Multi‐label enhancement manifold learning algorithm for vehicle video
In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple objects in a traffic video image is a challenging problem. Traditional multi‐label classification methods can solve the problem of simultaneous...
Saved in:
| Published in | Concurrency and computation Vol. 35; no. 13 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
10.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.6660 |
Cover
| Abstract | In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple objects in a traffic video image is a challenging problem. Traditional multi‐label classification methods can solve the problem of simultaneous detection of multiple labels, but cannot handle high‐dimensional streaming video data. Our idea is to use label distribution learning (LDL) to enrich the label space and improve label recognition in the original label space. We use the feature function representing the manifold structure to guide the geometric meaning of the label space and transform the local topology from the feature space to the label space. We first build a label distribution learner. Next, use the LDL model for classification. The similarity between the two distributions is measured by Bayesian divergence, and the label distribution is learned through the maximum entropy model and the objective function of this article is established. Finally, an enhanced label model of the manifold space is established to reduce the dimensionality of the feature matrix generated during the training phase, so that the supervised information in the label manifold can be used in the incremental manifold space to improve the accuracy of feature extraction. Compared to the latest multi‐label learning methods, our multi‐label enhancement manifold learning method has advantages in predicting performance. |
|---|---|
| AbstractList | In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple objects in a traffic video image is a challenging problem. Traditional multi‐label classification methods can solve the problem of simultaneous detection of multiple labels, but cannot handle high‐dimensional streaming video data. Our idea is to use label distribution learning (LDL) to enrich the label space and improve label recognition in the original label space. We use the feature function representing the manifold structure to guide the geometric meaning of the label space and transform the local topology from the feature space to the label space. We first build a label distribution learner. Next, use the LDL model for classification. The similarity between the two distributions is measured by Bayesian divergence, and the label distribution is learned through the maximum entropy model and the objective function of this article is established. Finally, an enhanced label model of the manifold space is established to reduce the dimensionality of the feature matrix generated during the training phase, so that the supervised information in the label manifold can be used in the incremental manifold space to improve the accuracy of feature extraction. Compared to the latest multi‐label learning methods, our multi‐label enhancement manifold learning method has advantages in predicting performance. |
| Author | Tan, Chao Zeng, Xiaoqian Ji, Genlin |
| Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0002-4064-2978 surname: Tan fullname: Tan, Chao email: tutu_tanchao@163.com organization: Nanjing Normal University – sequence: 2 givenname: Genlin surname: Ji fullname: Ji, Genlin organization: Nanjing Normal University – sequence: 3 givenname: Xiaoqian surname: Zeng fullname: Zeng, Xiaoqian organization: Nanjing Normal University |
| BookMark | eNp10M1OAjEQwPHGYCKgiY-wiRcvi_3YLcvREEQTjB703PRjCiXdFrsLhpuP4DP6JC5ivHmaOfwyk_wHqBdiAIQuCR4RjOmN3sCIc45PUJ-UjOaYs6L3t1N-hgZNs8aYEMxIH80ft751Xx-fXirwGYSVDBpqCG1Wy-Bs9CbzIFNwYZlJv4zJtas6szFlO1g57SHbOQPxHJ1a6Ru4-J1D9Ho3e5ne54un-cP0dpFrWhY4l5IRzo0ynGFmC0ol15UymJfKyMpobjjWbKKwhgLMuDCkHNuC2NIaWSqs2BBdHe9uUnzbQtOKddym0L0UtCKsYpRNWKeuj0qn2DQJrNgkV8u0FwSLQybRZRKHTB3Nj_Tdedj_68T0efbjvwG5sGwK |
| Cites_doi | 10.1016/j.patcog.2004.03.009 10.1109/TPAMI.2010.160 10.1609/aaai.v30i1.10258 10.7551/mitpress/1120.003.0092 10.1609/aaai.v35i4.16472 10.4018/jdwm.2007070101 10.24963/ijcai.2019/515 10.1109/TKDE.2010.164 10.1007/s10994-008-5064-8 10.1109/TPAMI.2007.70733 10.1016/j.ecoinf.2019.101031 10.26599/TST.2018.9010120 10.1162/089976603321780317 10.1007/978-3-319-97304-3_2 10.1109/TPAMI.2013.51 10.26599/TST.2019.9010052 10.1109/TIP.2017.2689998 10.1109/CVPR.2011.5995404 10.1126/science.290.5500.2323 10.1109/TMM.2017.2780762 10.1609/aaai.v35i10.17098 10.1109/TKDE.2013.39 10.1109/TKDE.2016.2545658 10.1016/j.patcog.2006.12.019 10.1162/NECO_a_00320 10.1109/TIP.2008.924280 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6660 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6660 CPE6660 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61702270, 41971343 – fundername: China Postdoctoral Science Foundation funderid: 2017M621592 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2540-aa3166dbd6303f422a6c8bd065bda8dc6d60c39b0ce4ed74d157f41f5fda5b0b3 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Fri Jul 25 06:26:43 EDT 2025 Wed Oct 01 00:59:50 EDT 2025 Wed Jan 22 16:23:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2540-aa3166dbd6303f422a6c8bd065bda8dc6d60c39b0ce4ed74d157f41f5fda5b0b3 |
| Notes | Funding information China Postdoctoral Science Foundation, 2017M621592; National Natural Science Foundation of China, 61702270, 41971343 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4064-2978 |
| PQID | 2813832393 |
| PQPubID | 2045170 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2813832393 crossref_primary_10_1002_cpe_6660 wiley_primary_10_1002_cpe_6660_CPE6660 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 June 2023 |
| PublicationDateYYYYMMDD | 2023-06-10 |
| PublicationDate_xml | – month: 06 year: 2023 text: 10 June 2023 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 29 2021; 26 2021; 33 2017; 26 2019; 55 2013; 35 2019; 24 2004; 37 2008; 17 2014; 26 2011; 33 2003; 15 2011; 23 2007; 40 2007; 3 2016; 28 2008; 73 2012; 24 2007; 1 2018; 20 2018; 48 2000; 290 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Cha S‐H (e_1_2_8_34_1) 2007; 1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 Geng X (e_1_2_8_11_1) 2018; 48 Zhang M‐L (e_1_2_8_3_1) 2021; 33 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 29 start-page: 2234 issue: 12 year: 2007 end-page: 2240 article-title: Automatic age estimation based on facial aging patterns publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 33 start-page: 2057 issue: 5 year: 2021 end-page: 2070 article-title: Leveraging implicit relative labeling‐importance information for effective multi‐label learning publication-title: IEEE Trans Knowl Data Eng – volume: 35 start-page: 2401 issue: 10 year: 2013 end-page: 2412 article-title: Facial age estimation by learning from label distributions publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 3 start-page: 1 issue: 3 year: 2007 end-page: 13 article-title: Multi‐label classification: an overview publication-title: Int J Data Warehous Min – volume: 55 year: 2019 article-title: Predicting environmental features by learning spatiotemporal embeddings from social media publication-title: Ecol Inform – volume: 23 start-page: 1079 issue: 7 year: 2011 end-page: 1089 article-title: Random klabelsets for multilabel classification publication-title: IEEE Trans Knowl Data Eng – volume: 24 start-page: 2508 issue: 9 year: 2012 end-page: 2542 article-title: Multilabel classification with principal label space transformation publication-title: Neural Comput – volume: 33 start-page: 194 issue: 1 year: 2011 end-page: 200 article-title: Canonical correlation analysis for multilabel classification: a least‐squares formulation, extensions, and analysis publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 20 start-page: 2196 issue: 8 year: 2018 end-page: 2208 article-title: Label distribution based facial attractiveness computation by deep residual learning publication-title: IEEE Trans Multimed – volume: 290 start-page: 2323 issue: 5500 year: 2000 end-page: 2326 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – volume: 24 start-page: 389 issue: 4 year: 2019 end-page: 399 article-title: LKLR: a local tangent space‐alignment kernel least‐squares regression algorithm publication-title: Tsinghua Sci Technol – volume: 15 start-page: 1373 issue: 6 year: 2003 end-page: 1396 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput – volume: 40 start-page: 2038 issue: 7 year: 2007 end-page: 2048 article-title: ML‐KNN: a lazy learning approach to multi‐label learning publication-title: Pattern Recogn – volume: 1 start-page: 300 issue: 4 year: 2007 end-page: 307 article-title: Comprehensive survey on distance/similarity measures between probability density functions publication-title: Int J Math Models Methods Appl Sci – volume: 37 start-page: 1757 issue: 9 year: 2004 end-page: 1771 article-title: Learning multi‐label scene classification publication-title: Pattern Recogn – volume: 26 start-page: 2825 issue: 6 year: 2017 end-page: 2838 article-title: Deep label distribution learning with label ambiguity publication-title: IEEE Trans Image Process – volume: 73 start-page: 133 issue: 2 year: 2008 end-page: 153 article-title: Multilabel classification via calibrated label ranking publication-title: Mach Learn – volume: 26 start-page: 1819 issue: 8 year: 2014 end-page: 1837 article-title: A review on multi‐label learning algorithms publication-title: IEEE Trans Knowl Data Eng – volume: 17 start-page: 1178 issue: 7 year: 2008 end-page: 1188 article-title: Image‐based human age estimation by manifold learning and locally adjusted robust regression publication-title: IEEE Trans Image Process – volume: 48 start-page: 521 issue: 5 year: 2018 end-page: 530 article-title: Label distribution learning and label enhancement publication-title: Sci China(Inf Sci) – volume: 26 start-page: 135 issue: 2 year: 2021 end-page: 145 article-title: LTSA‐LE: a local tangent space alignment label enhancement algorithm publication-title: Tsinghua Sci Technol – volume: 28 start-page: 1734 issue: 7 year: 2016 end-page: 1748 article-title: Label distribution learning publication-title: IEEE Trans Knowl Data Eng – ident: e_1_2_8_12_1 doi: 10.1016/j.patcog.2004.03.009 – ident: e_1_2_8_21_1 doi: 10.1109/TPAMI.2010.160 – ident: e_1_2_8_17_1 doi: 10.1609/aaai.v30i1.10258 – volume: 33 start-page: 2057 issue: 5 year: 2021 ident: e_1_2_8_3_1 article-title: Leveraging implicit relative labeling‐importance information for effective multi‐label learning publication-title: IEEE Trans Knowl Data Eng – ident: e_1_2_8_14_1 doi: 10.7551/mitpress/1120.003.0092 – ident: e_1_2_8_30_1 doi: 10.1609/aaai.v35i4.16472 – ident: e_1_2_8_29_1 doi: 10.4018/jdwm.2007070101 – ident: e_1_2_8_33_1 – ident: e_1_2_8_27_1 doi: 10.24963/ijcai.2019/515 – ident: e_1_2_8_28_1 – ident: e_1_2_8_32_1 – ident: e_1_2_8_16_1 doi: 10.1109/TKDE.2010.164 – ident: e_1_2_8_4_1 – volume: 1 start-page: 300 issue: 4 year: 2007 ident: e_1_2_8_34_1 article-title: Comprehensive survey on distance/similarity measures between probability density functions publication-title: Int J Math Models Methods Appl Sci – ident: e_1_2_8_15_1 doi: 10.1007/s10994-008-5064-8 – ident: e_1_2_8_7_1 doi: 10.1109/TPAMI.2007.70733 – ident: e_1_2_8_5_1 doi: 10.1016/j.ecoinf.2019.101031 – volume: 48 start-page: 521 issue: 5 year: 2018 ident: e_1_2_8_11_1 article-title: Label distribution learning and label enhancement publication-title: Sci China(Inf Sci) – ident: e_1_2_8_24_1 – ident: e_1_2_8_19_1 doi: 10.26599/TST.2018.9010120 – ident: e_1_2_8_23_1 doi: 10.1162/089976603321780317 – ident: e_1_2_8_31_1 doi: 10.1007/978-3-319-97304-3_2 – ident: e_1_2_8_6_1 doi: 10.1109/TPAMI.2013.51 – ident: e_1_2_8_18_1 doi: 10.26599/TST.2019.9010052 – ident: e_1_2_8_25_1 doi: 10.1109/TIP.2017.2689998 – ident: e_1_2_8_9_1 doi: 10.1109/CVPR.2011.5995404 – ident: e_1_2_8_22_1 doi: 10.1126/science.290.5500.2323 – ident: e_1_2_8_26_1 doi: 10.1109/TMM.2017.2780762 – ident: e_1_2_8_35_1 doi: 10.1609/aaai.v35i10.17098 – ident: e_1_2_8_2_1 doi: 10.1109/TKDE.2013.39 – ident: e_1_2_8_10_1 doi: 10.1109/TKDE.2016.2545658 – ident: e_1_2_8_13_1 doi: 10.1016/j.patcog.2006.12.019 – ident: e_1_2_8_20_1 doi: 10.1162/NECO_a_00320 – ident: e_1_2_8_8_1 doi: 10.1109/TIP.2008.924280 |
| SSID | ssj0011031 |
| Score | 2.347255 |
| Snippet | In this article, we propose a new multi‐label enhancement manifold learning algorithm to solve the vehicle video classification problem. Predicting multiple... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Classification Feature extraction label distribution learning Machine learning Manifolds (mathematics) Maximum entropy multi‐label enhancement manifold learning Performance prediction Topology vehicle video Video data |
| Title | Multi‐label enhancement manifold learning algorithm for vehicle video |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6660 https://www.proquest.com/docview/2813832393 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1532-0634 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: ADMLS dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJy_WJ1arrCDe0maT7CY5SmktgiJioeAh7LMVa1L68ODJn-Bv9Je4k0d9gCCecsmGZDKz883szDcInRJDeEiodqiQClpymBMFvnQojzmzeD72DaQGrq5ZfxBcDumwrKqEXpiCH2KVcAPLyPdrMHAu5u1P0lA51S2LvSFcJz7Lo6nbFXMUgekFBVWq57gWtFe8s67XrhZ-90Sf8PIrSM29TK-O7qv3K4pLHlvLhWjJlx_Ujf_7gE20UYJPfF5oyxZa0-k2qleDHXBp5zvoIm_LfX99syqiJ1inY9ANyCNioMsw2UThctzECPPJKJs9LMZP2OJf_KzH8GwM7X3ZLhr0unedvlNOXHCkBxUSnPuEMSUUs57NBJ7HmYyEsjBFKB4pyRRzpR8LV-pAqzBQhIYmIIYaxalwhb-HammW6n2E40gYJQ0NfG43Y625DyfcYSCZVJGOVAOdVNJPpgWxRlJQKHuJlUwCkmmgZvVbktK05okXERtVA3NbA53l8v11fdK56cL14K83HqJ1GCcPpWDEbaLaYrbURxZ0LMRxrl4fOj7VKg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KHvRifWJ9RhBvWze72XSLJ6mP-kREwYOw5NmKtS3aevDkT_A3-kvM7MOqIIinvSQhOzuT-TI78w3AJrVU1GhkvEgqjSU53ItZqLxI1AV3eL4eWgwNnJ3z5jU7voluSrBT1MJk_BCfATe0jPS8RgPHgPT2iDVU9U3VgW93Xx9nbllU6b3LT-4oiv0LMrLUwPMdbC-YZ_1gu5j53ReNAOZXmJr6mYMy3BY7zNJL7qvDgayqlx_kjf98hWmYyvEn2c0UZgZKpjsL5aK3A8lNfQ4O08rc99c3pyWmQ0y3jeqBoUSCjBm219Ek7zjRIqLT6j3eDdoPxEFg8mzauDbBCr_ePFwf7F81ml7edMFTASZJCBFSzrXU3Dk3y4JAcBVL7ZCK1CLWimvuq7AufWWY0TWmaVSzjNrIahFJX4YLMNbtdc0ikHosrVY2YqFw57ExIsSf3DWmuNKxiXUFNgrxJ_2MWyPJWJSDxEkmQclUYKX4LkluXU9JEFN3sUbytgpspQL-dX7SuNjH59JfB67DRPPq7DQ5PTo_WYZJ7C6PmWHUX4GxwePQrDoMMpBrqa59AJqV2Us |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQbz4FtdnBPHWtWmTbIsnUde3iCh4EEqerrjuLrp68ORP8Df6S8z04QsE8dRLUtLpTObLZOYbgFXqqGxQbgOutMGSHBEkLNYBl6kUHs-nscPQwPGJ2LtgB5f8cgA2qlqYgh_iI-CGlpHv12jgtmfc-idrqO7Zugff_rw-xHiaYD7f9tkHdxTF_gUFWWoUhB62V8yzYbRezfzuiz4B5leYmvuZ5hhcVSss0ktu6499VdfPP8gb__kJ4zBa4k-yWSjMBAzYziSMVb0dSGnqU7CbV-a-vbx6LbFtYjstVA8MJRJkzHDdtiFlx4lrItvX3fubfuuOeAhMnmwL302wwq87DRfNnfOtvaBsuhDoCJMkpIypEEYZ4Z2bY1EkhU6U8UhFGZkYLYwIdZyqUFtmTYMZyhuOUcedkVyFKp6BwU63Y2eBpIlyRjvOYun3Y2tljJfcDaaFNolNTA1WKvFnvYJbIytYlKPMSyZDydRgofovWWldD1mUUH-wRvK2GqzlAv51frZ1uoPPub8OXIbh0-1mdrR_cjgPI9hcHhPDaLgAg_37R7voIUhfLeWq9g54U9jP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90label+enhancement+manifold+learning+algorithm+for+vehicle+video&rft.jtitle=Concurrency+and+computation&rft.au=Tan%2C+Chao&rft.au=Ji%2C+Genlin&rft.au=Zeng%2C+Xiaoqian&rft.date=2023-06-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=35&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.6660&rft.externalDBID=10.1002%252Fcpe.6660&rft.externalDocID=CPE6660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |