Pattern dynamics in a bimolecular reaction–diffusion model with saturation law and cross-diffusion
This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions. Firstly, both the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the positive constant steady state of model are estab...
Saved in:
| Published in | Chaos, solitons and fractals Vol. 192; p. 116006 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-0779 |
| DOI | 10.1016/j.chaos.2025.116006 |
Cover
| Abstract | This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions. Firstly, both the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the positive constant steady state of model are established through the linearization analysis. Secondly, the amplitude equations of model in proximity to the positive constant steady state are obtained by means of the method of multiple-scale time perturbation analysis and successive approximations as the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve. Thirdly, the classification and stability of Turing patterns in the diffusion bimolecular model are analyzed based on the existence and stability of the stationary solutions to the amplitude equations. It is found that the appearance of spatial diffusion in the bimolecular chemical reaction model with saturation law can give rise to nonuniform spatial patterns and lead to more complex dynamical behaviors. When the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve, the spot patterns, the strap (maze) patterns as well as the mixture of spot and strap patterns can occur. Theoretical findings show that suitable reaction–diffusion systems can be used to explain the mechanism in formation of patterns in the natural world. Finally, in order to substantiate our theoretical findings, some suitable numerical simulations are also provided according to Matlab software package and difference methods solving the approximate solutions of partial differential equations of parabolic types. |
|---|---|
| AbstractList | This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions. Firstly, both the spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the positive constant steady state of model are established through the linearization analysis. Secondly, the amplitude equations of model in proximity to the positive constant steady state are obtained by means of the method of multiple-scale time perturbation analysis and successive approximations as the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve. Thirdly, the classification and stability of Turing patterns in the diffusion bimolecular model are analyzed based on the existence and stability of the stationary solutions to the amplitude equations. It is found that the appearance of spatial diffusion in the bimolecular chemical reaction model with saturation law can give rise to nonuniform spatial patterns and lead to more complex dynamical behaviors. When the bifurcation parameters are confined to the interior of Turing instability region and near Turing bifurcation curve, the spot patterns, the strap (maze) patterns as well as the mixture of spot and strap patterns can occur. Theoretical findings show that suitable reaction–diffusion systems can be used to explain the mechanism in formation of patterns in the natural world. Finally, in order to substantiate our theoretical findings, some suitable numerical simulations are also provided according to Matlab software package and difference methods solving the approximate solutions of partial differential equations of parabolic types. |
| ArticleNumber | 116006 |
| Author | Yan, Xiang-Ping Lian, Li-Na Zhang, Cun-Hua |
| Author_xml | – sequence: 1 givenname: Li-Na surname: Lian fullname: Lian, Li-Na – sequence: 2 givenname: Xiang-Ping surname: Yan fullname: Yan, Xiang-Ping email: xpyan72@163.com – sequence: 3 givenname: Cun-Hua surname: Zhang fullname: Zhang, Cun-Hua |
| BookMark | eNp9kE1OwzAQRr0oEm3hBGx8gYRxYifOggWq-JMqwQLW1tR2VFeJg2yXqjvuwA05CWmLWLKakeZ7M6M3IxM_eEvIFYOcAauuN7le4xDzAgqRM1YBVBMyhaaCDOq6OSezGDcAwKAqpsS8YEo2eGr2HnunI3WeIl25fuis3nYYaLCokxv89-eXcW27jWNP-8HYju5cWtOIaRvwkKAd7ih6Q3UYYsz-0hfkrMUu2svfOidv93evi8ds-fzwtLhdZroQZcpEK_TKFg2CZNoY3q4kF9jw2oxzwY2stGwQSymF1AaEwaaGggksOa85N-WclKe9x_vBtuo9uB7DXjFQBzlqo45y1EGOOskZqZsTZcfXPpwNKmpnvbbGBauTMoP7l_8BQjF1PQ |
| Cites_doi | 10.1088/0951-7715/21/7/006 10.1103/RevModPhys.65.851 10.1016/j.nonrwa.2023.104042 10.1016/j.physd.2005.01.022 10.1039/B813825G 10.1016/j.nonrwa.2018.02.004 10.1017/S0308210500023064 10.1016/j.chaos.2021.111752 10.1016/j.jeurceramsoc.2022.09.044 10.1063/1.524034 10.1016/j.nonrwa.2019.01.005 10.1016/0362-546X(93)90127-E 10.1016/j.cjph.2024.04.021 10.1103/PhysRevE.90.052908 10.1016/j.physa.2019.122023 10.1016/j.nonrwa.2014.12.006 10.1007/s11538-006-9062-3 10.1016/j.nonrwa.2012.11.009 10.1016/j.nonrwa.2010.02.007 10.1007/s11587-016-0267-y 10.1016/j.jmaa.2023.127346 10.1016/j.chaos.2022.112869 10.1016/j.chaos.2021.111542 10.1063/1.523532 10.1016/j.physa.2022.127417 10.1016/j.chaos.2016.07.003 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2025.116006 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| ExternalDocumentID | 10_1016_j_chaos_2025_116006 S0960077925000190 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12261054 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABNEU ABTAH ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K WUQ XPP ZY4 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c253t-5f5cbe29a081cdd4fb845a947dc2554d86c89aa38858cd05da970215a344744d3 |
| IEDL.DBID | .~1 |
| ISSN | 0960-0779 |
| IngestDate | Wed Oct 01 06:51:25 EDT 2025 Sun Apr 06 06:54:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cross-diffusion Bimolecular reaction–diffusion model 35B35 Amplitude equations Turing patterns 35B40 35K57 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c253t-5f5cbe29a081cdd4fb845a947dc2554d86c89aa38858cd05da970215a344744d3 |
| ParticipantIDs | crossref_primary_10_1016_j_chaos_2025_116006 elsevier_sciencedirect_doi_10_1016_j_chaos_2025_116006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu, Luo, Cao (b15) 2023; 28 Calderón-Barreto, Aragón (b10) 2022; 165 Tang, Song (b28) 2015; 24 OuYang, Hao (b37) 2000 Yigit, Sarfaraz, Barreira (b22) 2024; 77 Peng, Yi (b5) 2011; 15 OuYang (b36) 2010 Bonilla, Velarde (b2) 1979; 20 Liu, Ge (b16) 2022; 155 Cross, Hohenberg (b34) 1993; 65 Ruan (b8) 1993; 21 Yan, Chen, Zhang (b19) 2019; 48 Murray (b1) 2003 Turing (b9) 1952; 237 Du (b7) 1996; 126 Peng, Huang, Li (b18) 2023; 43 Lai, Yuan, Zhang (b14) 2024; 89 Gambino, Lupo, Sammartino (b25) 2016; 65 Eckhaus (b35) 1965 Zhao, Zhang, Huang (b31) 2015; 266 Zhang, Zang (b30) 2014; 90 Yi, Liu, Wei (b6) 2010; 11 Ibanez, Velarde (b3) 1978; 19 Mukherjee, Banerjee (b17) 2022; 599 Chen (b11) 2000; 145 Kumar, Kumari, Agarwal (b13) 2022; 9 Gambino, Lombardo, Sammartino (b24) 2013; 14 Page, Maini, Monk (b27) 2005; 202 Peng, Shi, Wang (b4) 2008; 21 Vanag, Epstein (b32) 2009; 11 Yan, Zhang (b20) 2018; 43 Peng, Yu (b29) 2023; 527 Harris, Stöcker (b39) 1998 Ghorai, Poria (b23) 2016; 91 Garvie (b38) 2007; 69 Abid, Yafia, Aziz-Alaoui (b21) 2015; 260 Hu, Zhu (b26) 2021; 153 Duan, Chang, Jin (b12) 2019; 533 Evans (b33) 2010 Murray (10.1016/j.chaos.2025.116006_b1) 2003 Ghorai (10.1016/j.chaos.2025.116006_b23) 2016; 91 Yan (10.1016/j.chaos.2025.116006_b20) 2018; 43 Peng (10.1016/j.chaos.2025.116006_b29) 2023; 527 Gambino (10.1016/j.chaos.2025.116006_b24) 2013; 14 Tang (10.1016/j.chaos.2025.116006_b28) 2015; 24 Garvie (10.1016/j.chaos.2025.116006_b38) 2007; 69 Liu (10.1016/j.chaos.2025.116006_b15) 2023; 28 Turing (10.1016/j.chaos.2025.116006_b9) 1952; 237 Ruan (10.1016/j.chaos.2025.116006_b8) 1993; 21 Calderón-Barreto (10.1016/j.chaos.2025.116006_b10) 2022; 165 Bonilla (10.1016/j.chaos.2025.116006_b2) 1979; 20 Kumar (10.1016/j.chaos.2025.116006_b13) 2022; 9 Liu (10.1016/j.chaos.2025.116006_b16) 2022; 155 Eckhaus (10.1016/j.chaos.2025.116006_b35) 1965 Zhang (10.1016/j.chaos.2025.116006_b30) 2014; 90 Evans (10.1016/j.chaos.2025.116006_b33) 2010 Lai (10.1016/j.chaos.2025.116006_b14) 2024; 89 Zhao (10.1016/j.chaos.2025.116006_b31) 2015; 266 Vanag (10.1016/j.chaos.2025.116006_b32) 2009; 11 Chen (10.1016/j.chaos.2025.116006_b11) 2000; 145 Ibanez (10.1016/j.chaos.2025.116006_b3) 1978; 19 Abid (10.1016/j.chaos.2025.116006_b21) 2015; 260 Duan (10.1016/j.chaos.2025.116006_b12) 2019; 533 Peng (10.1016/j.chaos.2025.116006_b4) 2008; 21 Page (10.1016/j.chaos.2025.116006_b27) 2005; 202 Hu (10.1016/j.chaos.2025.116006_b26) 2021; 153 Harris (10.1016/j.chaos.2025.116006_b39) 1998 Mukherjee (10.1016/j.chaos.2025.116006_b17) 2022; 599 Yigit (10.1016/j.chaos.2025.116006_b22) 2024; 77 Peng (10.1016/j.chaos.2025.116006_b5) 2011; 15 Cross (10.1016/j.chaos.2025.116006_b34) 1993; 65 Gambino (10.1016/j.chaos.2025.116006_b25) 2016; 65 Yi (10.1016/j.chaos.2025.116006_b6) 2010; 11 Yan (10.1016/j.chaos.2025.116006_b19) 2019; 48 OuYang (10.1016/j.chaos.2025.116006_b36) 2010 OuYang (10.1016/j.chaos.2025.116006_b37) 2000 Peng (10.1016/j.chaos.2025.116006_b18) 2023; 43 Du (10.1016/j.chaos.2025.116006_b7) 1996; 126 |
| References_xml | – volume: 155 year: 2022 ident: b16 article-title: Turing instability of periodic solutions for the Gierer-Meinhardt model with cross-diffusion publication-title: Chaos Solitons Fractals – volume: 153 year: 2021 ident: b26 article-title: Turing pattern analysis of a reaction–diffusion rumor propagation system with time delay in both network and non-network environments publication-title: Chaos Solitons Fractals – volume: 202 start-page: 95 year: 2005 end-page: 115 ident: b27 article-title: Complex pattern formation in reaction–diffusion systems with spatially varying parameters publication-title: Phys D – volume: 145 start-page: 309 year: 2000 end-page: 329 ident: b11 article-title: A mathematical model for bifurcations in a Belousov–Zhabotinsky reaction publication-title: Phys D 2000 – volume: 599 year: 2022 ident: b17 article-title: Hunting cooperation among slowly diffusing specialist predators can induce stationary turing patterns publication-title: Phys A – volume: 533 year: 2019 ident: b12 article-title: Turing patterns of an SI epidemic model with cross-diffusion on complex networks publication-title: Phys A – volume: 14 start-page: 1755 year: 2013 end-page: 1779 ident: b24 article-title: Pattern formation driven by cross-diffusion in a 2D domain publication-title: Nonlinear Anal Real World Appl – volume: 21 start-page: 439 year: 1993 end-page: 456 ident: b8 article-title: Asymptotic behavior and positive steady-state solutions of a reaction–diffusion model with autocatalysis and saturation law publication-title: Nonlinear Anal – volume: 89 start-page: 1803 year: 2024 end-page: 1818 ident: b14 article-title: Dichotomous-noise-induced turing pattern formation in a predator–prey model publication-title: Chinese J Phys – volume: 65 start-page: 449 year: 2016 end-page: 467 ident: b25 article-title: Effects of cross-diffusion on turing patterns in a reaction–diffusion Schnakenberg model publication-title: Ric Mat – volume: 69 start-page: 931 year: 2007 end-page: 956 ident: b38 article-title: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB publication-title: Bull Math Biol B – volume: 28 year: 2023 ident: b15 article-title: Turing pattern and chemical medium-range order of metallic glasses publication-title: Mat Today Phys – volume: 21 start-page: 1471 year: 2008 end-page: 1488 ident: b4 article-title: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law publication-title: Nonlinearity – volume: 9 year: 2022 ident: b13 article-title: Spatiotemporal dynamics and turing patterns in an eco-epidemiological model with cannibalism publication-title: Results Control Optim – volume: 43 start-page: 166 year: 2023 end-page: 172 ident: b18 article-title: Radical reaction-induced turing pattern corrosion of alumina refractory ceramics with CaO- publication-title: J Eur Ceram Soc – year: 2010 ident: b33 article-title: Partial differential equations – volume: 65 start-page: 851 year: 1993 end-page: 1112 ident: b34 article-title: Pattern formation outside of equilibrium publication-title: Rev Modern Phys – volume: 20 start-page: 2692 year: 1979 end-page: 2703 ident: b2 article-title: Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law publication-title: J Math Phys – year: 2010 ident: b36 article-title: Introduction to non-linear science and pattern dynamics (Chinese) – volume: 527 year: 2023 ident: b29 article-title: Turing pattern of a diffusive predator–prey model with nonlocal delay and herd behavior publication-title: J Math Anal Appl – volume: 11 start-page: 897 year: 2009 end-page: 912 ident: b32 article-title: Cross-diffusion and pattern formation in reaction–diffusion systems publication-title: Phys Chem Chem Phys – volume: 77 year: 2024 ident: b22 article-title: A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains publication-title: Nonlinear Anal Real World Appl – volume: 126 start-page: 777 year: 1996 end-page: 809 ident: b7 article-title: Uniqueness, multiplicity and stability for positive solutions of a pair of reaction–diffusion equations publication-title: Proc Roy Soc Edinburgh – volume: 91 start-page: 421 year: 2016 end-page: 429 ident: b23 article-title: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity publication-title: Chaos Solitons Fractals – volume: 90 year: 2014 ident: b30 article-title: Delay-induced turing instability in reaction–diffusion equations publication-title: Phys Rev E – volume: 19 start-page: 151 year: 1978 end-page: 156 ident: b3 article-title: Multiple steady states in a simple reaction–diffusion model with Michaelis–Menten (first-order hinshelwood–langmuir) saturation law: The limit of large separation in the two diffusion constants publication-title: J Math Phys – year: 1965 ident: b35 article-title: Studies in non-linear stability theory – year: 2000 ident: b37 article-title: Pattern dynamics in reaction-diffusion systems (Chinese) – volume: 48 start-page: 161 year: 2019 end-page: 181 ident: b19 article-title: Dynamics analysis of a chemical reaction–diffusion model subject to Degn-Harrison reaction scheme publication-title: Nonlinear Anal Real World Appl – volume: 43 start-page: 54 year: 2018 end-page: 77 ident: b20 article-title: Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law publication-title: Nonlinear Anal Real World Appl – volume: 24 start-page: 36 year: 2015 end-page: 49 ident: b28 article-title: Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior publication-title: Nonlinear Anal Real World Appl – year: 1998 ident: b39 article-title: Handbook of mathematics and computational science – volume: 11 start-page: 3770 year: 2010 end-page: 3781 ident: b6 article-title: Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model publication-title: Nonlinear Anal Real World Appl – volume: 165 year: 2022 ident: b10 article-title: Turing patterns with space varying diffusion coefficients: Eigenfunctions satisfying the Legendre equation publication-title: Chaos Solitons Fractals – volume: 260 start-page: 292 year: 2015 end-page: 313 ident: b21 article-title: Diffusion driven instability and Hopf bifurcation in spatial predator–prey model on a circular domain publication-title: Appl Math Comput – volume: 15 start-page: 217 year: 2011 end-page: 230 ident: b5 article-title: On spatiotemporal pattern formation in a diffusive bimolecular model publication-title: Discrete Contin Dyn Syst Ser B – year: 2003 ident: b1 article-title: Mathematical biology II: spatial models and biomedical applications – volume: 237 start-page: 37 year: 1952 end-page: 72 ident: b9 article-title: The chemical basis of morphogenesis publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci – volume: 266 start-page: 462 year: 2015 end-page: 480 ident: b31 article-title: Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion publication-title: Appl Math Comput – year: 2010 ident: 10.1016/j.chaos.2025.116006_b33 – volume: 237 start-page: 37 year: 1952 ident: 10.1016/j.chaos.2025.116006_b9 article-title: The chemical basis of morphogenesis publication-title: Philos Trans R Soc Lond Ser A Math Phys Eng Sci – volume: 21 start-page: 1471 issue: 7 year: 2008 ident: 10.1016/j.chaos.2025.116006_b4 article-title: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law publication-title: Nonlinearity doi: 10.1088/0951-7715/21/7/006 – year: 2003 ident: 10.1016/j.chaos.2025.116006_b1 – volume: 65 start-page: 851 year: 1993 ident: 10.1016/j.chaos.2025.116006_b34 article-title: Pattern formation outside of equilibrium publication-title: Rev Modern Phys doi: 10.1103/RevModPhys.65.851 – volume: 77 year: 2024 ident: 10.1016/j.chaos.2025.116006_b22 article-title: A domain-dependent stability analysis of reaction–diffusion systems with linear cross-diffusion on circular domains publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2023.104042 – year: 2010 ident: 10.1016/j.chaos.2025.116006_b36 – volume: 28 year: 2023 ident: 10.1016/j.chaos.2025.116006_b15 article-title: Turing pattern and chemical medium-range order of metallic glasses publication-title: Mat Today Phys – volume: 202 start-page: 95 year: 2005 ident: 10.1016/j.chaos.2025.116006_b27 article-title: Complex pattern formation in reaction–diffusion systems with spatially varying parameters publication-title: Phys D doi: 10.1016/j.physd.2005.01.022 – volume: 11 start-page: 897 year: 2009 ident: 10.1016/j.chaos.2025.116006_b32 article-title: Cross-diffusion and pattern formation in reaction–diffusion systems publication-title: Phys Chem Chem Phys doi: 10.1039/B813825G – volume: 43 start-page: 54 year: 2018 ident: 10.1016/j.chaos.2025.116006_b20 article-title: Turing instability and formation of temporal patterns in a diffusive bimolecular model with saturation law publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2018.02.004 – volume: 260 start-page: 292 year: 2015 ident: 10.1016/j.chaos.2025.116006_b21 article-title: Diffusion driven instability and Hopf bifurcation in spatial predator–prey model on a circular domain publication-title: Appl Math Comput – volume: 126 start-page: 777 year: 1996 ident: 10.1016/j.chaos.2025.116006_b7 article-title: Uniqueness, multiplicity and stability for positive solutions of a pair of reaction–diffusion equations publication-title: Proc Roy Soc Edinburgh doi: 10.1017/S0308210500023064 – volume: 155 year: 2022 ident: 10.1016/j.chaos.2025.116006_b16 article-title: Turing instability of periodic solutions for the Gierer-Meinhardt model with cross-diffusion publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111752 – volume: 43 start-page: 166 year: 2023 ident: 10.1016/j.chaos.2025.116006_b18 article-title: Radical reaction-induced turing pattern corrosion of alumina refractory ceramics with CaO-Al2O3-SiO2-MgO slags publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2022.09.044 – year: 1965 ident: 10.1016/j.chaos.2025.116006_b35 – volume: 20 start-page: 2692 issue: 12 year: 1979 ident: 10.1016/j.chaos.2025.116006_b2 article-title: Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law publication-title: J Math Phys doi: 10.1063/1.524034 – volume: 48 start-page: 161 year: 2019 ident: 10.1016/j.chaos.2025.116006_b19 article-title: Dynamics analysis of a chemical reaction–diffusion model subject to Degn-Harrison reaction scheme publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2019.01.005 – volume: 9 year: 2022 ident: 10.1016/j.chaos.2025.116006_b13 article-title: Spatiotemporal dynamics and turing patterns in an eco-epidemiological model with cannibalism publication-title: Results Control Optim – volume: 15 start-page: 217 issue: 1 year: 2011 ident: 10.1016/j.chaos.2025.116006_b5 article-title: On spatiotemporal pattern formation in a diffusive bimolecular model publication-title: Discrete Contin Dyn Syst Ser B – volume: 21 start-page: 439 year: 1993 ident: 10.1016/j.chaos.2025.116006_b8 article-title: Asymptotic behavior and positive steady-state solutions of a reaction–diffusion model with autocatalysis and saturation law publication-title: Nonlinear Anal doi: 10.1016/0362-546X(93)90127-E – volume: 89 start-page: 1803 year: 2024 ident: 10.1016/j.chaos.2025.116006_b14 article-title: Dichotomous-noise-induced turing pattern formation in a predator–prey model publication-title: Chinese J Phys doi: 10.1016/j.cjph.2024.04.021 – volume: 90 year: 2014 ident: 10.1016/j.chaos.2025.116006_b30 article-title: Delay-induced turing instability in reaction–diffusion equations publication-title: Phys Rev E doi: 10.1103/PhysRevE.90.052908 – volume: 266 start-page: 462 year: 2015 ident: 10.1016/j.chaos.2025.116006_b31 article-title: Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion publication-title: Appl Math Comput – volume: 533 year: 2019 ident: 10.1016/j.chaos.2025.116006_b12 article-title: Turing patterns of an SI epidemic model with cross-diffusion on complex networks publication-title: Phys A doi: 10.1016/j.physa.2019.122023 – volume: 24 start-page: 36 year: 2015 ident: 10.1016/j.chaos.2025.116006_b28 article-title: Cross-diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2014.12.006 – volume: 69 start-page: 931 year: 2007 ident: 10.1016/j.chaos.2025.116006_b38 article-title: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB publication-title: Bull Math Biol B doi: 10.1007/s11538-006-9062-3 – volume: 14 start-page: 1755 year: 2013 ident: 10.1016/j.chaos.2025.116006_b24 article-title: Pattern formation driven by cross-diffusion in a 2D domain publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2012.11.009 – volume: 11 start-page: 3770 year: 2010 ident: 10.1016/j.chaos.2025.116006_b6 article-title: Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2010.02.007 – volume: 65 start-page: 449 year: 2016 ident: 10.1016/j.chaos.2025.116006_b25 article-title: Effects of cross-diffusion on turing patterns in a reaction–diffusion Schnakenberg model publication-title: Ric Mat doi: 10.1007/s11587-016-0267-y – volume: 527 year: 2023 ident: 10.1016/j.chaos.2025.116006_b29 article-title: Turing pattern of a diffusive predator–prey model with nonlocal delay and herd behavior publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2023.127346 – volume: 145 start-page: 309 year: 2000 ident: 10.1016/j.chaos.2025.116006_b11 article-title: A mathematical model for bifurcations in a Belousov–Zhabotinsky reaction publication-title: Phys D 2000 – year: 2000 ident: 10.1016/j.chaos.2025.116006_b37 – volume: 165 year: 2022 ident: 10.1016/j.chaos.2025.116006_b10 article-title: Turing patterns with space varying diffusion coefficients: Eigenfunctions satisfying the Legendre equation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112869 – volume: 153 year: 2021 ident: 10.1016/j.chaos.2025.116006_b26 article-title: Turing pattern analysis of a reaction–diffusion rumor propagation system with time delay in both network and non-network environments publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111542 – year: 1998 ident: 10.1016/j.chaos.2025.116006_b39 – volume: 19 start-page: 151 issue: 1 year: 1978 ident: 10.1016/j.chaos.2025.116006_b3 article-title: Multiple steady states in a simple reaction–diffusion model with Michaelis–Menten (first-order hinshelwood–langmuir) saturation law: The limit of large separation in the two diffusion constants publication-title: J Math Phys doi: 10.1063/1.523532 – volume: 599 year: 2022 ident: 10.1016/j.chaos.2025.116006_b17 article-title: Hunting cooperation among slowly diffusing specialist predators can induce stationary turing patterns publication-title: Phys A doi: 10.1016/j.physa.2022.127417 – volume: 91 start-page: 421 year: 2016 ident: 10.1016/j.chaos.2025.116006_b23 article-title: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2016.07.003 |
| SSID | ssj0001062 |
| Score | 2.4530737 |
| Snippet | This paper is concerned with a bimolecular reaction–diffusion model with saturation law and cross-diffusion and subject to Neumann boundary conditions.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 116006 |
| SubjectTerms | Amplitude equations Bimolecular reaction–diffusion model Cross-diffusion Turing patterns |
| Title | Pattern dynamics in a bimolecular reaction–diffusion model with saturation law and cross-diffusion |
| URI | https://dx.doi.org/10.1016/j.chaos.2025.116006 |
| Volume | 192 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0960-0779 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier E-journals (Freedom Collection) issn: 0960-0779 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0960-0779 databaseCode: .~1 dateStart: 0 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK issn: 0960-0779 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0960-0779 databaseCode: AKRWK dateStart: 19910101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA6lXvQgtir-lhw8KBjb7mY2m2Mplqq0CFrobcnPLlZkW2yLN_EdfEOfxCSbrQriwePuTpYwszv5Jpn5BqETDizNIilIACk1AUqoSWwiCxIxLjMZMBWCLRQeDKP-iF6PYVxB3bIWxqZVet9f-HTnrf2dptdmczaZNO8s-G4xxgNwQMXG7ZQy28Xg4vUrzcOEPO4kwQgTK10yD7kcL_UgppazOwDjOszbot9Xp28rTm8LbXqoiDvFbGqokuZ1tDFY8azO66jmf805PvX80WfbSN86zswc66Lb_BxPciywNFbxrXCxQYqunuHj7d12SFnaLTPsmuJguzGL55bu09kMP4kXLHKN3YTJSnoHjXqX990-8c0UiAogXBDIQMk04MJgAKU1zWRMQXDKtHkOVMeRirkQYRxDrHQLtODM4gFhKQEp1eEuqubTPN1DOM2opjKUQVtZKh_gbck1yJgxAxZAhvvovFRiMis4M5IymewxcTpPrM6TQuf7KCoVnfwwfWK8-l8DD_478BCt26silewIVRfPy_TYYIuFbLiPp4HWOlc3_eEn-7vPOg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA6lHtSD2KpYf3PwoGBsu5vZJEcplqptEWyhtyXZ7GJFtsW2eBPfwTf0SUyyu1VBPHjdTJYwszv5Jpn5BqETASxOAiWJBzE1AYqvCTeRBQmYUInyWOSDLRTu9YPOkN6MYFRCraIWxqZV5r4_8-nOW-dP6rk269PxuH5vwXeDMeGBAyombl-h4DEbgV28fuV5mJjHXSUYaWLFC-ohl-QVPciJJe32wPgO87rg9-3p25bT3kQbOVbEl9lyKqgUp1W03lsSrc6qqJL_mzN8mhNIn20hfedIM1Oss3bzMzxOscTKmCXvhYsNVHQFDR9v77ZFysKemWHXFQfbk1k8s3yfzmj4Sb5gmWrsFkyW0tto2L4atDok76ZAIg_8OYEEIhV7QhoQEGlNE8UpSEGZNuNANQ8iLqT0OQce6QZoKZgFBNJyAlKq_R1UTidpvItwnFBNla-8ZmS5fEA0ldCgOGMGLYDya-i8UGI4zUgzwiKb7DF0Og-tzsNM5zUUFIoOf9g-NG79r4l7_514jFY7g1437F73b_fRmh3J8soOUHn-vIgPDdCYqyP3IX0C9f7Qzw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+dynamics+in+a+bimolecular+reaction%E2%80%93diffusion+model+with+saturation+law+and+cross-diffusion&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Lian%2C+Li-Na&rft.au=Yan%2C+Xiang-Ping&rft.au=Zhang%2C+Cun-Hua&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=192&rft_id=info:doi/10.1016%2Fj.chaos.2025.116006&rft.externalDocID=S0960077925000190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |