The Cox-Pólya-Gamma algorithm for flexible Bayesian inference of multilevel survival models

Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorpor...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 81; no. 3
Main Authors Ren, Benny, Morris, Jeffrey S, Barnett, Ian
Format Journal Article
LanguageEnglish
Published England 03.07.2025
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1093/biomtc/ujaf121

Cover

Abstract Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.
AbstractList Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.
Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.
Author Morris, Jeffrey S
Ren, Benny
Barnett, Ian
Author_xml – sequence: 1
  givenname: Benny
  orcidid: 0000-0001-6075-657X
  surname: Ren
  fullname: Ren, Benny
– sequence: 2
  givenname: Jeffrey S
  surname: Morris
  fullname: Morris, Jeffrey S
– sequence: 3
  givenname: Ian
  orcidid: 0000-0003-3256-5703
  surname: Barnett
  fullname: Barnett, Ian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40971571$$D View this record in MEDLINE/PubMed
BookMark eNo90M1KAzEUhuEgitafrUvJ0s20-Z3JLLVoFQq6qOBCGDIzJxpJJprMFHtdXoI3Zkurq8OBh2_xHqP9LnSA0DklY0pKPqlt8H0zGd61oYzuoRGVgmZEMLKPRoSQPOOCPh-h45Te128pCTtER4KUBZUFHaGXxRvgafjKHn--3UpnM-29xtq9hmj7N49NiNg4-LK1A3ytV5Cs7rDtDEToGsDBYD-43jpYgsNpiEu71A770IJLp-jAaJfgbHdP0NPtzWJ6l80fZvfTq3nWMMn6DKgxggnFSq1EzoVsBTOm4AYKJZnkikgl25ozo42AXBnaasWNLlpaC1UrfoIut7sfMXwOkPrK29SAc7qDMKSKs80M4zlf04sdHWoPbfURrddxVf0VWYPxFjQxpBTB_BNKqk3yapu82iXnv3M8d0k
Cites_doi 10.18637/jss.v080.i01
10.1007/0-387-37345-4
10.1093/biostatistics/kxad019
10.1093/biomet/asy064
10.1200/JCO.1994.12.3.601
10.1111/1467-9868.00179
10.1214/18-BA1132
10.1007/b98888
10.1109/LSP.2015.2503725
10.1080/10618600.2013.788448
10.1111/biom.12299
10.1080/01621459.1958.10501452
10.1111/j.1467-9868.2008.00700.x
10.1007/978-3-319-33507-0_27
10.1080/01621459.2013.829001
10.1017/CBO9780511755453
10.1111/j.0006-341X.2000.00227.x
10.1016/j.spl.2018.02.003
10.1111/1467-9469.00267
10.1111/j.2517-6161.1972.tb00899.x
10.1111/biom.13332
10.1007/978-1-4757-3294-8
10.1093/biomet/62.2.269
10.1201/9781420073911
10.1214/aos/1056562461
10.1007/978-0-387-68560-1
10.1111/j.1467-842X.2008.00507.x
10.1111/1467-9469.00298
10.1002/sim.6728
10.1007/BF01437406
10.1146/annurev-statistics-060116-054045
10.1177/1471082X17748083
10.1093/biomet/90.3.629
10.1214/aos/1176344247
10.1002/sim.10160
10.1080/00401706.1972.10488991
10.1016/j.jspi.2017.09.002
10.1198/016214502388618753
10.1007/s11222-022-10200-4
10.1111/j.2517-6161.1978.tb01666.x
10.1111/sjos.12291
10.1080/01621459.2018.1482754
10.1214/aos/1176324322
10.1214/13-EJS837
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biomtc/ujaf121
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 40971571
10_1093_biomtc_ujaf121
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA244845
– fundername: NCATS NIH HHS
  grantid: UL1 TR001878
– fundername: NCI NIH HHS
  grantid: R01 CA178744
– fundername: NIH HHS
  grantid: UL1-TR001878
– fundername: NIH HHS
  grantid: R01-CA244845
– fundername: NIH HHS
  grantid: R01-CA178744
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AANLZ
AAONW
AAUAY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUYR
AFBPY
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGTJU
AHGBF
AHMBA
AIAGR
AIURR
AJBYB
AJNCP
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAP
EBS
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
H13
HZI
HZ~
IX1
J0M
JAC
K48
KOP
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROX
RX1
RXW
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c252t-e1ff424829a846345d42ff73fe78525380585db32faf4e68f1da83fa7d1b48b83
ISSN 0006-341X
1541-0420
IngestDate Sat Sep 20 18:32:17 EDT 2025
Wed Sep 24 03:08:47 EDT 2025
Wed Oct 01 05:21:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Kaplan-Meier
frailty model
multilevel model
Cox model
survival analysis
Bayesian inference
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-e1ff424829a846345d42ff73fe78525380585db32faf4e68f1da83fa7d1b48b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3256-5703
0000-0001-6075-657X
PMID 40971571
PQID 3252532363
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3252532363
pubmed_primary_40971571
crossref_primary_10_1093_biomtc_ujaf121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Jul-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-Jul-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2025
References Maatouk (2025091922542790800_bib23) 2016
Kalbfleisch (2025091922542790800_bib19) 1978; 40
Meyer (2025091922542790800_bib25) 2018; 193
Neal (2025091922542790800_bib29) 2003; 31
Kaplan (2025091922542790800_bib21) 1958; 53
Nelson (2025091922542790800_bib31) 1972; 14
Ramsay (2025091922542790800_bib36) 1988; 3
Wand (2025091922542790800_bib50) 2008; 50
Polson (2025091922542790800_bib35) 2013; 108
Therneau (2025091922542790800_bib47) 2000
Peng (2025091922542790800_bib34) 2018
Sy (2025091922542790800_bib45) 2000; 56
Choi (2025091922542790800_bib7) 2013; 7
Rue (2025091922542790800_bib39) 2017; 4
Ibrahim (2025091922542790800_bib16) 2015; 34
Alvares (2025091922542790800_bib3) 2024; 43
Esscher (2025091922542790800_bib13) 1932; 15
Tsiatis (2025091922542790800_bib48) 2006
Bender (2025091922542790800_bib4) 2018; 18
Ramsay (2025091922542790800_bib37) 2005
Neelon (2025091922542790800_bib30) 2019; 14
Rustand (2025091922542790800_bib41) 2024; 25
Demmler (2025091922542790800_bib11) 1975; 24
Ibrahim (2025091922542790800_bib17) 2001
Loprinzi (2025091922542790800_bib22) 1994; 12
Kalbfleisch (2025091922542790800_bib20) 2011
Valeriano (2025091922542790800_bib49) 2023; 33
Cox (2025091922542790800_bib8) 1972; 34
Henderson (2025091922542790800_bib14) 2002; 97
Therneau (2025091922542790800_bib46) 2024
Nieto-Barajas (2025091922542790800_bib32) 2002; 29
Shu (2025091922542790800_bib42) 2021; 77
Winkelmann (2025091922542790800_bib54) 2008
Damien (2025091922542790800_bib10) 1999; 61
Borgan (2025091922542790800_bib5) 1995; 23
Bürkner (2025091922542790800_bib6) 2017; 80
Makalic (2025091922542790800_bib24) 2015; 23
Aalen (2025091922542790800_bib2) 2008
Duan (2025091922542790800_bib12) 2018; 19
Sinha (2025091922542790800_bib43) 2003; 90
Meyer (2025091922542790800_bib26) 2015; 71
Wienke (2025091922542790800_bib53) 2010
Aalen (2025091922542790800_bib1) 1978; 6
Sun (2025091922542790800_bib44) 2019; 106
Rue (2025091922542790800_bib38) 2009; 71
Ruppert (2025091922542790800_bib40) 2003
Wang (2025091922542790800_bib51) 2022; 118
Mira (2025091922542790800_bib27) 2002; 29
Cox (2025091922542790800_bib9) 1975; 62
Wang (2025091922542790800_bib52) 2018; 137
Pakman (2025091922542790800_bib33) 2014; 23
Hothorn (2025091922542790800_bib15) 2018; 45
Narisetty (2025091922542790800_bib28) 2018; 114
Evans (2025091922542790800_bib18) 2001
References_xml – volume: 80
  start-page: 1
  year: 2017
  ident: 2025091922542790800_bib6
  article-title: BRMS: an R package for Bayesian multilevel models using Stan
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v080.i01
– year: 2006
  ident: 2025091922542790800_bib48
  article-title: Semiparametric theory and missing data
  doi: 10.1007/0-387-37345-4
– volume-title: Work in progress
  year: 2018
  ident: 2025091922542790800_bib34
  article-title: Advanced statistical computing
– volume: 25
  start-page: 429
  year: 2024
  ident: 2025091922542790800_bib41
  article-title: Fast and flexible inference for joint models of multivariate longitudinal and survival data using integrated nested Laplace approximations
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxad019
– volume: 106
  start-page: 181
  year: 2019
  ident: 2025091922542790800_bib44
  article-title: Counting process-based dimension reduction methods for censored outcomes
  publication-title: Biometrika
  doi: 10.1093/biomet/asy064
– volume: 12
  start-page: 601
  year: 1994
  ident: 2025091922542790800_bib22
  article-title: Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.1994.12.3.601
– volume: 61
  start-page: 331
  year: 1999
  ident: 2025091922542790800_bib10
  article-title: Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00179
– volume: 14
  start-page: 829
  year: 2019
  ident: 2025091922542790800_bib30
  article-title: Bayesian zero-inflated negative binomial regression based on Pólya-Gamma mixtures
  publication-title: Bayesian Analysis
  doi: 10.1214/18-BA1132
– volume-title: Functional Data Analysis
  year: 2005
  ident: 2025091922542790800_bib37
  doi: 10.1007/b98888
– volume: 23
  start-page: 179
  year: 2015
  ident: 2025091922542790800_bib24
  article-title: A simple sampler for the horseshoe estimator
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2015.2503725
– volume: 23
  start-page: 518
  year: 2014
  ident: 2025091922542790800_bib33
  article-title: Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2013.788448
– volume: 71
  start-page: 563
  year: 2015
  ident: 2025091922542790800_bib26
  article-title: Bayesian function-on-function regression for multilevel functional data
  publication-title: Biometrics
  doi: 10.1111/biom.12299
– volume: 53
  start-page: 457
  year: 1958
  ident: 2025091922542790800_bib21
  article-title: Nonparametric estimation from incomplete observations
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1958.10501452
– volume: 71
  start-page: 319
  year: 2009
  ident: 2025091922542790800_bib38
  article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2008.00700.x
– start-page: 521
  volume-title: Springer Proceedings in Mathematics & Statistics, Monte Carlo and Quasi Monte Carlo Methods
  year: 2016
  ident: 2025091922542790800_bib23
  article-title: A new rejection sampling method for truncated multivariate Gaussian random variables restricted to convex sets
  doi: 10.1007/978-3-319-33507-0_27
– volume: 108
  start-page: 1339
  year: 2013
  ident: 2025091922542790800_bib35
  article-title: Bayesian inference for logistic models using Pólya–Gamma latent variables
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2013.829001
– volume-title: Semiparametric Regression
  year: 2003
  ident: 2025091922542790800_bib40
  doi: 10.1017/CBO9780511755453
– volume: 56
  start-page: 227
  year: 2000
  ident: 2025091922542790800_bib45
  article-title: Estimation in a Cox proportional hazards cure model
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00227.x
– volume: 137
  start-page: 251
  year: 2018
  ident: 2025091922542790800_bib52
  article-title: Analysis of the Pólya-Gamma block Gibbs sampler for Bayesian logistic linear mixed models
  publication-title: Statistics and Probability Letters
  doi: 10.1016/j.spl.2018.02.003
– volume: 29
  start-page: 1
  year: 2002
  ident: 2025091922542790800_bib27
  article-title: Efficiency and convergence properties of slice samplers
  publication-title: Scand. J. Stat.
  doi: 10.1111/1467-9469.00267
– volume: 34
  start-page: 187
  year: 1972
  ident: 2025091922542790800_bib8
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 77
  start-page: 1101
  year: 2021
  ident: 2025091922542790800_bib42
  article-title: Variance estimation in inverse probability weighted Cox models
  publication-title: Biometrics
  doi: 10.1111/biom.13332
– volume-title: Modeling Survival Data: Extending the Cox Model
  year: 2000
  ident: 2025091922542790800_bib47
  doi: 10.1007/978-1-4757-3294-8
– volume: 118
  start-page: 1
  year: 2022
  ident: 2025091922542790800_bib51
  article-title: Time-to-event analysis with unknown time origins via longitudinal biomarker registration
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 269
  year: 1975
  ident: 2025091922542790800_bib9
  article-title: Partial likelihood
  publication-title: Biometrika
  doi: 10.1093/biomet/62.2.269
– volume-title: Frailty Models in Survival Analysis
  year: 2010
  ident: 2025091922542790800_bib53
  doi: 10.1201/9781420073911
– volume: 15
  start-page: 175
  year: 1932
  ident: 2025091922542790800_bib13
  article-title: On the probability function in the collective theory of risk
  publication-title: Scandinavian Actuarial Journal
– year: 2001
  ident: 2025091922542790800_bib18
  article-title: Small clinical trials: Issues and challenges
– volume: 31
  start-page: 705
  year: 2003
  ident: 2025091922542790800_bib29
  article-title: Slice sampling
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1056562461
– volume-title: Survival and Event History Analysis: A Process Point of View
  year: 2008
  ident: 2025091922542790800_bib2
  doi: 10.1007/978-0-387-68560-1
– volume: 50
  start-page: 179
  year: 2008
  ident: 2025091922542790800_bib50
  article-title: On semiparametric regression with O’Sullivan penalized splines
  publication-title: Australian and New Zealand Journal of Statistics
  doi: 10.1111/j.1467-842X.2008.00507.x
– volume: 29
  start-page: 413
  year: 2002
  ident: 2025091922542790800_bib32
  article-title: Markov beta and gamma processes for modelling hazard rates
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/1467-9469.00298
– volume: 34
  start-page: 3724
  year: 2015
  ident: 2025091922542790800_bib16
  article-title: The power prior: theory and applications
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.6728
– volume: 24
  start-page: 375
  year: 1975
  ident: 2025091922542790800_bib11
  article-title: Oscillation matrices with spline smoothing
  publication-title:  Numerische Mathematik
  doi: 10.1007/BF01437406
– volume: 19
  start-page: 1
  year: 2018
  ident: 2025091922542790800_bib12
  article-title: Scaling up data augmentation MCMC via calibration
  publication-title: Journal of Machine Learning Research
– volume: 4
  start-page: 395
  year: 2017
  ident: 2025091922542790800_bib39
  article-title: Bayesian computing with INLA: a review
  publication-title: Annual Review of Statistics and Its Application
  doi: 10.1146/annurev-statistics-060116-054045
– volume: 18
  start-page: 299
  year: 2018
  ident: 2025091922542790800_bib4
  article-title: A generalized additive model approach to time-to-event analysis
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X17748083
– volume: 3
  start-page: 425
  year: 1988
  ident: 2025091922542790800_bib36
  article-title: Monotone regression splines in action
  publication-title: Statistical Science
– volume: 90
  start-page: 629
  year: 2003
  ident: 2025091922542790800_bib43
  article-title: A Bayesian justification of Cox’s partial likelihood
  publication-title: Biometrika
  doi: 10.1093/biomet/90.3.629
– start-page: 5
  volume-title: A Package for Survival Analysis in R
  year: 2024
  ident: 2025091922542790800_bib46
– volume: 6
  start-page: 701
  year: 1978
  ident: 2025091922542790800_bib1
  article-title: Nonparametric inference for a family of counting processes
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344247
– volume: 43
  start-page: 3975
  year: 2024
  ident: 2025091922542790800_bib3
  article-title: Bayesian survival analysis with INLA
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.10160
– volume: 14
  start-page: 945
  year: 1972
  ident: 2025091922542790800_bib31
  article-title: Theory and applications of hazard plotting for censored failure data
  publication-title: Technometrics
  doi: 10.1080/00401706.1972.10488991
– volume-title: Bayesian Survival Analysis. Springer Series in Statistics, First Edition
  year: 2001
  ident: 2025091922542790800_bib17
– volume: 193
  start-page: 179
  year: 2018
  ident: 2025091922542790800_bib25
  article-title: Convergence rates for constrained regression splines
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2017.09.002
– volume-title: Econometric Analysis of Count Data
  year: 2008
  ident: 2025091922542790800_bib54
– volume: 97
  start-page: 965
  year: 2002
  ident: 2025091922542790800_bib14
  article-title: Modeling spatial variation in leukemia survival data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502388618753
– volume: 33
  start-page: 32
  year: 2023
  ident: 2025091922542790800_bib49
  article-title: Moments and random number generation for the truncated elliptical family of distributions
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-022-10200-4
– volume: 40
  start-page: 214
  year: 1978
  ident: 2025091922542790800_bib19
  article-title: Non-parametric Bayesian analysis of survival time data
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1978.tb01666.x
– volume: 45
  start-page: 110
  year: 2018
  ident: 2025091922542790800_bib15
  article-title: Most likely transformations
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/sjos.12291
– volume-title: The Statistical Analysis of Failure Time Data
  year: 2011
  ident: 2025091922542790800_bib20
– volume: 114
  start-page: 1205
  year: 2018
  ident: 2025091922542790800_bib28
  article-title: Skinny Gibbs: a consistent and scalable Gibbs sampler for model selection
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2018.1482754
– volume: 23
  start-page: 1749
  year: 1995
  ident: 2025091922542790800_bib5
  article-title: Methods for the analysis of sampled cohort data in the Cox proportional hazards model
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176324322
– volume: 7
  start-page: 2054
  year: 2013
  ident: 2025091922542790800_bib7
  article-title: The polya-gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/13-EJS837
SSID ssj0009502
Score 2.4556854
Snippet Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Algorithms
Bayes Theorem
Computer Simulation
Humans
Markov Chains
Proportional Hazards Models
Survival Analysis
Title The Cox-Pólya-Gamma algorithm for flexible Bayesian inference of multilevel survival models
URI https://www.ncbi.nlm.nih.gov/pubmed/40971571
https://www.proquest.com/docview/3252532363
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCGl7QFBgKzcZCcHDZDZfcnukY2WgbSDUSn1AiuzEhqE2Gb0gyt_iJ_DHOI6dpJWKNHiJIktxIp8vJ8c55_sOQs-iKKMQVQgiKdVEmIDDO0cTolks4XOumE4swfnsPDwZinejYNS2uavYJXP1Mvu5kVfyP1aFMbCrZcn-g2WbSWEAzsG-cAQLw_HKNj4qf5APNt3d4-OlJG_kZCL35fhzCbv-L5OqitBY0UvLkOrJpa5Ikxc1za9Kr9uawrEtHtqfLcBzfLeEEtsgZ7aW8bU8fSvn3xbHO4_VA1fdlhKX0-nFKkWs_bXak9PCFwW_9ZD0fxtYUFWm8lUHKSiBF93lUvSGMe9VXSMWjx6-0Vk7ISsrM2C7ufcXX6Whji69rot9_j7tD09P08HxaPD88huxLcNsat33T7mObjBw6bZvx-uPbEVx2RWc1g_XKHbyA3fLA3_D9YjkL9uMKtwY3Ea3_D4Bv3JGv4Ou6aKDbrrOocsO2jlr5HZnHbRttwxOcfsu-gSowBUqfv9qEIEbRGBABK4RgWtE4AYRuDS4RQSuEYEdIu6hYf94cHRCfA8NkrGAzYmmxggmYpZIiDS5CHLBjIm40VEcMPjaHcJ-MVecGWmEDmNDcxlzI6OcKhGrmN9HW0VZ6D2EE5ggoSqKRWJEqGQM0XouIGJVeZgdqqyLXtTrmF46qZTUlTjw1K146le8i57Wy5yCN7MpKlnocjFLObMPxXjIu2jXrX8zl1Vmo0FEH1zh6odou0XvI7Q1ny70Y4ge5-pJhZI_uAB0eg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cox-P%C3%B3lya-Gamma+algorithm+for+flexible+Bayesian+inference+of+multilevel+survival+models&rft.jtitle=Biometrics&rft.au=Ren%2C+Benny&rft.au=Morris%2C+Jeffrey+S&rft.au=Barnett%2C+Ian&rft.date=2025-07-03&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=81&rft.issue=3&rft_id=info:doi/10.1093%2Fbiomtc%2Fujaf121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon