Multi‐label enhancement manifold learning algorithm for vehicle video

In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple objects in a traffic video image is a challenging problem. Traditional multi‐label classification methods can solve the problem of simultaneous...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 35; no. 13
Main Authors Tan, Chao, Ji, Genlin, Zeng, Xiaoqian
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 10.06.2023
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.6660

Cover

Abstract In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple objects in a traffic video image is a challenging problem. Traditional multi‐label classification methods can solve the problem of simultaneous detection of multiple labels, but cannot handle high‐dimensional streaming video data. Our idea is to use label distribution learning (LDL) to enrich the label space and improve label recognition in the original label space. We use the feature function representing the manifold structure to guide the geometric meaning of the label space and transform the local topology from the feature space to the label space. We first build a label distribution learner. Next, use the LDL model for classification. The similarity between the two distributions is measured by Bayesian divergence, and the label distribution is learned through the maximum entropy model and the objective function of this article is established. Finally, an enhanced label model of the manifold space is established to reduce the dimensionality of the feature matrix generated during the training phase, so that the supervised information in the label manifold can be used in the incremental manifold space to improve the accuracy of feature extraction. Compared to the latest multi‐label learning methods, our multi‐label enhancement manifold learning method has advantages in predicting performance.
AbstractList In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple objects in a traffic video image is a challenging problem. Traditional multi‐label classification methods can solve the problem of simultaneous detection of multiple labels, but cannot handle high‐dimensional streaming video data. Our idea is to use label distribution learning (LDL) to enrich the label space and improve label recognition in the original label space. We use the feature function representing the manifold structure to guide the geometric meaning of the label space and transform the local topology from the feature space to the label space. We first build a label distribution learner. Next, use the LDL model for classification. The similarity between the two distributions is measured by Bayesian divergence, and the label distribution is learned through the maximum entropy model and the objective function of this article is established. Finally, an enhanced label model of the manifold space is established to reduce the dimensionality of the feature matrix generated during the training phase, so that the supervised information in the label manifold can be used in the incremental manifold space to improve the accuracy of feature extraction. Compared to the latest multi‐label learning methods, our multi‐label enhancement manifold learning method has advantages in predicting performance.
Author Tan, Chao
Zeng, Xiaoqian
Ji, Genlin
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-4064-2978
  surname: Tan
  fullname: Tan, Chao
  email: tutu_tanchao@163.com
  organization: Nanjing Normal University
– sequence: 2
  givenname: Genlin
  surname: Ji
  fullname: Ji, Genlin
  organization: Nanjing Normal University
– sequence: 3
  givenname: Xiaoqian
  surname: Zeng
  fullname: Zeng, Xiaoqian
  organization: Nanjing Normal University
BookMark eNp10M1OAjEQwPHGYCKgiY-wiRcvi_3YLcvREEQTjB703PRjCiXdFrsLhpuP4DP6JC5ivHmaOfwyk_wHqBdiAIQuCR4RjOmN3sCIc45PUJ-UjOaYs6L3t1N-hgZNs8aYEMxIH80ft751Xx-fXirwGYSVDBpqCG1Wy-Bs9CbzIFNwYZlJv4zJtas6szFlO1g57SHbOQPxHJ1a6Ru4-J1D9Ho3e5ne54un-cP0dpFrWhY4l5IRzo0ynGFmC0ol15UymJfKyMpobjjWbKKwhgLMuDCkHNuC2NIaWSqs2BBdHe9uUnzbQtOKddym0L0UtCKsYpRNWKeuj0qn2DQJrNgkV8u0FwSLQybRZRKHTB3Nj_Tdedj_68T0efbjvwG5sGwK
Cites_doi 10.1016/j.patcog.2004.03.009
10.1109/TPAMI.2010.160
10.1609/aaai.v30i1.10258
10.7551/mitpress/1120.003.0092
10.1609/aaai.v35i4.16472
10.4018/jdwm.2007070101
10.24963/ijcai.2019/515
10.1109/TKDE.2010.164
10.1007/s10994-008-5064-8
10.1109/TPAMI.2007.70733
10.1016/j.ecoinf.2019.101031
10.26599/TST.2018.9010120
10.1162/089976603321780317
10.1007/978-3-319-97304-3_2
10.1109/TPAMI.2013.51
10.26599/TST.2019.9010052
10.1109/TIP.2017.2689998
10.1109/CVPR.2011.5995404
10.1126/science.290.5500.2323
10.1109/TMM.2017.2780762
10.1609/aaai.v35i10.17098
10.1109/TKDE.2013.39
10.1109/TKDE.2016.2545658
10.1016/j.patcog.2006.12.019
10.1162/NECO_a_00320
10.1109/TIP.2008.924280
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6660
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6660
CPE6660
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61702270, 41971343
– fundername: China Postdoctoral Science Foundation
  funderid: 2017M621592
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2540-aa3166dbd6303f422a6c8bd065bda8dc6d60c39b0ce4ed74d157f41f5fda5b0b3
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Jul 25 06:26:43 EDT 2025
Wed Oct 01 00:59:50 EDT 2025
Wed Jan 22 16:23:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2540-aa3166dbd6303f422a6c8bd065bda8dc6d60c39b0ce4ed74d157f41f5fda5b0b3
Notes Funding information
China Postdoctoral Science Foundation, 2017M621592; National Natural Science Foundation of China, 61702270, 41971343
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4064-2978
PQID 2813832393
PQPubID 2045170
PageCount 11
ParticipantIDs proquest_journals_2813832393
crossref_primary_10_1002_cpe_6660
wiley_primary_10_1002_cpe_6660_CPE6660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 June 2023
PublicationDateYYYYMMDD 2023-06-10
PublicationDate_xml – month: 06
  year: 2023
  text: 10 June 2023
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 29
2021; 26
2021; 33
2017; 26
2019; 55
2013; 35
2019; 24
2004; 37
2008; 17
2014; 26
2011; 33
2003; 15
2011; 23
2007; 40
2007; 3
2016; 28
2008; 73
2012; 24
2007; 1
2018; 20
2018; 48
2000; 290
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Cha S‐H (e_1_2_8_34_1) 2007; 1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Geng X (e_1_2_8_11_1) 2018; 48
Zhang M‐L (e_1_2_8_3_1) 2021; 33
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 29
  start-page: 2234
  issue: 12
  year: 2007
  end-page: 2240
  article-title: Automatic age estimation based on facial aging patterns
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 33
  start-page: 2057
  issue: 5
  year: 2021
  end-page: 2070
  article-title: Leveraging implicit relative labeling‐importance information for effective multi‐label learning
  publication-title: IEEE Trans Knowl Data Eng
– volume: 35
  start-page: 2401
  issue: 10
  year: 2013
  end-page: 2412
  article-title: Facial age estimation by learning from label distributions
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 3
  start-page: 1
  issue: 3
  year: 2007
  end-page: 13
  article-title: Multi‐label classification: an overview
  publication-title: Int J Data Warehous Min
– volume: 55
  year: 2019
  article-title: Predicting environmental features by learning spatiotemporal embeddings from social media
  publication-title: Ecol Inform
– volume: 23
  start-page: 1079
  issue: 7
  year: 2011
  end-page: 1089
  article-title: Random klabelsets for multilabel classification
  publication-title: IEEE Trans Knowl Data Eng
– volume: 24
  start-page: 2508
  issue: 9
  year: 2012
  end-page: 2542
  article-title: Multilabel classification with principal label space transformation
  publication-title: Neural Comput
– volume: 33
  start-page: 194
  issue: 1
  year: 2011
  end-page: 200
  article-title: Canonical correlation analysis for multilabel classification: a least‐squares formulation, extensions, and analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 20
  start-page: 2196
  issue: 8
  year: 2018
  end-page: 2208
  article-title: Label distribution based facial attractiveness computation by deep residual learning
  publication-title: IEEE Trans Multimed
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  end-page: 2326
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 24
  start-page: 389
  issue: 4
  year: 2019
  end-page: 399
  article-title: LKLR: a local tangent space‐alignment kernel least‐squares regression algorithm
  publication-title: Tsinghua Sci Technol
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  end-page: 1396
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  end-page: 2048
  article-title: ML‐KNN: a lazy learning approach to multi‐label learning
  publication-title: Pattern Recogn
– volume: 1
  start-page: 300
  issue: 4
  year: 2007
  end-page: 307
  article-title: Comprehensive survey on distance/similarity measures between probability density functions
  publication-title: Int J Math Models Methods Appl Sci
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  end-page: 1771
  article-title: Learning multi‐label scene classification
  publication-title: Pattern Recogn
– volume: 26
  start-page: 2825
  issue: 6
  year: 2017
  end-page: 2838
  article-title: Deep label distribution learning with label ambiguity
  publication-title: IEEE Trans Image Process
– volume: 73
  start-page: 133
  issue: 2
  year: 2008
  end-page: 153
  article-title: Multilabel classification via calibrated label ranking
  publication-title: Mach Learn
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  end-page: 1837
  article-title: A review on multi‐label learning algorithms
  publication-title: IEEE Trans Knowl Data Eng
– volume: 17
  start-page: 1178
  issue: 7
  year: 2008
  end-page: 1188
  article-title: Image‐based human age estimation by manifold learning and locally adjusted robust regression
  publication-title: IEEE Trans Image Process
– volume: 48
  start-page: 521
  issue: 5
  year: 2018
  end-page: 530
  article-title: Label distribution learning and label enhancement
  publication-title: Sci China(Inf Sci)
– volume: 26
  start-page: 135
  issue: 2
  year: 2021
  end-page: 145
  article-title: LTSA‐LE: a local tangent space alignment label enhancement algorithm
  publication-title: Tsinghua Sci Technol
– volume: 28
  start-page: 1734
  issue: 7
  year: 2016
  end-page: 1748
  article-title: Label distribution learning
  publication-title: IEEE Trans Knowl Data Eng
– ident: e_1_2_8_12_1
  doi: 10.1016/j.patcog.2004.03.009
– ident: e_1_2_8_21_1
  doi: 10.1109/TPAMI.2010.160
– ident: e_1_2_8_17_1
  doi: 10.1609/aaai.v30i1.10258
– volume: 33
  start-page: 2057
  issue: 5
  year: 2021
  ident: e_1_2_8_3_1
  article-title: Leveraging implicit relative labeling‐importance information for effective multi‐label learning
  publication-title: IEEE Trans Knowl Data Eng
– ident: e_1_2_8_14_1
  doi: 10.7551/mitpress/1120.003.0092
– ident: e_1_2_8_30_1
  doi: 10.1609/aaai.v35i4.16472
– ident: e_1_2_8_29_1
  doi: 10.4018/jdwm.2007070101
– ident: e_1_2_8_33_1
– ident: e_1_2_8_27_1
  doi: 10.24963/ijcai.2019/515
– ident: e_1_2_8_28_1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_16_1
  doi: 10.1109/TKDE.2010.164
– ident: e_1_2_8_4_1
– volume: 1
  start-page: 300
  issue: 4
  year: 2007
  ident: e_1_2_8_34_1
  article-title: Comprehensive survey on distance/similarity measures between probability density functions
  publication-title: Int J Math Models Methods Appl Sci
– ident: e_1_2_8_15_1
  doi: 10.1007/s10994-008-5064-8
– ident: e_1_2_8_7_1
  doi: 10.1109/TPAMI.2007.70733
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ecoinf.2019.101031
– volume: 48
  start-page: 521
  issue: 5
  year: 2018
  ident: e_1_2_8_11_1
  article-title: Label distribution learning and label enhancement
  publication-title: Sci China(Inf Sci)
– ident: e_1_2_8_24_1
– ident: e_1_2_8_19_1
  doi: 10.26599/TST.2018.9010120
– ident: e_1_2_8_23_1
  doi: 10.1162/089976603321780317
– ident: e_1_2_8_31_1
  doi: 10.1007/978-3-319-97304-3_2
– ident: e_1_2_8_6_1
  doi: 10.1109/TPAMI.2013.51
– ident: e_1_2_8_18_1
  doi: 10.26599/TST.2019.9010052
– ident: e_1_2_8_25_1
  doi: 10.1109/TIP.2017.2689998
– ident: e_1_2_8_9_1
  doi: 10.1109/CVPR.2011.5995404
– ident: e_1_2_8_22_1
  doi: 10.1126/science.290.5500.2323
– ident: e_1_2_8_26_1
  doi: 10.1109/TMM.2017.2780762
– ident: e_1_2_8_35_1
  doi: 10.1609/aaai.v35i10.17098
– ident: e_1_2_8_2_1
  doi: 10.1109/TKDE.2013.39
– ident: e_1_2_8_10_1
  doi: 10.1109/TKDE.2016.2545658
– ident: e_1_2_8_13_1
  doi: 10.1016/j.patcog.2006.12.019
– ident: e_1_2_8_20_1
  doi: 10.1162/NECO_a_00320
– ident: e_1_2_8_8_1
  doi: 10.1109/TIP.2008.924280
SSID ssj0011031
Score 2.347255
Snippet In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Classification
Feature extraction
label distribution learning
Machine learning
Manifolds (mathematics)
Maximum entropy
multi‐label enhancement manifold learning
Performance prediction
Topology
vehicle video
Video data
Title Multi‐label enhancement manifold learning algorithm for vehicle video
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6660
https://www.proquest.com/docview/2813832393
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: ADMLS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJy_WJ1arrCDe0maT7CY5SmktgiJioeAh7LMVa1L68ODJn-Bv9Je4k0d9gCCecsmGZDKz883szDcInRJDeEiodqiQClpymBMFvnQojzmzeD72DaQGrq5ZfxBcDumwrKqEXpiCH2KVcAPLyPdrMHAu5u1P0lA51S2LvSFcJz7Lo6nbFXMUgekFBVWq57gWtFe8s67XrhZ-90Sf8PIrSM29TK-O7qv3K4pLHlvLhWjJlx_Ujf_7gE20UYJPfF5oyxZa0-k2qleDHXBp5zvoIm_LfX99syqiJ1inY9ANyCNioMsw2UThctzECPPJKJs9LMZP2OJf_KzH8GwM7X3ZLhr0unedvlNOXHCkBxUSnPuEMSUUs57NBJ7HmYyEsjBFKB4pyRRzpR8LV-pAqzBQhIYmIIYaxalwhb-HammW6n2E40gYJQ0NfG43Y625DyfcYSCZVJGOVAOdVNJPpgWxRlJQKHuJlUwCkmmgZvVbktK05okXERtVA3NbA53l8v11fdK56cL14K83HqJ1GCcPpWDEbaLaYrbURxZ0LMRxrl4fOj7VKg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KHvRifWJ9RhBvWze72XSLJ6mP-kREwYOw5NmKtS3aevDkT_A3-kvM7MOqIIinvSQhOzuT-TI78w3AJrVU1GhkvEgqjSU53ItZqLxI1AV3eL4eWgwNnJ3z5jU7voluSrBT1MJk_BCfATe0jPS8RgPHgPT2iDVU9U3VgW93Xx9nbllU6b3LT-4oiv0LMrLUwPMdbC-YZ_1gu5j53ReNAOZXmJr6mYMy3BY7zNJL7qvDgayqlx_kjf98hWmYyvEn2c0UZgZKpjsL5aK3A8lNfQ4O08rc99c3pyWmQ0y3jeqBoUSCjBm219Ek7zjRIqLT6j3eDdoPxEFg8mzauDbBCr_ePFwf7F81ml7edMFTASZJCBFSzrXU3Dk3y4JAcBVL7ZCK1CLWimvuq7AufWWY0TWmaVSzjNrIahFJX4YLMNbtdc0ikHosrVY2YqFw57ExIsSf3DWmuNKxiXUFNgrxJ_2MWyPJWJSDxEkmQclUYKX4LkluXU9JEFN3sUbytgpspQL-dX7SuNjH59JfB67DRPPq7DQ5PTo_WYZJ7C6PmWHUX4GxwePQrDoMMpBrqa59AJqV2Us
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQbz4FtdnBPHWtWmTbIsnUde3iCh4EEqerrjuLrp68ORP8Df6S8z04QsE8dRLUtLpTObLZOYbgFXqqGxQbgOutMGSHBEkLNYBl6kUHs-nscPQwPGJ2LtgB5f8cgA2qlqYgh_iI-CGlpHv12jgtmfc-idrqO7Zugff_rw-xHiaYD7f9tkHdxTF_gUFWWoUhB62V8yzYbRezfzuiz4B5leYmvuZ5hhcVSss0ktu6499VdfPP8gb__kJ4zBa4k-yWSjMBAzYziSMVb0dSGnqU7CbV-a-vbx6LbFtYjstVA8MJRJkzHDdtiFlx4lrItvX3fubfuuOeAhMnmwL302wwq87DRfNnfOtvaBsuhDoCJMkpIypEEYZ4Z2bY1EkhU6U8UhFGZkYLYwIdZyqUFtmTYMZyhuOUcedkVyFKp6BwU63Y2eBpIlyRjvOYun3Y2tljJfcDaaFNolNTA1WKvFnvYJbIytYlKPMSyZDydRgofovWWldD1mUUH-wRvK2GqzlAv51frZ1uoPPub8OXIbh0-1mdrR_cjgPI9hcHhPDaLgAg_37R7voIUhfLeWq9g54U9jP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90label+enhancement+manifold+learning+algorithm+for+vehicle+video&rft.jtitle=Concurrency+and+computation&rft.au=Tan%2C+Chao&rft.au=Ji%2C+Genlin&rft.au=Zeng%2C+Xiaoqian&rft.date=2023-06-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.6660&rft.externalDBID=10.1002%252Fcpe.6660&rft.externalDocID=CPE6660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon