A bi-stable neuronal model of Gibbs distribution

In this paper we present a bi-stable neuronal model consistent with the Gibbs distribution. Our approach utilizes a formalism used in stochastic (Boltzmann) machines with a bistable-neuron algorithm in which each neuron can exist in either an ON or an OFF state. The transition between the system’s s...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 429; pp. 118 - 124
Main Author Gross, Eitan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2015
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2015.02.066

Cover

Abstract In this paper we present a bi-stable neuronal model consistent with the Gibbs distribution. Our approach utilizes a formalism used in stochastic (Boltzmann) machines with a bistable-neuron algorithm in which each neuron can exist in either an ON or an OFF state. The transition between the system’s states is composed of two random processes, the first one decides which state transition should be attempted and the second one decides if the transition is accepted or not. Our model can be easily extended to systems with asymmetrical weight matrices. •A bi-stable neuron model is presented from which the Gibbs distribution can be derived.•The model can be implemented in a stochastic (Boltzmann) machine composed of a system of bi-stable neurons.•The model may have important implications in neural networks and Markov logic networks.
AbstractList In this paper we present a bi-stable neuronal model consistent with the Gibbs distribution. Our approach utilizes a formalism used in stochastic (Boltzmann) machines with a bistable-neuron algorithm in which each neuron can exist in either an ON or an OFF state. The transition between the system’s states is composed of two random processes, the first one decides which state transition should be attempted and the second one decides if the transition is accepted or not. Our model can be easily extended to systems with asymmetrical weight matrices. •A bi-stable neuron model is presented from which the Gibbs distribution can be derived.•The model can be implemented in a stochastic (Boltzmann) machine composed of a system of bi-stable neurons.•The model may have important implications in neural networks and Markov logic networks.
Author Gross, Eitan
Author_xml – sequence: 1
  givenname: Eitan
  surname: Gross
  fullname: Gross, Eitan
  email: exg004@uark.edu
  organization: Department of Physics, 226 Physics Building, University of Arkansas, Fayetteville, AR 72701, USA
BookMark eNp9z7FOwzAQxnELFYm28AQseYGEO9ux04GhqqBFqsQCs2U7F-EqjSs7Rerb01Jmppv-p-83Y5MhDsTYI0KFgOppVx2-TtlWHLCugFeg1A2bYqNFyREXEzYFoZtSCo13bJbzDgBQCz5lsCxcKPNoXU_FQMcUB9sX-9hSX8SuWAfnctGGPKbgjmOIwz277Wyf6eHvztnn68vHalNu39dvq-W29LwWY2kBpXYgpVedVV3jSVjlnBba1zW10CjQjcXOOqu9WHjpnOK1l-gW3LZSijkT178-xZwTdeaQwt6mk0EwF7TZmV-0uaANcHNGn6vna0Xnad-Bksk-0OCpDYn8aNoY_u1_AM1WYsc
Cites_doi 10.2307/1426035
10.1111/j.2517-6161.1979.tb01052.x
10.1137/1113026
10.1093/bioinformatics/btg1026
10.1112/blms/5.1.81
10.1126/science.1165821
10.1063/1.1699114
10.1007/BF02761538
10.1073/pnas.79.8.2554
10.1209/0295-5075/100/58004
10.1071/PH650119
10.1089/1066527041410346
10.1214/07--AOAS145
10.2307/2317621
10.1207/s15516709cog0901_7
10.1111/j.2517-6161.1974.tb00999.x
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2015.02.066
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 124
ExternalDocumentID 10_1016_j_physa_2015_02_066
S0378437115001831
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
6TJ
AAFFL
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XJT
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c253t-a0147b044c6fa6f8ce3a6bb737c55ed086078a1faba7c39c4bb625c41b92ad443
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Wed Oct 01 04:01:53 EDT 2025
Fri Feb 23 02:23:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Markov chain
Gibbs random field
Boltzmann machines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-a0147b044c6fa6f8ce3a6bb737c55ed086078a1faba7c39c4bb625c41b92ad443
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_physa_2015_02_066
elsevier_sciencedirect_doi_10_1016_j_physa_2015_02_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
2015-07-00
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chapelle, Scholkopf, Zien (br000020) 2006
Dorogovtsev, Mendes (br000010) 2003
Ackley, Hinton, Sejnowski (br000075) 1985; 9
Haykin (br000070) 1999
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (br000100) 1953; 21
Grimmett (br000050) 1973; 5
Preston (br000055) 1973; 5
Liggett (br000085) 1985
Besag (br000065) 1974; 36
Dobruschin (br000040) 1968; 13
Letovsky, Kasif (br000030) 2003; 19
Gross (br000015) 2012; 100
Dawid (br000095) 1979; 41
Spitzer (br000045) 1971; 78
Sherman (br000060) 1973; 14
Borgatti, Mehra, Brass, Labianca (br000005) 2009; 323
Hopfield (br000080) 1982; 79
Reif (br000105) 1965
Barker (br000090) 1965; 18
Wei, Li (br000035) 2008
Deng, Chen, Sun (br000025) 2004; 11
Gross (10.1016/j.physa.2015.02.066_br000015) 2012; 100
Grimmett (10.1016/j.physa.2015.02.066_br000050) 1973; 5
Haykin (10.1016/j.physa.2015.02.066_br000070) 1999
Deng (10.1016/j.physa.2015.02.066_br000025) 2004; 11
Dobruschin (10.1016/j.physa.2015.02.066_br000040) 1968; 13
Preston (10.1016/j.physa.2015.02.066_br000055) 1973; 5
Barker (10.1016/j.physa.2015.02.066_br000090) 1965; 18
Chapelle (10.1016/j.physa.2015.02.066_br000020) 2006
Spitzer (10.1016/j.physa.2015.02.066_br000045) 1971; 78
Hopfield (10.1016/j.physa.2015.02.066_br000080) 1982; 79
Dawid (10.1016/j.physa.2015.02.066_br000095) 1979; 41
Dorogovtsev (10.1016/j.physa.2015.02.066_br000010) 2003
Metropolis (10.1016/j.physa.2015.02.066_br000100) 1953; 21
Reif (10.1016/j.physa.2015.02.066_br000105) 1965
Ackley (10.1016/j.physa.2015.02.066_br000075) 1985; 9
Liggett (10.1016/j.physa.2015.02.066_br000085) 1985
Wei (10.1016/j.physa.2015.02.066_br000035) 2008
Borgatti (10.1016/j.physa.2015.02.066_br000005) 2009; 323
Letovsky (10.1016/j.physa.2015.02.066_br000030) 2003; 19
Sherman (10.1016/j.physa.2015.02.066_br000060) 1973; 14
Besag (10.1016/j.physa.2015.02.066_br000065) 1974; 36
References_xml – year: 2006
  ident: br000020
  article-title: Semi-Supervised Learning
– year: 1999
  ident: br000070
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 11
  start-page: 463
  year: 2004
  end-page: 475
  ident: br000025
  article-title: An integrated probabilistic model for functional prediction of proteins
  publication-title: J. Comput. Biol.
– year: 2003
  ident: br000010
  article-title: Evolution of Networks: From Biological Nets to the Internet and WWW
– volume: 18
  start-page: 119
  year: 1965
  end-page: 134
  ident: br000090
  article-title: Monte Carlo calculations of the radial distribution functions for a proton–electron plasma
  publication-title: Aust. J. Phys.
– start-page: 408
  year: 2008
  end-page: 429
  ident: br000035
  article-title: A hidden spatial–temporal Markov random field model for network-based analysis of time course gene expression data
  publication-title: Ann. Appl. Stat.
– year: 1985
  ident: br000085
  article-title: Interacting Particle Systems
– volume: 9
  start-page: 147
  year: 1985
  end-page: 169
  ident: br000075
  article-title: A learning algorithm for Boltzmann machines*
  publication-title: Cogn. Sci.
– year: 1965
  ident: br000105
  article-title: Fundamentals of Statistical and Thermal Physics
  publication-title: McGraw-Hill Series in Fundamentals of Physic
– volume: 41
  start-page: 1
  year: 1979
  end-page: 31
  ident: br000095
  article-title: Conditional independence in statistical theory
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 19
  start-page: i197
  year: 2003
  end-page: i204
  ident: br000030
  article-title: Predicting protein function from protein/protein interaction data: a probabilistic approach
  publication-title: Bioinformatics
– volume: 5
  start-page: 81
  year: 1973
  end-page: 84
  ident: br000050
  article-title: A theorem about random fields
  publication-title: Bull. Lond. Math. Soc.
– volume: 100
  start-page: 58004
  year: 2012
  ident: br000015
  article-title: Statistical mechanics of scale-free gene expression networks
  publication-title: Europhys. Lett.
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: br000100
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 197
  year: 1968
  end-page: 224
  ident: br000040
  article-title: The description of a random field by means of conditional probabilities and conditions of its regularity
  publication-title: Theory Probab. Appl.
– volume: 36
  start-page: 192
  year: 1974
  end-page: 236
  ident: br000065
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: J. Roy. Statist. Soc. Ser. B
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: br000080
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 92
  year: 1973
  end-page: 103
  ident: br000060
  article-title: Markov random fields and Gibbs random fields
  publication-title: Israel J. Math.
– volume: 5
  start-page: 242
  year: 1973
  end-page: 261
  ident: br000055
  article-title: Generalized Gibbs states and Markov random fields
  publication-title: Adv. Appl. Probab.
– volume: 323
  start-page: 892
  year: 2009
  end-page: 895
  ident: br000005
  article-title: Network analysis in the social sciences
  publication-title: Science
– volume: 78
  start-page: 142
  year: 1971
  end-page: 154
  ident: br000045
  article-title: Markov random fields and Gibbs ensembles
  publication-title: Amer. Math. Monthly
– volume: 5
  start-page: 242
  year: 1973
  ident: 10.1016/j.physa.2015.02.066_br000055
  article-title: Generalized Gibbs states and Markov random fields
  publication-title: Adv. Appl. Probab.
  doi: 10.2307/1426035
– volume: 41
  start-page: 1
  year: 1979
  ident: 10.1016/j.physa.2015.02.066_br000095
  article-title: Conditional independence in statistical theory
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1979.tb01052.x
– year: 2006
  ident: 10.1016/j.physa.2015.02.066_br000020
– year: 1965
  ident: 10.1016/j.physa.2015.02.066_br000105
  article-title: Fundamentals of Statistical and Thermal Physics
– volume: 13
  start-page: 197
  year: 1968
  ident: 10.1016/j.physa.2015.02.066_br000040
  article-title: The description of a random field by means of conditional probabilities and conditions of its regularity
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1113026
– volume: 19
  start-page: i197
  issue: Suppl. 1
  year: 2003
  ident: 10.1016/j.physa.2015.02.066_br000030
  article-title: Predicting protein function from protein/protein interaction data: a probabilistic approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1026
– volume: 5
  start-page: 81
  year: 1973
  ident: 10.1016/j.physa.2015.02.066_br000050
  article-title: A theorem about random fields
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/5.1.81
– volume: 323
  start-page: 892
  year: 2009
  ident: 10.1016/j.physa.2015.02.066_br000005
  article-title: Network analysis in the social sciences
  publication-title: Science
  doi: 10.1126/science.1165821
– year: 1999
  ident: 10.1016/j.physa.2015.02.066_br000070
– year: 2003
  ident: 10.1016/j.physa.2015.02.066_br000010
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.physa.2015.02.066_br000100
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 14
  start-page: 92
  year: 1973
  ident: 10.1016/j.physa.2015.02.066_br000060
  article-title: Markov random fields and Gibbs random fields
  publication-title: Israel J. Math.
  doi: 10.1007/BF02761538
– year: 1985
  ident: 10.1016/j.physa.2015.02.066_br000085
– volume: 79
  start-page: 2554
  year: 1982
  ident: 10.1016/j.physa.2015.02.066_br000080
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 100
  start-page: 58004
  year: 2012
  ident: 10.1016/j.physa.2015.02.066_br000015
  article-title: Statistical mechanics of scale-free gene expression networks
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/100/58004
– volume: 18
  start-page: 119
  year: 1965
  ident: 10.1016/j.physa.2015.02.066_br000090
  article-title: Monte Carlo calculations of the radial distribution functions for a proton–electron plasma
  publication-title: Aust. J. Phys.
  doi: 10.1071/PH650119
– volume: 11
  start-page: 463
  year: 2004
  ident: 10.1016/j.physa.2015.02.066_br000025
  article-title: An integrated probabilistic model for functional prediction of proteins
  publication-title: J. Comput. Biol.
  doi: 10.1089/1066527041410346
– start-page: 408
  year: 2008
  ident: 10.1016/j.physa.2015.02.066_br000035
  article-title: A hidden spatial–temporal Markov random field model for network-based analysis of time course gene expression data
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07--AOAS145
– volume: 78
  start-page: 142
  year: 1971
  ident: 10.1016/j.physa.2015.02.066_br000045
  article-title: Markov random fields and Gibbs ensembles
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2317621
– volume: 9
  start-page: 147
  year: 1985
  ident: 10.1016/j.physa.2015.02.066_br000075
  article-title: A learning algorithm for Boltzmann machines*
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog0901_7
– volume: 36
  start-page: 192
  year: 1974
  ident: 10.1016/j.physa.2015.02.066_br000065
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1974.tb00999.x
SSID ssj0001732
Score 2.125231
Snippet In this paper we present a bi-stable neuronal model consistent with the Gibbs distribution. Our approach utilizes a formalism used in stochastic (Boltzmann)...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 118
SubjectTerms Boltzmann machines
Gibbs random field
Markov chain
Title A bi-stable neuronal model of Gibbs distribution
URI https://dx.doi.org/10.1016/j.physa.2015.02.066
Volume 429
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6MieBF_Inzx8jBo3VJ89q0xzGcU3EXHewWkjSFimzDzat_u0naooJ48NiSQPslfO-99sv3AC7TLDeO_WykqI4jzGwaacxUpIwrsAthbBa0OY_TdDLD-3ky78CoPQvjZZUN99ecHti6uTNo0BysqmrwRLnIkAuf0lC3McMJdhS-i8H1x5fMgwle_0lw1ZIf3ToPBY2X_3rgzYdYEow7g1XiL9HpW8QZ78FukyqSYf00-9CxiwPYDpJNsz4EOiS6ilxyp18tCbaUfnTobEOWJbmttF6TwvviNi2tjmA2vnkeTaKm_0Fk4oRvHHwMhaaIJi1VWmbGcpVqLbgwSWILV4y4-K5YqbQSDlqDWrtqxiDTeawKRH4M3cVyYU-AcOVNXtAYZhmWjKrcFKhybvNcZWWienDVvrdc1TYXstV_vcgAk_QwSRpLB1MP0hYb-WO1pCPivyae_nfiGez4q1ooew7dzdu7vXDpwEb3w3r3YWt49zCZfgIUmbPl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH4MRfQi_sT5sweP1jXNa5Mex3BO3XZxg91CkqZQkW24efVvN0lbVBAPXpsE0i_lvfe1X78HcJ3yTNvoZ0IZqThEbtJQIZeh1JZg50wb7rU5o3E6mOLjLJm1oNf8C-NklXXsr2K6j9b1lU6NZmdZlp3niDKOlLmSJrIPpqVAm5jEzDGw248vnQdhtPqUYOmSm95YD3mRl3t94NyHSOKdO71X4i_p6VvK6e_Bbl0rBt1qO_vQMvMD2PKaTb06hKgbqDK01Z16NYH3pXSzfWubYFEE96VSqyB3xrh1T6sjmPbvJr1BWDdACHWc0LXFjyBTEaJOC5kWXBsqU6UYZTpJTG7ZiE3wkhRSSWax1aiUpTMaicpimSPSY9iYL-bmBAIqncsLak0MwYJEMtM5yoyaLJO8SGQbbpr7FsvK50I0ArAX4WESDiYRxcLC1Ia0wUb8OC5hI_FfC0__u_AKtgeT0VAMH8ZPZ7DjRirV7DlsrN_ezYWtDdbq0p_9J5BbtXo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bi-stable+neuronal+model+of+Gibbs+distribution&rft.jtitle=Physica+A&rft.au=Gross%2C+Eitan&rft.date=2015-07-01&rft.issn=0378-4371&rft.volume=429&rft.spage=118&rft.epage=124&rft_id=info:doi/10.1016%2Fj.physa.2015.02.066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2015_02_066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon