCApXQXQjkXkzaitctWzcZSQxaBqyxuqjcgR6vNaEIm0uwfN-rIczmXJcp8FwYMRLmQuC9a6kLNKq0rlqqrSiLxGayjxuLdr2OXQtQDrReKsslDI2CaUFhE5GA2mHPzApgRwDAAWk7KIvL02or-v_dk_ST8nd1IcS4x1DfqATNr1NrwArNTal8Nx-A00vA7T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automation+and+Genetic+Algorithm+Optimization+for+Seismic+Modeling+and+Analysis+of+Tall+RC+Buildings&rft.jtitle=Buildings+%28Basel%29&rft.au=Cabrera%2C+Piero+A&rft.au=Medina%2C+Gianella+M&rft.au=Delgadillo%2C+Rick+M&rft.date=2025-10-09&rft.pub=MDPI+AG&rft.eissn=2075-5309&rft.volume=15&rft.issue=19&rft.spage=3618&rft_id=info:doi/10.3390%2Fbuildings15193618&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |