Pattern dynamics in a bimolecular reaction–diffusion model with saturation law and cross-diffusion

This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions. Firstly, both the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the positive constant steady state of model are estab...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 192; p. 116006
Main Authors Lian, Li-Na, Yan, Xiang-Ping, Zhang, Cun-Hua
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0960-0779
DOI10.1016/j.chaos.2025.116006

Cover

Abstract This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions. Firstly, both the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the positive constant steady state of model are established through the linearization analysis. Secondly, the amplitude equations of model in proximity to the positive constant steady state are obtained by means of the method of multiple-scale time perturbation analysis and successive approximations as the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve. Thirdly, the classification and stability of Turing patterns in the diffusion bimolecular model are analyzed based on the existence and stability of the stationary solutions to the amplitude equations. It is found that the appearance of spatial diffusion in the bimolecular chemical reaction model with saturation law can give rise to nonuniform spatial patterns and lead to more complex dynamical behaviors. When the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve, the spot patterns, the strap (maze) patterns as well as the mixture of spot and strap patterns can occur. Theoretical findings show that suitable reaction–diffusion systems can be used to explain the mechanism in formation of patterns in the natural world. Finally, in order to substantiate our theoretical findings, some suitable numerical simulations are also provided according to Matlab software package and difference methods solving the approximate solutions of partial differential equations of parabolic types.
AbstractList This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions. Firstly, both the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the positive constant steady state of model are established through the linearization analysis. Secondly, the amplitude equations of model in proximity to the positive constant steady state are obtained by means of the method of multiple-scale time perturbation analysis and successive approximations as the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve. Thirdly, the classification and stability of Turing patterns in the diffusion bimolecular model are analyzed based on the existence and stability of the stationary solutions to the amplitude equations. It is found that the appearance of spatial diffusion in the bimolecular chemical reaction model with saturation law can give rise to nonuniform spatial patterns and lead to more complex dynamical behaviors. When the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve, the spot patterns, the strap (maze) patterns as well as the mixture of spot and strap patterns can occur. Theoretical findings show that suitable reaction–diffusion systems can be used to explain the mechanism in formation of patterns in the natural world. Finally, in order to substantiate our theoretical findings, some suitable numerical simulations are also provided according to Matlab software package and difference methods solving the approximate solutions of partial differential equations of parabolic types.
ArticleNumber 116006
Author Yan, Xiang-Ping
Lian, Li-Na
Zhang, Cun-Hua
Author_xml – sequence: 1
  givenname: Li-Na
  surname: Lian
  fullname: Lian, Li-Na
– sequence: 2
  givenname: Xiang-Ping
  surname: Yan
  fullname: Yan, Xiang-Ping
  email: xpyan72@163.com
– sequence: 3
  givenname: Cun-Hua
  surname: Zhang
  fullname: Zhang, Cun-Hua
BookMark eNp9kE1OwzAQRr0oEm3hBGx8gYRxYifOggWq-JMqwQLW1tR2VFeJg2yXqjvuwA05CWmLWLKakeZ7M6M3IxM_eEvIFYOcAauuN7le4xDzAgqRM1YBVBMyhaaCDOq6OSezGDcAwKAqpsS8YEo2eGr2HnunI3WeIl25fuis3nYYaLCokxv89-eXcW27jWNP-8HYju5cWtOIaRvwkKAd7ih6Q3UYYsz-0hfkrMUu2svfOidv93evi8ds-fzwtLhdZroQZcpEK_TKFg2CZNoY3q4kF9jw2oxzwY2stGwQSymF1AaEwaaGggksOa85N-WclKe9x_vBtuo9uB7DXjFQBzlqo45y1EGOOskZqZsTZcfXPpwNKmpnvbbGBauTMoP7l_8BQjF1PQ
Cites_doi 10.1088/0951-7715/21/7/006
10.1103/RevModPhys.65.851
10.1016/j.nonrwa.2023.104042
10.1016/j.physd.2005.01.022
10.1039/B813825G
10.1016/j.nonrwa.2018.02.004
10.1017/S0308210500023064
10.1016/j.chaos.2021.111752
10.1016/j.jeurceramsoc.2022.09.044
10.1063/1.524034
10.1016/j.nonrwa.2019.01.005
10.1016/0362-546X(93)90127-E
10.1016/j.cjph.2024.04.021
10.1103/PhysRevE.90.052908
10.1016/j.physa.2019.122023
10.1016/j.nonrwa.2014.12.006
10.1007/s11538-006-9062-3
10.1016/j.nonrwa.2012.11.009
10.1016/j.nonrwa.2010.02.007
10.1007/s11587-016-0267-y
10.1016/j.jmaa.2023.127346
10.1016/j.chaos.2022.112869
10.1016/j.chaos.2021.111542
10.1063/1.523532
10.1016/j.physa.2022.127417
10.1016/j.chaos.2016.07.003
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2025.116006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2025_116006
S0960077925000190
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12261054
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ABTAH
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c253t-5f5cbe29a081cdd4fb845a947dc2554d86c89aa38858cd05da970215a344744d3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Wed Oct 01 06:51:25 EDT 2025
Sun Apr 06 06:54:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cross-diffusion
Bimolecular reaction–diffusion model
35B35
Amplitude equations
Turing patterns
35B40
35K57
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c253t-5f5cbe29a081cdd4fb845a947dc2554d86c89aa38858cd05da970215a344744d3
ParticipantIDs crossref_primary_10_1016_j_chaos_2025_116006
elsevier_sciencedirect_doi_10_1016_j_chaos_2025_116006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Luo, Cao (b15) 2023; 28
Calderón-Barreto, Aragón (b10) 2022; 165
Tang, Song (b28) 2015; 24
OuYang, Hao (b37) 2000
Yigit, Sarfaraz, Barreira (b22) 2024; 77
Peng, Yi (b5) 2011; 15
OuYang (b36) 2010
Bonilla, Velarde (b2) 1979; 20
Liu, Ge (b16) 2022; 155
Cross, Hohenberg (b34) 1993; 65
Ruan (b8) 1993; 21
Yan, Chen, Zhang (b19) 2019; 48
Murray (b1) 2003
Turing (b9) 1952; 237
Du (b7) 1996; 126
Peng, Huang, Li (b18) 2023; 43
Lai, Yuan, Zhang (b14) 2024; 89
Gambino, Lupo, Sammartino (b25) 2016; 65
Eckhaus (b35) 1965
Zhao, Zhang, Huang (b31) 2015; 266
Zhang, Zang (b30) 2014; 90
Yi, Liu, Wei (b6) 2010; 11
Ibanez, Velarde (b3) 1978; 19
Mukherjee, Banerjee (b17) 2022; 599
Chen (b11) 2000; 145
Kumar, Kumari, Agarwal (b13) 2022; 9
Gambino, Lombardo, Sammartino (b24) 2013; 14
Page, Maini, Monk (b27) 2005; 202
Peng, Shi, Wang (b4) 2008; 21
Vanag, Epstein (b32) 2009; 11
Yan, Zhang (b20) 2018; 43
Peng, Yu (b29) 2023; 527
Harris, Stöcker (b39) 1998
Ghorai, Poria (b23) 2016; 91
Garvie (b38) 2007; 69
Abid, Yafia, Aziz-Alaoui (b21) 2015; 260
Hu, Zhu (b26) 2021; 153
Duan, Chang, Jin (b12) 2019; 533
Evans (b33) 2010
Murray (10.1016/j.chaos.2025.116006_b1) 2003
Ghorai (10.1016/j.chaos.2025.116006_b23) 2016; 91
Yan (10.1016/j.chaos.2025.116006_b20) 2018; 43
Peng (10.1016/j.chaos.2025.116006_b29) 2023; 527
Gambino (10.1016/j.chaos.2025.116006_b24) 2013; 14
Tang (10.1016/j.chaos.2025.116006_b28) 2015; 24
Garvie (10.1016/j.chaos.2025.116006_b38) 2007; 69
Liu (10.1016/j.chaos.2025.116006_b15) 2023; 28
Turing (10.1016/j.chaos.2025.116006_b9) 1952; 237
Ruan (10.1016/j.chaos.2025.116006_b8) 1993; 21
Calderón-Barreto (10.1016/j.chaos.2025.116006_b10) 2022; 165
Bonilla (10.1016/j.chaos.2025.116006_b2) 1979; 20
Kumar (10.1016/j.chaos.2025.116006_b13) 2022; 9
Liu (10.1016/j.chaos.2025.116006_b16) 2022; 155
Eckhaus (10.1016/j.chaos.2025.116006_b35) 1965
Zhang (10.1016/j.chaos.2025.116006_b30) 2014; 90
Evans (10.1016/j.chaos.2025.116006_b33) 2010
Lai (10.1016/j.chaos.2025.116006_b14) 2024; 89
Zhao (10.1016/j.chaos.2025.116006_b31) 2015; 266
Vanag (10.1016/j.chaos.2025.116006_b32) 2009; 11
Chen (10.1016/j.chaos.2025.116006_b11) 2000; 145
Ibanez (10.1016/j.chaos.2025.116006_b3) 1978; 19
Abid (10.1016/j.chaos.2025.116006_b21) 2015; 260
Duan (10.1016/j.chaos.2025.116006_b12) 2019; 533
Peng (10.1016/j.chaos.2025.116006_b4) 2008; 21
Page (10.1016/j.chaos.2025.116006_b27) 2005; 202
Hu (10.1016/j.chaos.2025.116006_b26) 2021; 153
Harris (10.1016/j.chaos.2025.116006_b39) 1998
Mukherjee (10.1016/j.chaos.2025.116006_b17) 2022; 599
Yigit (10.1016/j.chaos.2025.116006_b22) 2024; 77
Peng (10.1016/j.chaos.2025.116006_b5) 2011; 15
Cross (10.1016/j.chaos.2025.116006_b34) 1993; 65
Gambino (10.1016/j.chaos.2025.116006_b25) 2016; 65
Yi (10.1016/j.chaos.2025.116006_b6) 2010; 11
Yan (10.1016/j.chaos.2025.116006_b19) 2019; 48
OuYang (10.1016/j.chaos.2025.116006_b36) 2010
OuYang (10.1016/j.chaos.2025.116006_b37) 2000
Peng (10.1016/j.chaos.2025.116006_b18) 2023; 43
Du (10.1016/j.chaos.2025.116006_b7) 1996; 126
References_xml – volume: 155
  year: 2022
  ident: b16
  article-title: Turing instability of periodic solutions for the Gierer-Meinhardt model with cross-diffusion
  publication-title: Chaos Solitons Fractals
– volume: 153
  year: 2021
  ident: b26
  article-title: Turing pattern analysis of a reaction–diffusion rumor propagation system with time delay in both network and non-network environments
  publication-title: Chaos Solitons Fractals
– volume: 202
  start-page: 95
  year: 2005
  end-page: 115
  ident: b27
  article-title: Complex pattern formation in reaction–diffusion systems with spatially varying parameters
  publication-title: Phys D
– volume: 145
  start-page: 309
  year: 2000
  end-page: 329
  ident: b11
  article-title: A mathematical model for bifurcations in a Belousov–Zhabotinsky reaction
  publication-title: Phys D 2000
– volume: 599
  year: 2022
  ident: b17
  article-title: Hunting cooperation among slowly diffusing specialist predators can induce stationary turing patterns
  publication-title: Phys A
– volume: 533
  year: 2019
  ident: b12
  article-title: Turing patterns of an SI epidemic model with cross-diffusion on complex networks
  publication-title: Phys A
– volume: 14
  start-page: 1755
  year: 2013
  end-page: 1779
  ident: b24
  article-title: Pattern formation driven by cross-diffusion in a 2D domain
  publication-title: Nonlinear Anal Real World Appl
– volume: 21
  start-page: 439
  year: 1993
  end-page: 456
  ident: b8
  article-title: Asymptotic behavior and positive steady-state solutions of a reaction–diffusion model with autocatalysis and saturation law
  publication-title: Nonlinear Anal
– volume: 89
  start-page: 1803
  year: 2024
  end-page: 1818
  ident: b14
  article-title: Dichotomous-noise-induced turing pattern formation in a predator–prey model
  publication-title: Chinese J Phys
– volume: 65
  start-page: 449
  year: 2016
  end-page: 467
  ident: b25
  article-title: Effects of cross-diffusion on turing patterns in a reaction–diffusion Schnakenberg model
  publication-title: Ric Mat
– volume: 69
  start-page: 931
  year: 2007
  end-page: 956
  ident: b38
  article-title: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB
  publication-title: Bull Math Biol B
– volume: 28
  year: 2023
  ident: b15
  article-title: Turing pattern and chemical medium-range order of metallic glasses
  publication-title: Mat Today Phys
– volume: 21
  start-page: 1471
  year: 2008
  end-page: 1488
  ident: b4
  article-title: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law
  publication-title: Nonlinearity
– volume: 9
  year: 2022
  ident: b13
  article-title: Spatiotemporal dynamics and turing patterns in an eco-epidemiological model with cannibalism
  publication-title: Results Control Optim
– volume: 43
  start-page: 166
  year: 2023
  end-page: 172
  ident: b18
  article-title: Radical reaction-induced turing pattern corrosion of alumina refractory ceramics with CaO-
  publication-title: J Eur Ceram Soc
– year: 2010
  ident: b33
  article-title: Partial differential equations
– volume: 65
  start-page: 851
  year: 1993
  end-page: 1112
  ident: b34
  article-title: Pattern formation outside of equilibrium
  publication-title: Rev Modern Phys
– volume: 20
  start-page: 2692
  year: 1979
  end-page: 2703
  ident: b2
  article-title: Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law
  publication-title: J Math Phys
– year: 2010
  ident: b36
  article-title: Introduction to non-linear science and pattern dynamics (Chinese)
– volume: 527
  year: 2023
  ident: b29
  article-title: Turing pattern of a diffusive predator–prey model with nonlocal delay and herd behavior
  publication-title: J Math Anal Appl
– volume: 11
  start-page: 897
  year: 2009
  end-page: 912
  ident: b32
  article-title: Cross-diffusion and pattern formation in reaction–diffusion systems
  publication-title: Phys Chem Chem Phys
– volume: 77
  year: 2024
  ident: b22
  article-title: A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains
  publication-title: Nonlinear Anal Real World Appl
– volume: 126
  start-page: 777
  year: 1996
  end-page: 809
  ident: b7
  article-title: Uniqueness, multiplicity and stability for positive solutions of a pair of reaction–diffusion equations
  publication-title: Proc Roy Soc Edinburgh
– volume: 91
  start-page: 421
  year: 2016
  end-page: 429
  ident: b23
  article-title: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity
  publication-title: Chaos Solitons Fractals
– volume: 90
  year: 2014
  ident: b30
  article-title: Delay-induced turing instability in reaction–diffusion equations
  publication-title: Phys Rev E
– volume: 19
  start-page: 151
  year: 1978
  end-page: 156
  ident: b3
  article-title: Multiple steady states in a simple reaction–diffusion model with Michaelis–Menten (first-order hinshelwood–langmuir) saturation law: The limit of large separation in the two diffusion constants
  publication-title: J Math Phys
– year: 1965
  ident: b35
  article-title: Studies in non-linear stability theory
– year: 2000
  ident: b37
  article-title: Pattern dynamics in reaction-diffusion systems (Chinese)
– volume: 48
  start-page: 161
  year: 2019
  end-page: 181
  ident: b19
  article-title: Dynamics analysis of a chemical reaction–diffusion model subject to Degn-Harrison reaction scheme
  publication-title: Nonlinear Anal Real World Appl
– volume: 43
  start-page: 54
  year: 2018
  end-page: 77
  ident: b20
  article-title: Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law
  publication-title: Nonlinear Anal Real World Appl
– volume: 24
  start-page: 36
  year: 2015
  end-page: 49
  ident: b28
  article-title: Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior
  publication-title: Nonlinear Anal Real World Appl
– year: 1998
  ident: b39
  article-title: Handbook of mathematics and computational science
– volume: 11
  start-page: 3770
  year: 2010
  end-page: 3781
  ident: b6
  article-title: Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model
  publication-title: Nonlinear Anal Real World Appl
– volume: 165
  year: 2022
  ident: b10
  article-title: Turing patterns with space varying diffusion coefficients: Eigenfunctions satisfying the Legendre equation
  publication-title: Chaos Solitons Fractals
– volume: 260
  start-page: 292
  year: 2015
  end-page: 313
  ident: b21
  article-title: Diffusion driven instability and Hopf bifurcation in spatial predator–prey model on a circular domain
  publication-title: Appl Math Comput
– volume: 15
  start-page: 217
  year: 2011
  end-page: 230
  ident: b5
  article-title: On spatiotemporal pattern formation in a diffusive bimolecular model
  publication-title: Discrete Contin Dyn Syst Ser B
– year: 2003
  ident: b1
  article-title: Mathematical biology II: spatial models and biomedical applications
– volume: 237
  start-page: 37
  year: 1952
  end-page: 72
  ident: b9
  article-title: The chemical basis of morphogenesis
  publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci
– volume: 266
  start-page: 462
  year: 2015
  end-page: 480
  ident: b31
  article-title: Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion
  publication-title: Appl Math Comput
– year: 2010
  ident: 10.1016/j.chaos.2025.116006_b33
– volume: 237
  start-page: 37
  year: 1952
  ident: 10.1016/j.chaos.2025.116006_b9
  article-title: The chemical basis of morphogenesis
  publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci
– volume: 21
  start-page: 1471
  issue: 7
  year: 2008
  ident: 10.1016/j.chaos.2025.116006_b4
  article-title: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/7/006
– year: 2003
  ident: 10.1016/j.chaos.2025.116006_b1
– volume: 65
  start-page: 851
  year: 1993
  ident: 10.1016/j.chaos.2025.116006_b34
  article-title: Pattern formation outside of equilibrium
  publication-title: Rev Modern Phys
  doi: 10.1103/RevModPhys.65.851
– volume: 77
  year: 2024
  ident: 10.1016/j.chaos.2025.116006_b22
  article-title: A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2023.104042
– year: 2010
  ident: 10.1016/j.chaos.2025.116006_b36
– volume: 28
  year: 2023
  ident: 10.1016/j.chaos.2025.116006_b15
  article-title: Turing pattern and chemical medium-range order of metallic glasses
  publication-title: Mat Today Phys
– volume: 202
  start-page: 95
  year: 2005
  ident: 10.1016/j.chaos.2025.116006_b27
  article-title: Complex pattern formation in reaction–diffusion systems with spatially varying parameters
  publication-title: Phys D
  doi: 10.1016/j.physd.2005.01.022
– volume: 11
  start-page: 897
  year: 2009
  ident: 10.1016/j.chaos.2025.116006_b32
  article-title: Cross-diffusion and pattern formation in reaction–diffusion systems
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/B813825G
– volume: 43
  start-page: 54
  year: 2018
  ident: 10.1016/j.chaos.2025.116006_b20
  article-title: Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2018.02.004
– volume: 260
  start-page: 292
  year: 2015
  ident: 10.1016/j.chaos.2025.116006_b21
  article-title: Diffusion driven instability and Hopf bifurcation in spatial predator–prey model on a circular domain
  publication-title: Appl Math Comput
– volume: 126
  start-page: 777
  year: 1996
  ident: 10.1016/j.chaos.2025.116006_b7
  article-title: Uniqueness, multiplicity and stability for positive solutions of a pair of reaction–diffusion equations
  publication-title: Proc Roy Soc Edinburgh
  doi: 10.1017/S0308210500023064
– volume: 155
  year: 2022
  ident: 10.1016/j.chaos.2025.116006_b16
  article-title: Turing instability of periodic solutions for the Gierer-Meinhardt model with cross-diffusion
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111752
– volume: 43
  start-page: 166
  year: 2023
  ident: 10.1016/j.chaos.2025.116006_b18
  article-title: Radical reaction-induced turing pattern corrosion of alumina refractory ceramics with CaO-Al2O3-SiO2-MgO slags
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2022.09.044
– year: 1965
  ident: 10.1016/j.chaos.2025.116006_b35
– volume: 20
  start-page: 2692
  issue: 12
  year: 1979
  ident: 10.1016/j.chaos.2025.116006_b2
  article-title: Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law
  publication-title: J Math Phys
  doi: 10.1063/1.524034
– volume: 48
  start-page: 161
  year: 2019
  ident: 10.1016/j.chaos.2025.116006_b19
  article-title: Dynamics analysis of a chemical reaction–diffusion model subject to Degn-Harrison reaction scheme
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2019.01.005
– volume: 9
  year: 2022
  ident: 10.1016/j.chaos.2025.116006_b13
  article-title: Spatiotemporal dynamics and turing patterns in an eco-epidemiological model with cannibalism
  publication-title: Results Control Optim
– volume: 15
  start-page: 217
  issue: 1
  year: 2011
  ident: 10.1016/j.chaos.2025.116006_b5
  article-title: On spatiotemporal pattern formation in a diffusive bimolecular model
  publication-title: Discrete Contin Dyn Syst Ser B
– volume: 21
  start-page: 439
  year: 1993
  ident: 10.1016/j.chaos.2025.116006_b8
  article-title: Asymptotic behavior and positive steady-state solutions of a reaction–diffusion model with autocatalysis and saturation law
  publication-title: Nonlinear Anal
  doi: 10.1016/0362-546X(93)90127-E
– volume: 89
  start-page: 1803
  year: 2024
  ident: 10.1016/j.chaos.2025.116006_b14
  article-title: Dichotomous-noise-induced turing pattern formation in a predator–prey model
  publication-title: Chinese J Phys
  doi: 10.1016/j.cjph.2024.04.021
– volume: 90
  year: 2014
  ident: 10.1016/j.chaos.2025.116006_b30
  article-title: Delay-induced turing instability in reaction–diffusion equations
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.90.052908
– volume: 266
  start-page: 462
  year: 2015
  ident: 10.1016/j.chaos.2025.116006_b31
  article-title: Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion
  publication-title: Appl Math Comput
– volume: 533
  year: 2019
  ident: 10.1016/j.chaos.2025.116006_b12
  article-title: Turing patterns of an SI epidemic model with cross-diffusion on complex networks
  publication-title: Phys A
  doi: 10.1016/j.physa.2019.122023
– volume: 24
  start-page: 36
  year: 2015
  ident: 10.1016/j.chaos.2025.116006_b28
  article-title: Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2014.12.006
– volume: 69
  start-page: 931
  year: 2007
  ident: 10.1016/j.chaos.2025.116006_b38
  article-title: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB
  publication-title: Bull Math Biol B
  doi: 10.1007/s11538-006-9062-3
– volume: 14
  start-page: 1755
  year: 2013
  ident: 10.1016/j.chaos.2025.116006_b24
  article-title: Pattern formation driven by cross-diffusion in a 2D domain
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2012.11.009
– volume: 11
  start-page: 3770
  year: 2010
  ident: 10.1016/j.chaos.2025.116006_b6
  article-title: Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2010.02.007
– volume: 65
  start-page: 449
  year: 2016
  ident: 10.1016/j.chaos.2025.116006_b25
  article-title: Effects of cross-diffusion on turing patterns in a reaction–diffusion Schnakenberg model
  publication-title: Ric Mat
  doi: 10.1007/s11587-016-0267-y
– volume: 527
  year: 2023
  ident: 10.1016/j.chaos.2025.116006_b29
  article-title: Turing pattern of a diffusive predator–prey model with nonlocal delay and herd behavior
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2023.127346
– volume: 145
  start-page: 309
  year: 2000
  ident: 10.1016/j.chaos.2025.116006_b11
  article-title: A mathematical model for bifurcations in a Belousov–Zhabotinsky reaction
  publication-title: Phys D 2000
– year: 2000
  ident: 10.1016/j.chaos.2025.116006_b37
– volume: 165
  year: 2022
  ident: 10.1016/j.chaos.2025.116006_b10
  article-title: Turing patterns with space varying diffusion coefficients: Eigenfunctions satisfying the Legendre equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112869
– volume: 153
  year: 2021
  ident: 10.1016/j.chaos.2025.116006_b26
  article-title: Turing pattern analysis of a reaction–diffusion rumor propagation system with time delay in both network and non-network environments
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111542
– year: 1998
  ident: 10.1016/j.chaos.2025.116006_b39
– volume: 19
  start-page: 151
  issue: 1
  year: 1978
  ident: 10.1016/j.chaos.2025.116006_b3
  article-title: Multiple steady states in a simple reaction–diffusion model with Michaelis–Menten (first-order hinshelwood–langmuir) saturation law: The limit of large separation in the two diffusion constants
  publication-title: J Math Phys
  doi: 10.1063/1.523532
– volume: 599
  year: 2022
  ident: 10.1016/j.chaos.2025.116006_b17
  article-title: Hunting cooperation among slowly diffusing specialist predators can induce stationary turing patterns
  publication-title: Phys A
  doi: 10.1016/j.physa.2022.127417
– volume: 91
  start-page: 421
  year: 2016
  ident: 10.1016/j.chaos.2025.116006_b23
  article-title: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2016.07.003
SSID ssj0001062
Score 2.4530737
Snippet This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116006
SubjectTerms Amplitude equations
Bimolecular reaction–diffusion model
Cross-diffusion
Turing patterns
Title Pattern dynamics in a bimolecular reaction–diffusion model with saturation law and cross-diffusion
URI https://dx.doi.org/10.1016/j.chaos.2025.116006
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0960-0779
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  issn: 0960-0779
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0960-0779
  databaseCode: .~1
  dateStart: 0
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  issn: 0960-0779
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0960-0779
  databaseCode: AKRWK
  dateStart: 19910101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA6lXvQgtir-lhw8KBjb7mY2m2Mplqq0CFrobcnPLlZkW2yLN_EdfEOfxCSbrQriwePuTpYwszv5Jpn5BqETDizNIilIACk1AUqoSWwiCxIxLjMZMBWCLRQeDKP-iF6PYVxB3bIWxqZVet9f-HTnrf2dptdmczaZNO8s-G4xxgNwQMXG7ZQy28Xg4vUrzcOEPO4kwQgTK10yD7kcL_UgppazOwDjOszbot9Xp28rTm8LbXqoiDvFbGqokuZ1tDFY8azO66jmf805PvX80WfbSN86zswc66Lb_BxPciywNFbxrXCxQYqunuHj7d12SFnaLTPsmuJguzGL55bu09kMP4kXLHKN3YTJSnoHjXqX990-8c0UiAogXBDIQMk04MJgAKU1zWRMQXDKtHkOVMeRirkQYRxDrHQLtODM4gFhKQEp1eEuqubTPN1DOM2opjKUQVtZKh_gbck1yJgxAxZAhvvovFRiMis4M5IymewxcTpPrM6TQuf7KCoVnfwwfWK8-l8DD_478BCt26silewIVRfPy_TYYIuFbLiPp4HWOlc3_eEn-7vPOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA6lHtSD2KpYf3PwoGBsu5vZJEcplqptEWyhtyXZ7GJFtsW2eBPfwTf0SUyyu1VBPHjdTJYwszv5Jpn5BqETASxOAiWJBzE1AYqvCTeRBQmYUInyWOSDLRTu9YPOkN6MYFRCraIWxqZV5r4_8-nOW-dP6rk269PxuH5vwXeDMeGBAyombl-h4DEbgV28fuV5mJjHXSUYaWLFC-ohl-QVPciJJe32wPgO87rg9-3p25bT3kQbOVbEl9lyKqgUp1W03lsSrc6qqJL_mzN8mhNIn20hfedIM1Oss3bzMzxOscTKmCXvhYsNVHQFDR9v77ZFysKemWHXFQfbk1k8s3yfzmj4Sb5gmWrsFkyW0tto2L4atDok76ZAIg_8OYEEIhV7QhoQEGlNE8UpSEGZNuNANQ8iLqT0OQce6QZoKZgFBNJyAlKq_R1UTidpvItwnFBNla-8ZmS5fEA0ldCgOGMGLYDya-i8UGI4zUgzwiKb7DF0Og-tzsNM5zUUFIoOf9g-NG79r4l7_514jFY7g1437F73b_fRmh3J8soOUHn-vIgPDdCYqyP3IX0C9f7Qzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+dynamics+in+a+bimolecular+reaction%E2%80%93diffusion+model+with+saturation+law+and+cross-diffusion&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Lian%2C+Li-Na&rft.au=Yan%2C+Xiang-Ping&rft.au=Zhang%2C+Cun-Hua&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=192&rft_id=info:doi/10.1016%2Fj.chaos.2025.116006&rft.externalDocID=S0960077925000190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon