Robust optimization algorithm of RF MEMS switches considering uncertainties
Efficient robust design of RF MEMS switches requires balancing stringent performance criteria with inherent uncertainties. This paper proposes a Comprehensive Robust MEMS Optimization (CRMO) framework that integrates a Surrogate-assisted Differential Evolution with Screening Constraints (SDESC) and...
Saved in:
| Published in | Integration (Amsterdam) Vol. 104; p. 102470 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-9260 |
| DOI | 10.1016/j.vlsi.2025.102470 |
Cover
| Abstract | Efficient robust design of RF MEMS switches requires balancing stringent performance criteria with inherent uncertainties. This paper proposes a Comprehensive Robust MEMS Optimization (CRMO) framework that integrates a Surrogate-assisted Differential Evolution with Screening Constraints (SDESC) and a Surrogate-assisted Multi-Objective Worst-case (SMOW) analysis method using both global and local regression models with particle swarm optimization (PSO). The SDESC algorithm adaptively adjusts constraint evaluations based on the proportion of feasible solutions, significantly reducing computational overhead, while SMOW efficiently handles multi-objective worst-case scenarios. Experimental evaluations on a 35 GHz series switch and an 10 GHz shunt switch demonstrate substantial performance and efficiency improvements. Specifically, for the series switch, the worst-case insertion loss improved from −6.742 dB to −0.134 dB, and the driving voltage was reduced from 58.345 V to 37.933 V; for the shunt switch, isolation was enhanced from −9.586 dB to −18.853 dB. Furthermore, the proposed algorithm achieves speedup from 3.2 × to 45 × over traditional PSO methods, confirming its advantage in both robustness and computational efficiency.
This paper presents an efficient robust optimization approach for RF MEMS switches considering uncertainties. The key contributions of our work include:•Efficient optimization via individual-based model strategy adaptively adjusting constraints.•Handles MEMS worst-case analysis w/ multiple variables & objectives using hybrid regression & PSO.•Combines constrained optimization & worst-case analysis for robust RF MEMS design solutions.•Auto-generates MEMS design scripts; open-sourced code for reproducibility. |
|---|---|
| AbstractList | Efficient robust design of RF MEMS switches requires balancing stringent performance criteria with inherent uncertainties. This paper proposes a Comprehensive Robust MEMS Optimization (CRMO) framework that integrates a Surrogate-assisted Differential Evolution with Screening Constraints (SDESC) and a Surrogate-assisted Multi-Objective Worst-case (SMOW) analysis method using both global and local regression models with particle swarm optimization (PSO). The SDESC algorithm adaptively adjusts constraint evaluations based on the proportion of feasible solutions, significantly reducing computational overhead, while SMOW efficiently handles multi-objective worst-case scenarios. Experimental evaluations on a 35 GHz series switch and an 10 GHz shunt switch demonstrate substantial performance and efficiency improvements. Specifically, for the series switch, the worst-case insertion loss improved from −6.742 dB to −0.134 dB, and the driving voltage was reduced from 58.345 V to 37.933 V; for the shunt switch, isolation was enhanced from −9.586 dB to −18.853 dB. Furthermore, the proposed algorithm achieves speedup from 3.2 × to 45 × over traditional PSO methods, confirming its advantage in both robustness and computational efficiency.
This paper presents an efficient robust optimization approach for RF MEMS switches considering uncertainties. The key contributions of our work include:•Efficient optimization via individual-based model strategy adaptively adjusting constraints.•Handles MEMS worst-case analysis w/ multiple variables & objectives using hybrid regression & PSO.•Combines constrained optimization & worst-case analysis for robust RF MEMS design solutions.•Auto-generates MEMS design scripts; open-sourced code for reproducibility. |
| ArticleNumber | 102470 |
| Author | Liao, Xiaoping Yan, Hao Zeng, Chuangyuan Jia, Yaning Shi, Xiao |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0002-5312-4483 surname: Yan fullname: Yan, Hao email: yanhao@seu.edu.cn organization: The National ASIC Research Center, Southeast University, Nanjing, China – sequence: 2 givenname: Yaning surname: Jia fullname: Jia, Yaning organization: The National ASIC Research Center, Southeast University, Nanjing, China – sequence: 3 givenname: Chuangyuan surname: Zeng fullname: Zeng, Chuangyuan organization: The National ASIC Research Center, Southeast University, Nanjing, China – sequence: 4 givenname: Xiaoping surname: Liao fullname: Liao, Xiaoping organization: MEMS Key Laboratory of the Ministry of Education, Southeast University, Nanjing, China – sequence: 5 givenname: Xiao surname: Shi fullname: Shi, Xiao organization: School of Computer Science and Engineering, Southeast University, Nanjing, China |
| BookMark | eNp9kE1PAjEQQHvARED_gKf-gcW2S7fbxIshoEaICeq56fYDhsCWtAWjv97d4NnTJDN5k5c3QoM2tA6hO0omlNDqfjc57xNMGGG8W7CpIAM07A6ikKwi12iU0o4QQqeCD9HrOjSnlHE4ZjjAj84QWqz3mxAhbw84eLxe4NV89Y7TF2SzdQmb0CawLkK7wafWuJg1tBlcukFXXu-Tu_2bY_S5mH_Mnovl29PL7HFZGMbLXAgiiZGdAPem9NpLShtGrBa8EtOyaawntuaSa954Sl1T1aWtrSTS1NYLLcsxYpe_JoaUovPqGOGg47eiRPUJ1E71CVSfQF0SdNDDBXKd2RlcVMmA6_QtRGeysgH-w38B-Z1p-g |
| Cites_doi | 10.1108/CW-02-2019-0014 10.1016/j.vlsi.2022.12.001 10.1109/TMAG.2004.824556 10.3390/s23084001 10.1016/j.mejo.2017.11.012 10.1109/ACCESS.2020.2990455 10.1109/TEVC.2021.3078486 10.1109/TAP.2017.2772312 10.1109/TASE.2020.2969884 10.1016/j.mejo.2023.105891 10.1007/s00542-019-04714-7 10.1109/TED.2019.2941147 10.1016/j.mejo.2021.105050 10.1109/JMEMS.2011.2105247 10.1109/TEVC.2019.2919762 10.3390/mi12121515 10.1007/s11431-023-2489-1 10.3850/9783981537079_0173 10.1049/iet-map.2016.0595 10.1016/j.vlsi.2018.02.004 10.1109/MAP.2017.2774146 10.1016/j.vlsi.2016.10.003 10.1109/JMEMS.2013.2275999 10.1109/TAP.2005.844444 10.1023/A:1014826824323 10.1016/j.ins.2019.08.054 10.1109/JSEN.2021.3120408 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.vlsi.2025.102470 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_vlsi_2025_102470 S0167926025001270 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AAYXX ACLOT CITATION EFLBG ~HD |
| ID | FETCH-LOGICAL-c253t-7090c90015fc3faf911b20da756743bbdf0d8595a5bf11eb683d8d909c8df7a93 |
| IEDL.DBID | .~1 |
| ISSN | 0167-9260 |
| IngestDate | Wed Oct 01 05:41:09 EDT 2025 Sat Aug 30 17:14:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Robust optimization RF MEMS Surrogate model Evolutionary algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c253t-7090c90015fc3faf911b20da756743bbdf0d8595a5bf11eb683d8d909c8df7a93 |
| ORCID | 0000-0002-5312-4483 |
| ParticipantIDs | crossref_primary_10_1016_j_vlsi_2025_102470 elsevier_sciencedirect_doi_10_1016_j_vlsi_2025_102470 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Integration (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang (bib16) 2020; 508 Zhang, Rahmat-Samii (bib24) Jan. 2018; 66 Luo, Wang, Jin, Liu (bib19) 2012 Forouraghi (bib23) May 2002; 113 Lake J J, Duwel A E, Candler R N., "Particle swarm optimization for design of slotted MEMS resonators with low thermoelastic dissipation," J. Microelectromech. Syst., vol. 23, no. 2, pp. 364-371. Schwarz (bib21) 2019 Yan, Liao, Li (bib34) 2021; 12 Li X, Wang J, Gao J, et al., "High-efficiency study of an SBEIO based on the SAA optimization," IEEE Trans. Electron. Dev., vol. 66, no. 11, pp. 4938-4942. M. Sadoughi, et al., "Sequential online dispatch in design of experiments for single-and multiple-response surrogate modeling," IEEE Trans. Autom. Sci. Eng., vol. 17, no. 4, pp. 1674-1688. Liang, Runarsson, Mezura-Montes (bib27) 2006; 41 Ardehshiri, Karimi, Dehdasht-Heydari (bib30) 2019; 45 Liu (bib29) 2023; 66 Benchana (bib8) 2023; 89 Steiner, Weber, Magele (bib22) March 2004; 40 Chu, Liao, Yan (bib28) 2017; 11 X. Cai, L. Gao, X. Li, "Efficient generalized surrogate-assisted evolutionary algorithm for high-dimensional expensive problems," IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 365-379. Zhao, Zhou, Song (bib20) May 2020; 26 Rahi, Singh, Ray (bib17) 2021; 25 Kaboli, Ghanavati, Akhlaghi (bib7) 2017; 56 Lucyszyn (bib1) Aug. 2010 Bajwa, Kaya Yapici (bib31) 2023; 23 Yan, Liao (bib2) 2021; 21 Percy, Kanthamani (bib11) 2023 Lee, Lee, Kim (bib18) April 2005; 53 Zeng, Shi, Liao (bib33) 2022 Hald (bib4) 2018; 63 Deb, Roy, Gupta (bib25) Feb. 2018; 60 Chu, Liao, Yan (bib26) 2017; 11 Kumar (bib3) 2021; 112 Ketabi A, Navardi M J., "Optimization of variable-capacitance micromotor using genetic algorithm," J. Microelectromech. Syst., vol. 20, no. 2, pp. 497-504. B. Liu, A. Nikolaeva, "Efficient global optimization of MEMS based on surrogate model assisted evolutionary algorithm," in 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE. Younis (bib6) 2018; 71 M. O. Akinsolu, B. Liu, P. I. Lazaridis, et al., "Efficient design optimization of high-performance MEMS based on a surrogate-assisted self-adaptive differential evolution," IEEE Access, vol. 8, pp. 80256-80268. Rahi (10.1016/j.vlsi.2025.102470_bib17) 2021; 25 Forouraghi (10.1016/j.vlsi.2025.102470_bib23) 2002; 113 Younis (10.1016/j.vlsi.2025.102470_bib6) 2018; 71 Yan (10.1016/j.vlsi.2025.102470_bib2) 2021; 21 Ardehshiri (10.1016/j.vlsi.2025.102470_bib30) 2019; 45 Liang (10.1016/j.vlsi.2025.102470_bib27) 2006; 41 Deb (10.1016/j.vlsi.2025.102470_bib25) 2018; 60 Zeng (10.1016/j.vlsi.2025.102470_bib33) 2022 Kumar (10.1016/j.vlsi.2025.102470_bib3) 2021; 112 Hald (10.1016/j.vlsi.2025.102470_bib4) 2018; 63 Yang (10.1016/j.vlsi.2025.102470_bib16) 2020; 508 Yan (10.1016/j.vlsi.2025.102470_bib34) 2021; 12 Chu (10.1016/j.vlsi.2025.102470_bib28) 2017; 11 10.1016/j.vlsi.2025.102470_bib9 Bajwa (10.1016/j.vlsi.2025.102470_bib31) 2023; 23 Liu (10.1016/j.vlsi.2025.102470_bib29) 2023; 66 10.1016/j.vlsi.2025.102470_bib5 Chu (10.1016/j.vlsi.2025.102470_bib26) 2017; 11 Percy (10.1016/j.vlsi.2025.102470_bib11) 2023 Lee (10.1016/j.vlsi.2025.102470_bib18) 2005; 53 Schwarz (10.1016/j.vlsi.2025.102470_bib21) 2019 Zhao (10.1016/j.vlsi.2025.102470_bib20) 2020; 26 10.1016/j.vlsi.2025.102470_bib13 10.1016/j.vlsi.2025.102470_bib12 Luo (10.1016/j.vlsi.2025.102470_bib19) 2012 Steiner (10.1016/j.vlsi.2025.102470_bib22) 2004; 40 Zhang (10.1016/j.vlsi.2025.102470_bib24) 2018; 66 Lucyszyn (10.1016/j.vlsi.2025.102470_bib1) 2010 Kaboli (10.1016/j.vlsi.2025.102470_bib7) 2017; 56 10.1016/j.vlsi.2025.102470_bib10 10.1016/j.vlsi.2025.102470_bib15 Benchana (10.1016/j.vlsi.2025.102470_bib8) 2023; 89 10.1016/j.vlsi.2025.102470_bib14 |
| References_xml | – volume: 25 start-page: 1103 year: 2021 end-page: 1117 ident: bib17 article-title: Partial evaluation strategies for expensive evolutionary constrained optimization publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 942 year: 2017 end-page: 948 ident: bib28 article-title: Ka‐band RF MEMS capacitive switch with low loss, high isolation, long‐term reliability and high power handling based on GaAs MMIC technology publication-title: IET Microw., Antennas Propag. – volume: 26 start-page: 1689 year: May 2020 end-page: 1696 ident: bib20 article-title: Uncertainty quantification of MEMS devices with correlated random parameters publication-title: Microsyst. Technol. – volume: 66 start-page: 160 year: Jan. 2018 end-page: 171 ident: bib24 article-title: Robust optimization with worst case sensitivity analysis applied to array synthesis and antenna designs publication-title: IEEE Trans. Antenn. Propag. – reference: B. Liu, A. Nikolaeva, "Efficient global optimization of MEMS based on surrogate model assisted evolutionary algorithm," in 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE. – volume: 23 start-page: 4001 year: 2023 ident: bib31 article-title: Machine learning-based modeling and generic design optimization methodology for radio-frequency microelectromechanical devices publication-title: Sensors – start-page: 1636 year: 2012 end-page: 1639 ident: bib19 article-title: MEMS gyroscope yield simulation based on monte carlo method publication-title: 2012 IEEE 62nd Electronic Components and Technology Conference – volume: 112 year: 2021 ident: bib3 article-title: An intensive approach to optimize capacitive type RF MEMS shunt switch publication-title: Microelectron. J. – reference: M. Sadoughi, et al., "Sequential online dispatch in design of experiments for single-and multiple-response surrogate modeling," IEEE Trans. Autom. Sci. Eng., vol. 17, no. 4, pp. 1674-1688. – volume: 60 start-page: 51 year: Feb. 2018 end-page: 61 ident: bib25 article-title: A differential evolution performance comparison: comparing how various differential evolution algorithms perform in designing microstrip antennas and arrays publication-title: IEEE Antenn. Propag. Mag. – reference: Li X, Wang J, Gao J, et al., "High-efficiency study of an SBEIO based on the SAA optimization," IEEE Trans. Electron. Dev., vol. 66, no. 11, pp. 4938-4942. – start-page: 1 year: 2022 end-page: 3 ident: bib33 publication-title: Surrogate model-based multi-object worst case analysis for shunt capacitive RF – reference: M. O. Akinsolu, B. Liu, P. I. Lazaridis, et al., "Efficient design optimization of high-performance MEMS based on a surrogate-assisted self-adaptive differential evolution," IEEE Access, vol. 8, pp. 80256-80268. – volume: 40 start-page: 1094 year: March 2004 end-page: 1099 ident: bib22 article-title: Managing uncertainties in electromagnetic design problems with robust optimization publication-title: IEEE Trans. Magn. – volume: 66 start-page: 3186 year: 2023 end-page: 3196 ident: bib29 article-title: Constrained multiobjective robust optimization of a bistable mechanism for inertial switch publication-title: Sci. China Technol. Sci. – year: 2023 ident: bib11 article-title: Revolutionizing wireless communication: a review perspective on design and optimization of RF MEMS switches publication-title: Microelectron. J. – reference: Lake J J, Duwel A E, Candler R N., "Particle swarm optimization for design of slotted MEMS resonators with low thermoelastic dissipation," J. Microelectromech. Syst., vol. 23, no. 2, pp. 364-371. – volume: 45 start-page: 53 year: 2019 end-page: 64 ident: bib30 article-title: Design and optimization of a low voltage RF switch MEMS capacitance using genetic algorithm and Taguchi method publication-title: Circ. World – volume: 21 start-page: 25668 year: 2021 end-page: 25674 ident: bib2 article-title: Research of a compact MEMS-based integrated detector for X-band application: Theory, design, fabrication, and measurement[J] publication-title: IEEE Sensors Journal – volume: 63 start-page: 362 year: 2018 end-page: 372 ident: bib4 article-title: Full custom MEMS design: a new method for the analysis of motion-dependent parasitics publication-title: Integration – reference: X. Cai, L. Gao, X. Li, "Efficient generalized surrogate-assisted evolutionary algorithm for high-dimensional expensive problems," IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 365-379. – volume: 89 start-page: 134 year: 2023 end-page: 145 ident: bib8 article-title: A hybrid equivalent source—particle swarm optimization model for accurate near-field to far-field conversion publication-title: Integration – volume: 113 start-page: 251 year: May 2002 end-page: 268 ident: bib23 article-title: Worst-case tolerance design and quality assurance via genetic algorithms publication-title: J. Optim. Theor. Appl. – volume: 11 start-page: 942 year: 2017 end-page: 948 ident: bib26 article-title: Ka‐band RF MEMS capacitive switch with low loss, high isolation, long‐term reliability and high power handling based on GaAs MMIC technology publication-title: IET Microw., Antennas Propag. – volume: 508 start-page: 50 year: 2020 end-page: 63 ident: bib16 article-title: Surrogate-assisted classification-collaboration differential evolution for expensive constrained optimization problems publication-title: Inf. Sci. – start-page: 65 year: 2019 end-page: 70 ident: bib21 article-title: The need of simulation methodologies for active semiconductor devices in MEMS : invited paper publication-title: 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems – volume: 71 start-page: 47 year: 2018 end-page: 60 ident: bib6 article-title: Multiphysics design optimization of RF-MEMS switch using response surface methodology publication-title: Microelectron. J. – volume: 12 start-page: 1515 year: 2021 ident: bib34 article-title: A cascaded MEMS amplitude demodulator for large dynamic range application in RF receiver[J] publication-title: Micromachines – volume: 56 start-page: 70 year: 2017 end-page: 76 ident: bib7 article-title: A new CMOS pseudo approximation exponential function generator by modified particle swarm optimization algorithm publication-title: Integration – year: Aug. 2010 ident: bib1 article-title: Advanced RF MEMS – reference: Ketabi A, Navardi M J., "Optimization of variable-capacitance micromotor using genetic algorithm," J. Microelectromech. Syst., vol. 20, no. 2, pp. 497-504. – volume: 53 start-page: 1325 year: April 2005 end-page: 1331 ident: bib18 article-title: Decision of error tolerance in array element by the monte carlo method publication-title: IEEE Trans. Antenn. Propag. – volume: 41 start-page: 8 year: 2006 end-page: 31 ident: bib27 article-title: Problem definitions, and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: J. Appl. Mech. – year: 2010 ident: 10.1016/j.vlsi.2025.102470_bib1 – volume: 45 start-page: 53 issue: 2 year: 2019 ident: 10.1016/j.vlsi.2025.102470_bib30 article-title: Design and optimization of a low voltage RF switch MEMS capacitance using genetic algorithm and Taguchi method publication-title: Circ. World doi: 10.1108/CW-02-2019-0014 – volume: 41 start-page: 8 issue: 8 year: 2006 ident: 10.1016/j.vlsi.2025.102470_bib27 article-title: Problem definitions, and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: J. Appl. Mech. – volume: 89 start-page: 134 year: 2023 ident: 10.1016/j.vlsi.2025.102470_bib8 article-title: A hybrid equivalent source—particle swarm optimization model for accurate near-field to far-field conversion publication-title: Integration doi: 10.1016/j.vlsi.2022.12.001 – volume: 40 start-page: 1094 issue: 2 year: 2004 ident: 10.1016/j.vlsi.2025.102470_bib22 article-title: Managing uncertainties in electromagnetic design problems with robust optimization publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2004.824556 – volume: 23 start-page: 4001 issue: 8 year: 2023 ident: 10.1016/j.vlsi.2025.102470_bib31 article-title: Machine learning-based modeling and generic design optimization methodology for radio-frequency microelectromechanical devices publication-title: Sensors doi: 10.3390/s23084001 – start-page: 1636 year: 2012 ident: 10.1016/j.vlsi.2025.102470_bib19 article-title: MEMS gyroscope yield simulation based on monte carlo method – volume: 71 start-page: 47 year: 2018 ident: 10.1016/j.vlsi.2025.102470_bib6 article-title: Multiphysics design optimization of RF-MEMS switch using response surface methodology publication-title: Microelectron. J. doi: 10.1016/j.mejo.2017.11.012 – ident: 10.1016/j.vlsi.2025.102470_bib15 doi: 10.1109/ACCESS.2020.2990455 – volume: 25 start-page: 1103 issue: 6 year: 2021 ident: 10.1016/j.vlsi.2025.102470_bib17 article-title: Partial evaluation strategies for expensive evolutionary constrained optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3078486 – volume: 66 start-page: 160 issue: 1 year: 2018 ident: 10.1016/j.vlsi.2025.102470_bib24 article-title: Robust optimization with worst case sensitivity analysis applied to array synthesis and antenna designs publication-title: IEEE Trans. Antenn. Propag. doi: 10.1109/TAP.2017.2772312 – ident: 10.1016/j.vlsi.2025.102470_bib13 doi: 10.1109/TASE.2020.2969884 – year: 2023 ident: 10.1016/j.vlsi.2025.102470_bib11 article-title: Revolutionizing wireless communication: a review perspective on design and optimization of RF MEMS switches publication-title: Microelectron. J. doi: 10.1016/j.mejo.2023.105891 – volume: 26 start-page: 1689 year: 2020 ident: 10.1016/j.vlsi.2025.102470_bib20 article-title: Uncertainty quantification of MEMS devices with correlated random parameters publication-title: Microsyst. Technol. doi: 10.1007/s00542-019-04714-7 – ident: 10.1016/j.vlsi.2025.102470_bib10 doi: 10.1109/TED.2019.2941147 – start-page: 1 year: 2022 ident: 10.1016/j.vlsi.2025.102470_bib33 – volume: 112 year: 2021 ident: 10.1016/j.vlsi.2025.102470_bib3 article-title: An intensive approach to optimize capacitive type RF MEMS shunt switch publication-title: Microelectron. J. doi: 10.1016/j.mejo.2021.105050 – ident: 10.1016/j.vlsi.2025.102470_bib5 doi: 10.1109/JMEMS.2011.2105247 – ident: 10.1016/j.vlsi.2025.102470_bib14 doi: 10.1109/TEVC.2019.2919762 – volume: 12 start-page: 1515 issue: 12 year: 2021 ident: 10.1016/j.vlsi.2025.102470_bib34 article-title: A cascaded MEMS amplitude demodulator for large dynamic range application in RF receiver[J] publication-title: Micromachines doi: 10.3390/mi12121515 – volume: 66 start-page: 3186 issue: 11 year: 2023 ident: 10.1016/j.vlsi.2025.102470_bib29 article-title: Constrained multiobjective robust optimization of a bistable mechanism for inertial switch publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-023-2489-1 – ident: 10.1016/j.vlsi.2025.102470_bib12 doi: 10.3850/9783981537079_0173 – volume: 11 start-page: 942 issue: 6 year: 2017 ident: 10.1016/j.vlsi.2025.102470_bib28 article-title: Ka‐band RF MEMS capacitive switch with low loss, high isolation, long‐term reliability and high power handling based on GaAs MMIC technology publication-title: IET Microw., Antennas Propag. doi: 10.1049/iet-map.2016.0595 – volume: 63 start-page: 362 year: 2018 ident: 10.1016/j.vlsi.2025.102470_bib4 article-title: Full custom MEMS design: a new method for the analysis of motion-dependent parasitics publication-title: Integration doi: 10.1016/j.vlsi.2018.02.004 – volume: 60 start-page: 51 issue: 1 year: 2018 ident: 10.1016/j.vlsi.2025.102470_bib25 article-title: A differential evolution performance comparison: comparing how various differential evolution algorithms perform in designing microstrip antennas and arrays publication-title: IEEE Antenn. Propag. Mag. doi: 10.1109/MAP.2017.2774146 – volume: 56 start-page: 70 year: 2017 ident: 10.1016/j.vlsi.2025.102470_bib7 article-title: A new CMOS pseudo approximation exponential function generator by modified particle swarm optimization algorithm publication-title: Integration doi: 10.1016/j.vlsi.2016.10.003 – ident: 10.1016/j.vlsi.2025.102470_bib9 doi: 10.1109/JMEMS.2013.2275999 – start-page: 65 year: 2019 ident: 10.1016/j.vlsi.2025.102470_bib21 article-title: The need of simulation methodologies for active semiconductor devices in MEMS : invited paper – volume: 53 start-page: 1325 issue: 4 year: 2005 ident: 10.1016/j.vlsi.2025.102470_bib18 article-title: Decision of error tolerance in array element by the monte carlo method publication-title: IEEE Trans. Antenn. Propag. doi: 10.1109/TAP.2005.844444 – volume: 113 start-page: 251 year: 2002 ident: 10.1016/j.vlsi.2025.102470_bib23 article-title: Worst-case tolerance design and quality assurance via genetic algorithms publication-title: J. Optim. Theor. Appl. doi: 10.1023/A:1014826824323 – volume: 508 start-page: 50 year: 2020 ident: 10.1016/j.vlsi.2025.102470_bib16 article-title: Surrogate-assisted classification-collaboration differential evolution for expensive constrained optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.054 – volume: 21 start-page: 25668 issue: 22 year: 2021 ident: 10.1016/j.vlsi.2025.102470_bib2 article-title: Research of a compact MEMS-based integrated detector for X-band application: Theory, design, fabrication, and measurement[J] publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3120408 – volume: 11 start-page: 942 issue: 6 year: 2017 ident: 10.1016/j.vlsi.2025.102470_bib26 article-title: Ka‐band RF MEMS capacitive switch with low loss, high isolation, long‐term reliability and high power handling based on GaAs MMIC technology publication-title: IET Microw., Antennas Propag. doi: 10.1049/iet-map.2016.0595 |
| SSID | ssj0001475 |
| Score | 2.3687487 |
| Snippet | Efficient robust design of RF MEMS switches requires balancing stringent performance criteria with inherent uncertainties. This paper proposes a Comprehensive... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 102470 |
| SubjectTerms | Evolutionary algorithm RF MEMS Robust optimization Surrogate model |
| Title | Robust optimization algorithm of RF MEMS switches considering uncertainties |
| URI | https://dx.doi.org/10.1016/j.vlsi.2025.102470 |
| Volume | 104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0167-9260 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001475 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0167-9260 databaseCode: .~1 dateStart: 0 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001475 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0167-9260 databaseCode: ACRLP dateStart: 19950601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001475 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0167-9260 databaseCode: AIKHN dateStart: 19950601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001475 providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXvRg_Iz4QXrwZiZlW1l7JASCIsSAJNyWrR86A4y4oTf_dvtYFzExHjwtXfqS5nV77zX9_X4PoWtlchDXJHIIi4jj09h1OCPSoSJQHpWaFVcxw1GrP_XvZ3RWQZ2SCwOwShv7i5i-idb2TcN6s7FKksYEAPTclOMmiW_uT4HB7gfQxeD28xvm0fQDWup7w2xLnCkwXu_zLDFnRJeCgoEPDYt_S05bCad3gPZtpYjbxWIOUUUtj9Deln7gMRqM03id5Tg1__3CEipxNH9OzYn_ZYFTjcc9POwOJzj7SGB7Mixsg05jj01KKwABIKp6gqa97lOn79juCI5wqZc7AeFEcKh5tPB0pE3Uil0io4ACryCOpSYSxMsiGutmU8Ut5kkmOeGCSR1E3DtF1WW6VGcI-2YeE4ExUsBVJRGXnvSVYKBOIz23hm5Kt4SrQgQjLNFhryE4MQQnhoUTa4iWngt_bGVoovQfduf_tLtAuzAqgF-XqJq_rdWVqRTyuL75FOpop90ZPzzC827QH30BwSe-fA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGYAB8RTl6YENhbpJ3NgjqloV2nToQ-pm2XEMQW1TkRQ2vh27cUSREANr4itFx859yOeeC8BtrGMQVYg7iHDk-Fi4DiVIOjgKYg9LRYqrmHDQ7E78pymeVkCr7IUxtErr-wufvvbW9kndollfJkl9ZAj0VKfjOoiv70-3wLaP3cBUYPef3zyPhh_gUuDbLLedMwXJ632WJbpIdLGRMPDNxOLfotNGxOkcgH2bKsKH4msOQSVeHIG9DQHBY9AbpmKV5TDVP_7cdlRCPntOdcn_MoepgsMODNvhCGYfidmfDEZ2Qqe2hzqmFYwAo6p6Aiad9rjVdex4BCdysZc7AaIooibpUZGnuNJuS7hI8gCbxgIhpELSqJdxLFSjEYsm8SSRFNGISBVw6p2C6iJdxGcA-nodiQJtFJtmVcSp9KQfR8TI00jPrYG7Eha2LFQwWEkPe2UGRGZAZAWINYBL5NiPvWTaTf9hd_5Puxuw0x2HfdZ_HPQuwK55U7DALkE1f1vFVzptyMX1-lh8AXlwvnw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimization+algorithm+of+RF+MEMS+switches+considering+uncertainties&rft.jtitle=Integration+%28Amsterdam%29&rft.au=Yan%2C+Hao&rft.au=Jia%2C+Yaning&rft.au=Zeng%2C+Chuangyuan&rft.au=Liao%2C+Xiaoping&rft.date=2025-09-01&rft.issn=0167-9260&rft.volume=104&rft.spage=102470&rft_id=info:doi/10.1016%2Fj.vlsi.2025.102470&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_vlsi_2025_102470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9260&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9260&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9260&client=summon |