The Cox-Pólya-Gamma algorithm for flexible Bayesian inference of multilevel survival models
Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorpor...
        Saved in:
      
    
          | Published in | Biometrics Vol. 81; no. 3 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
        
        03.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0006-341X 1541-0420 1541-0420  | 
| DOI | 10.1093/biomtc/ujaf121 | 
Cover
| Abstract | Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations. | 
    
|---|---|
| AbstractList | Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations. Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in Bayesian inference but can effectively bridge survival analysis and hierarchical Gaussian models. Survival models should be able to incorporate multilevel modeling such as case weights, frailties, and smoothing splines, in a straightforward manner similar to Gaussian models. To tackle these challenges, we propose the Cox-Pólya-Gamma algorithm for Bayesian multilevel Cox semiparametric regression and survival functions. Our novel computational procedure succinctly addresses the difficult problem of monotonicity-constrained modeling of the nonparametric baseline cumulative hazard along with multilevel regression. We develop two key strategies based on the elliptical geometry of Cox models that allows computation to be implemented in a few lines of code. First, we exploit an approximation between Cox models and negative binomial processes through the Poisson process to reduce Bayesian computation to iterative Gaussian sampling. Next, we appeal to sufficient dimension reduction to address the difficult computation of nonparametric baseline cumulative hazards, allowing for the collapse of the Markov transition within the Gibbs sampler based on beta sufficient statistics. We explore conditions for uniform ergodicity of the Cox-Pólya-Gamma algorithm. We provide software and demonstrate our multilevel modeling approach using open-source data and simulations.  | 
    
| Author | Morris, Jeffrey S Ren, Benny Barnett, Ian  | 
    
| Author_xml | – sequence: 1 givenname: Benny orcidid: 0000-0001-6075-657X surname: Ren fullname: Ren, Benny – sequence: 2 givenname: Jeffrey S surname: Morris fullname: Morris, Jeffrey S – sequence: 3 givenname: Ian orcidid: 0000-0003-3256-5703 surname: Barnett fullname: Barnett, Ian  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40971571$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNo90M1KAzEUhuEgitafrUvJ0s20-Z3JLLVoFQq6qOBCGDIzJxpJJprMFHtdXoI3Zkurq8OBh2_xHqP9LnSA0DklY0pKPqlt8H0zGd61oYzuoRGVgmZEMLKPRoSQPOOCPh-h45Te128pCTtER4KUBZUFHaGXxRvgafjKHn--3UpnM-29xtq9hmj7N49NiNg4-LK1A3ytV5Cs7rDtDEToGsDBYD-43jpYgsNpiEu71A770IJLp-jAaJfgbHdP0NPtzWJ6l80fZvfTq3nWMMn6DKgxggnFSq1EzoVsBTOm4AYKJZnkikgl25ozo42AXBnaasWNLlpaC1UrfoIut7sfMXwOkPrK29SAc7qDMKSKs80M4zlf04sdHWoPbfURrddxVf0VWYPxFjQxpBTB_BNKqk3yapu82iXnv3M8d0k | 
    
| Cites_doi | 10.18637/jss.v080.i01 10.1007/0-387-37345-4 10.1093/biostatistics/kxad019 10.1093/biomet/asy064 10.1200/JCO.1994.12.3.601 10.1111/1467-9868.00179 10.1214/18-BA1132 10.1007/b98888 10.1109/LSP.2015.2503725 10.1080/10618600.2013.788448 10.1111/biom.12299 10.1080/01621459.1958.10501452 10.1111/j.1467-9868.2008.00700.x 10.1007/978-3-319-33507-0_27 10.1080/01621459.2013.829001 10.1017/CBO9780511755453 10.1111/j.0006-341X.2000.00227.x 10.1016/j.spl.2018.02.003 10.1111/1467-9469.00267 10.1111/j.2517-6161.1972.tb00899.x 10.1111/biom.13332 10.1007/978-1-4757-3294-8 10.1093/biomet/62.2.269 10.1201/9781420073911 10.1214/aos/1056562461 10.1007/978-0-387-68560-1 10.1111/j.1467-842X.2008.00507.x 10.1111/1467-9469.00298 10.1002/sim.6728 10.1007/BF01437406 10.1146/annurev-statistics-060116-054045 10.1177/1471082X17748083 10.1093/biomet/90.3.629 10.1214/aos/1176344247 10.1002/sim.10160 10.1080/00401706.1972.10488991 10.1016/j.jspi.2017.09.002 10.1198/016214502388618753 10.1007/s11222-022-10200-4 10.1111/j.2517-6161.1978.tb01666.x 10.1111/sjos.12291 10.1080/01621459.2018.1482754 10.1214/aos/1176324322 10.1214/13-EJS837  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com. | 
    
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1093/biomtc/ujaf121 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Biology Mathematics  | 
    
| EISSN | 1541-0420 | 
    
| ExternalDocumentID | 40971571 10_1093_biomtc_ujaf121  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA244845 – fundername: NCATS NIH HHS grantid: UL1 TR001878 – fundername: NCI NIH HHS grantid: R01 CA178744 – fundername: NIH HHS grantid: UL1-TR001878 – fundername: NIH HHS grantid: R01-CA244845 – fundername: NIH HHS grantid: R01-CA178744  | 
    
| GroupedDBID | --- -~X .3N .4S .DC .GA 05W 0R~ 10A 1OC 23N 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AANLZ AAONW AAUAY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJNI ABLJU ABMNT ABPPZ ABPVW ABXVV ABYWD ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXQS ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADOZA ADVOB ADXAS ADZMN AEGXH AEIGN AEIMD AENEX AEOTA AEUYR AFBPY AFEBI AFGKR AFVYC AFWVQ AFZJQ AGTJU AHGBF AHMBA AIAGR AIURR AJBYB AJNCP AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DXH EAP EBS ESX F00 F01 F04 F5P FD6 G-S G.N GODZA GS5 H.T H.X H13 HZI HZ~ IX1 J0M JAC K48 KOP LATKE LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OJZSN OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROX RX1 RXW SUPJJ TN5 TUS UB1 V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c252t-e1ff424829a846345d42ff73fe78525380585db32faf4e68f1da83fa7d1b48b83 | 
    
| ISSN | 0006-341X 1541-0420  | 
    
| IngestDate | Sat Sep 20 18:32:17 EDT 2025 Wed Sep 24 03:08:47 EDT 2025 Wed Oct 01 05:21:13 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Kaplan-Meier frailty model multilevel model Cox model survival analysis Bayesian inference  | 
    
| Language | English | 
    
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site-for further information please contact journals.permissions@oup.com.  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c252t-e1ff424829a846345d42ff73fe78525380585db32faf4e68f1da83fa7d1b48b83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-3256-5703 0000-0001-6075-657X  | 
    
| PMID | 40971571 | 
    
| PQID | 3252532363 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3252532363 pubmed_primary_40971571 crossref_primary_10_1093_biomtc_ujaf121  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-Jul-03 | 
    
| PublicationDateYYYYMMDD | 2025-07-03 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-Jul-03 day: 03  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Biometrics | 
    
| PublicationTitleAlternate | Biometrics | 
    
| PublicationYear | 2025 | 
    
| References | Maatouk (2025091922542790800_bib23) 2016 Kalbfleisch (2025091922542790800_bib19) 1978; 40 Meyer (2025091922542790800_bib25) 2018; 193 Neal (2025091922542790800_bib29) 2003; 31 Kaplan (2025091922542790800_bib21) 1958; 53 Nelson (2025091922542790800_bib31) 1972; 14 Ramsay (2025091922542790800_bib36) 1988; 3 Wand (2025091922542790800_bib50) 2008; 50 Polson (2025091922542790800_bib35) 2013; 108 Therneau (2025091922542790800_bib47) 2000 Peng (2025091922542790800_bib34) 2018 Sy (2025091922542790800_bib45) 2000; 56 Choi (2025091922542790800_bib7) 2013; 7 Rue (2025091922542790800_bib39) 2017; 4 Ibrahim (2025091922542790800_bib16) 2015; 34 Alvares (2025091922542790800_bib3) 2024; 43 Esscher (2025091922542790800_bib13) 1932; 15 Tsiatis (2025091922542790800_bib48) 2006 Bender (2025091922542790800_bib4) 2018; 18 Ramsay (2025091922542790800_bib37) 2005 Neelon (2025091922542790800_bib30) 2019; 14 Rustand (2025091922542790800_bib41) 2024; 25 Demmler (2025091922542790800_bib11) 1975; 24 Ibrahim (2025091922542790800_bib17) 2001 Loprinzi (2025091922542790800_bib22) 1994; 12 Kalbfleisch (2025091922542790800_bib20) 2011 Valeriano (2025091922542790800_bib49) 2023; 33 Cox (2025091922542790800_bib8) 1972; 34 Henderson (2025091922542790800_bib14) 2002; 97 Therneau (2025091922542790800_bib46) 2024 Nieto-Barajas (2025091922542790800_bib32) 2002; 29 Shu (2025091922542790800_bib42) 2021; 77 Winkelmann (2025091922542790800_bib54) 2008 Damien (2025091922542790800_bib10) 1999; 61 Borgan (2025091922542790800_bib5) 1995; 23 Bürkner (2025091922542790800_bib6) 2017; 80 Makalic (2025091922542790800_bib24) 2015; 23 Aalen (2025091922542790800_bib2) 2008 Duan (2025091922542790800_bib12) 2018; 19 Sinha (2025091922542790800_bib43) 2003; 90 Meyer (2025091922542790800_bib26) 2015; 71 Wienke (2025091922542790800_bib53) 2010 Aalen (2025091922542790800_bib1) 1978; 6 Sun (2025091922542790800_bib44) 2019; 106 Rue (2025091922542790800_bib38) 2009; 71 Ruppert (2025091922542790800_bib40) 2003 Wang (2025091922542790800_bib51) 2022; 118 Mira (2025091922542790800_bib27) 2002; 29 Cox (2025091922542790800_bib9) 1975; 62 Wang (2025091922542790800_bib52) 2018; 137 Pakman (2025091922542790800_bib33) 2014; 23 Hothorn (2025091922542790800_bib15) 2018; 45 Narisetty (2025091922542790800_bib28) 2018; 114 Evans (2025091922542790800_bib18) 2001  | 
    
| References_xml | – volume: 80 start-page: 1 year: 2017 ident: 2025091922542790800_bib6 article-title: BRMS: an R package for Bayesian multilevel models using Stan publication-title: Journal of Statistical Software doi: 10.18637/jss.v080.i01 – year: 2006 ident: 2025091922542790800_bib48 article-title: Semiparametric theory and missing data doi: 10.1007/0-387-37345-4 – volume-title: Work in progress year: 2018 ident: 2025091922542790800_bib34 article-title: Advanced statistical computing – volume: 25 start-page: 429 year: 2024 ident: 2025091922542790800_bib41 article-title: Fast and flexible inference for joint models of multivariate longitudinal and survival data using integrated nested Laplace approximations publication-title: Biostatistics doi: 10.1093/biostatistics/kxad019 – volume: 106 start-page: 181 year: 2019 ident: 2025091922542790800_bib44 article-title: Counting process-based dimension reduction methods for censored outcomes publication-title: Biometrika doi: 10.1093/biomet/asy064 – volume: 12 start-page: 601 year: 1994 ident: 2025091922542790800_bib22 article-title: Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.1994.12.3.601 – volume: 61 start-page: 331 year: 1999 ident: 2025091922542790800_bib10 article-title: Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00179 – volume: 14 start-page: 829 year: 2019 ident: 2025091922542790800_bib30 article-title: Bayesian zero-inflated negative binomial regression based on Pólya-Gamma mixtures publication-title: Bayesian Analysis doi: 10.1214/18-BA1132 – volume-title: Functional Data Analysis year: 2005 ident: 2025091922542790800_bib37 doi: 10.1007/b98888 – volume: 23 start-page: 179 year: 2015 ident: 2025091922542790800_bib24 article-title: A simple sampler for the horseshoe estimator publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2015.2503725 – volume: 23 start-page: 518 year: 2014 ident: 2025091922542790800_bib33 article-title: Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2013.788448 – volume: 71 start-page: 563 year: 2015 ident: 2025091922542790800_bib26 article-title: Bayesian function-on-function regression for multilevel functional data publication-title: Biometrics doi: 10.1111/biom.12299 – volume: 53 start-page: 457 year: 1958 ident: 2025091922542790800_bib21 article-title: Nonparametric estimation from incomplete observations publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1958.10501452 – volume: 71 start-page: 319 year: 2009 ident: 2025091922542790800_bib38 article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology doi: 10.1111/j.1467-9868.2008.00700.x – start-page: 521 volume-title: Springer Proceedings in Mathematics & Statistics, Monte Carlo and Quasi Monte Carlo Methods year: 2016 ident: 2025091922542790800_bib23 article-title: A new rejection sampling method for truncated multivariate Gaussian random variables restricted to convex sets doi: 10.1007/978-3-319-33507-0_27 – volume: 108 start-page: 1339 year: 2013 ident: 2025091922542790800_bib35 article-title: Bayesian inference for logistic models using Pólya–Gamma latent variables publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2013.829001 – volume-title: Semiparametric Regression year: 2003 ident: 2025091922542790800_bib40 doi: 10.1017/CBO9780511755453 – volume: 56 start-page: 227 year: 2000 ident: 2025091922542790800_bib45 article-title: Estimation in a Cox proportional hazards cure model publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00227.x – volume: 137 start-page: 251 year: 2018 ident: 2025091922542790800_bib52 article-title: Analysis of the Pólya-Gamma block Gibbs sampler for Bayesian logistic linear mixed models publication-title: Statistics and Probability Letters doi: 10.1016/j.spl.2018.02.003 – volume: 29 start-page: 1 year: 2002 ident: 2025091922542790800_bib27 article-title: Efficiency and convergence properties of slice samplers publication-title: Scand. J. Stat. doi: 10.1111/1467-9469.00267 – volume: 34 start-page: 187 year: 1972 ident: 2025091922542790800_bib8 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 77 start-page: 1101 year: 2021 ident: 2025091922542790800_bib42 article-title: Variance estimation in inverse probability weighted Cox models publication-title: Biometrics doi: 10.1111/biom.13332 – volume-title: Modeling Survival Data: Extending the Cox Model year: 2000 ident: 2025091922542790800_bib47 doi: 10.1007/978-1-4757-3294-8 – volume: 118 start-page: 1 year: 2022 ident: 2025091922542790800_bib51 article-title: Time-to-event analysis with unknown time origins via longitudinal biomarker registration publication-title: Journal of the American Statistical Association – volume: 62 start-page: 269 year: 1975 ident: 2025091922542790800_bib9 article-title: Partial likelihood publication-title: Biometrika doi: 10.1093/biomet/62.2.269 – volume-title: Frailty Models in Survival Analysis year: 2010 ident: 2025091922542790800_bib53 doi: 10.1201/9781420073911 – volume: 15 start-page: 175 year: 1932 ident: 2025091922542790800_bib13 article-title: On the probability function in the collective theory of risk publication-title: Scandinavian Actuarial Journal – year: 2001 ident: 2025091922542790800_bib18 article-title: Small clinical trials: Issues and challenges – volume: 31 start-page: 705 year: 2003 ident: 2025091922542790800_bib29 article-title: Slice sampling publication-title: The Annals of Statistics doi: 10.1214/aos/1056562461 – volume-title: Survival and Event History Analysis: A Process Point of View year: 2008 ident: 2025091922542790800_bib2 doi: 10.1007/978-0-387-68560-1 – volume: 50 start-page: 179 year: 2008 ident: 2025091922542790800_bib50 article-title: On semiparametric regression with O’Sullivan penalized splines publication-title: Australian and New Zealand Journal of Statistics doi: 10.1111/j.1467-842X.2008.00507.x – volume: 29 start-page: 413 year: 2002 ident: 2025091922542790800_bib32 article-title: Markov beta and gamma processes for modelling hazard rates publication-title: Scandinavian Journal of Statistics doi: 10.1111/1467-9469.00298 – volume: 34 start-page: 3724 year: 2015 ident: 2025091922542790800_bib16 article-title: The power prior: theory and applications publication-title: Statistics in Medicine doi: 10.1002/sim.6728 – volume: 24 start-page: 375 year: 1975 ident: 2025091922542790800_bib11 article-title: Oscillation matrices with spline smoothing publication-title: Numerische Mathematik doi: 10.1007/BF01437406 – volume: 19 start-page: 1 year: 2018 ident: 2025091922542790800_bib12 article-title: Scaling up data augmentation MCMC via calibration publication-title: Journal of Machine Learning Research – volume: 4 start-page: 395 year: 2017 ident: 2025091922542790800_bib39 article-title: Bayesian computing with INLA: a review publication-title: Annual Review of Statistics and Its Application doi: 10.1146/annurev-statistics-060116-054045 – volume: 18 start-page: 299 year: 2018 ident: 2025091922542790800_bib4 article-title: A generalized additive model approach to time-to-event analysis publication-title: Statistical Modelling doi: 10.1177/1471082X17748083 – volume: 3 start-page: 425 year: 1988 ident: 2025091922542790800_bib36 article-title: Monotone regression splines in action publication-title: Statistical Science – volume: 90 start-page: 629 year: 2003 ident: 2025091922542790800_bib43 article-title: A Bayesian justification of Cox’s partial likelihood publication-title: Biometrika doi: 10.1093/biomet/90.3.629 – start-page: 5 volume-title: A Package for Survival Analysis in R year: 2024 ident: 2025091922542790800_bib46 – volume: 6 start-page: 701 year: 1978 ident: 2025091922542790800_bib1 article-title: Nonparametric inference for a family of counting processes publication-title: The Annals of Statistics doi: 10.1214/aos/1176344247 – volume: 43 start-page: 3975 year: 2024 ident: 2025091922542790800_bib3 article-title: Bayesian survival analysis with INLA publication-title: Statistics in Medicine doi: 10.1002/sim.10160 – volume: 14 start-page: 945 year: 1972 ident: 2025091922542790800_bib31 article-title: Theory and applications of hazard plotting for censored failure data publication-title: Technometrics doi: 10.1080/00401706.1972.10488991 – volume-title: Bayesian Survival Analysis. Springer Series in Statistics, First Edition year: 2001 ident: 2025091922542790800_bib17 – volume: 193 start-page: 179 year: 2018 ident: 2025091922542790800_bib25 article-title: Convergence rates for constrained regression splines publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2017.09.002 – volume-title: Econometric Analysis of Count Data year: 2008 ident: 2025091922542790800_bib54 – volume: 97 start-page: 965 year: 2002 ident: 2025091922542790800_bib14 article-title: Modeling spatial variation in leukemia survival data publication-title: Journal of the American Statistical Association doi: 10.1198/016214502388618753 – volume: 33 start-page: 32 year: 2023 ident: 2025091922542790800_bib49 article-title: Moments and random number generation for the truncated elliptical family of distributions publication-title: Statistics and Computing doi: 10.1007/s11222-022-10200-4 – volume: 40 start-page: 214 year: 1978 ident: 2025091922542790800_bib19 article-title: Non-parametric Bayesian analysis of survival time data publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1978.tb01666.x – volume: 45 start-page: 110 year: 2018 ident: 2025091922542790800_bib15 article-title: Most likely transformations publication-title: Scandinavian Journal of Statistics doi: 10.1111/sjos.12291 – volume-title: The Statistical Analysis of Failure Time Data year: 2011 ident: 2025091922542790800_bib20 – volume: 114 start-page: 1205 year: 2018 ident: 2025091922542790800_bib28 article-title: Skinny Gibbs: a consistent and scalable Gibbs sampler for model selection publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2018.1482754 – volume: 23 start-page: 1749 year: 1995 ident: 2025091922542790800_bib5 article-title: Methods for the analysis of sampled cohort data in the Cox proportional hazards model publication-title: The Annals of Statistics doi: 10.1214/aos/1176324322 – volume: 7 start-page: 2054 year: 2013 ident: 2025091922542790800_bib7 article-title: The polya-gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic publication-title: Electronic Journal of Statistics doi: 10.1214/13-EJS837  | 
    
| SSID | ssj0009502 | 
    
| Score | 2.4556854 | 
    
| Snippet | Bayesian Cox semiparametric regression is an important problem in many clinical settings. The elliptical information geometry of Cox models is underutilized in... | 
    
| SourceID | proquest pubmed crossref  | 
    
| SourceType | Aggregation Database Index Database  | 
    
| SubjectTerms | Algorithms Bayes Theorem Computer Simulation Humans Markov Chains Proportional Hazards Models Survival Analysis  | 
    
| Title | The Cox-Pólya-Gamma algorithm for flexible Bayesian inference of multilevel survival models | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40971571 https://www.proquest.com/docview/3252532363  | 
    
| Volume | 81 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCGl7QFBgKzcZCcHDZDZfcnukY2WgbSDUSn1AiuzEhqE2Gb0gyt_iJ_DHOI6dpJWKNHiJIktxIp8vJ8c55_sOQs-iKKMQVQgiKdVEmIDDO0cTolks4XOumE4swfnsPDwZinejYNS2uavYJXP1Mvu5kVfyP1aFMbCrZcn-g2WbSWEAzsG-cAQLw_HKNj4qf5APNt3d4-OlJG_kZCL35fhzCbv-L5OqitBY0UvLkOrJpa5Ikxc1za9Kr9uawrEtHtqfLcBzfLeEEtsgZ7aW8bU8fSvn3xbHO4_VA1fdlhKX0-nFKkWs_bXak9PCFwW_9ZD0fxtYUFWm8lUHKSiBF93lUvSGMe9VXSMWjx6-0Vk7ISsrM2C7ufcXX6Whji69rot9_j7tD09P08HxaPD88huxLcNsat33T7mObjBw6bZvx-uPbEVx2RWc1g_XKHbyA3fLA3_D9YjkL9uMKtwY3Ea3_D4Bv3JGv4Ou6aKDbrrOocsO2jlr5HZnHbRttwxOcfsu-gSowBUqfv9qEIEbRGBABK4RgWtE4AYRuDS4RQSuEYEdIu6hYf94cHRCfA8NkrGAzYmmxggmYpZIiDS5CHLBjIm40VEcMPjaHcJ-MVecGWmEDmNDcxlzI6OcKhGrmN9HW0VZ6D2EE5ggoSqKRWJEqGQM0XouIGJVeZgdqqyLXtTrmF46qZTUlTjw1K146le8i57Wy5yCN7MpKlnocjFLObMPxXjIu2jXrX8zl1Vmo0FEH1zh6odou0XvI7Q1ny70Y4ge5-pJhZI_uAB0eg | 
    
| linkProvider | Wiley-Blackwell | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cox-P%C3%B3lya-Gamma+algorithm+for+flexible+Bayesian+inference+of+multilevel+survival+models&rft.jtitle=Biometrics&rft.au=Ren%2C+Benny&rft.au=Morris%2C+Jeffrey+S&rft.au=Barnett%2C+Ian&rft.date=2025-07-03&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=81&rft.issue=3&rft_id=info:doi/10.1093%2Fbiomtc%2Fujaf121&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |