A Learning Vector Particle Swarm Algorithm Incorporating Sparrow for UAV Path Planning

UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes a learning vector particle swarm optimization algorithm (slpso) based on sparrow, which uses vector decomposition of individual position to...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of swarm intelligence research Vol. 13; no. 1; pp. 1 - 20
Main Authors Hu, Chunan, Deng, Mingjie, Zhu, Donglin
Format Journal Article
LanguageEnglish
Published 19.08.2022
Online AccessGet full text
ISSN1947-9263
1947-9271
DOI10.4018/IJSIR.307105

Cover

Abstract UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes a learning vector particle swarm optimization algorithm (slpso) based on sparrow, which uses vector decomposition of individual position to control the safety in the path; Firstly, the elite secondary reverse learning strategy is used to increase the distribution of the population; Then, the discoverer phase of sparrow search algorithm is introduced to update the optimal location of particle swarm optimization algorithm and enhance the population diversity. When the algorithm comes to a standstill, a one-dimensional learning strategy is used to improve the subsequent optimization means to help the algorithm jump out of the local optimization. Through the path planning experiments of the two models and Wilcoxon rank sum test, it can be seen that slpso has better effect than other algorithms in terms of path planning and convergence speed, and the route planned in complex environment is more secure and stable.
AbstractList UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes a learning vector particle swarm optimization algorithm (slpso) based on sparrow, which uses vector decomposition of individual position to control the safety in the path; Firstly, the elite secondary reverse learning strategy is used to increase the distribution of the population; Then, the discoverer phase of sparrow search algorithm is introduced to update the optimal location of particle swarm optimization algorithm and enhance the population diversity. When the algorithm comes to a standstill, a one-dimensional learning strategy is used to improve the subsequent optimization means to help the algorithm jump out of the local optimization. Through the path planning experiments of the two models and Wilcoxon rank sum test, it can be seen that slpso has better effect than other algorithms in terms of path planning and convergence speed, and the route planned in complex environment is more secure and stable.
Author Zhu, Donglin
Hu, Chunan
Deng, Mingjie
AuthorAffiliation Jiangxi University of Science and Technology, China
AuthorAffiliation_xml – name: Jiangxi University of Science and Technology, China
Author_xml – sequence: 1
  givenname: Chunan
  surname: Hu
  fullname: Hu, Chunan
  organization: Jiangxi University of Science and Technology, China
– sequence: 2
  givenname: Mingjie
  surname: Deng
  fullname: Deng, Mingjie
  organization: Jiangxi University of Science and Technology, China
– sequence: 3
  givenname: Donglin
  surname: Zhu
  fullname: Zhu, Donglin
  organization: Jiangxi University of Science and Technology, China
BookMark eNptkM1OwzAQhC1UJErpjQfwA5DinzhOjlHFT1AlKkJ7tVzHblOldrUJqnh7UgKc2Mvu4ZvRzlyjkQ_eInRLySwmNL0vXsribcaJpERcoDHNYhllTNLR353wKzRt2z3pR8RSCj5G6xwvrAZf-y1eW9MFwEsNXW0ai8uThgPOm22AutsdcOFNgGMA3Z3p8qgBwgm7XrLK172s2-Flo_3Z6wZdOt20dvqzJ2j1-PA-f44Wr0_FPF9EhgnWRZuUJbpKhTTSxZQLwVNmWGwr4zKuuUgSF5uNEDQ1WlpWUacpzYgURlQ02RA-QXeDr4HQtmCdOkJ90PCpKFHnWtR3LWqopcfnA15va7UPH-D759QQXw3x1W98VZ7-86CcfwGhsG26
Cites_doi 10.12677/CSA.2022.125135
10.1007/978-0-387-21830-4_6
10.1016/j.knosys.2020.106729
10.1016/B978-0-12-819972-5.00003-3
10.1080/21642583.2019.1708830
10.1016/j.matcom.2021.10.003
10.1016/j.ast.2011.02.006
10.1007/978-981-15-0029-9_45
10.1016/j.asoc.2021.107376
10.1109/HIS.2011.6122097
10.1109/CACSD.2008.4627357
10.1109/CIMCA.2005.1631345
10.1016/j.autcon.2017.04.013
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.4018/IJSIR.307105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1947-9271
EndPage 20
ExternalDocumentID 10_4018_IJSIR_307105
arning_Vector_Particle_Sw10_4018_IJSIR_30710513
GroupedDBID 0R~
4.4
AAYVP
ABEFF
ABEPT
ABGRR
ACOJC
ADEKF
ALMA_UNASSIGNED_HOLDINGS
BYHXH
CBWLS
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
CTSEY
EBS
HCIFZ
HZ~
IGYUU
JRD
MV1
N95
NEEBM
O9-
RIF
AAYXX
ABJCF
ADMLS
CITATION
H13
ID FETCH-LOGICAL-c252t-b826ad857c7f41355382c24edcf93a3566f4cb5518ca7e2d1fa119075c5d16b03
ISSN 1947-9263
IngestDate Wed Oct 15 13:10:22 EDT 2025
Mon Jun 10 08:35:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-b826ad857c7f41355382c24edcf93a3566f4cb5518ca7e2d1fa119075c5d16b03
PageCount 20
ParticipantIDs igi_journals_arning_Vector_Particle_Sw10_4018_IJSIR_30710513
crossref_primary_10_4018_IJSIR_307105
PublicationCentury 2000
PublicationDate 2022-08-19T00:00:00
PublicationDateYYYYMMDD 2022-08-19
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-19T00:00:00
  day: 19
PublicationDecade 2020
PublicationTitle International journal of swarm intelligence research
PublicationYear 2022
References Xionghuajie (IJSIR.307105-25) 2020; 28
Shu (IJSIR.307105-18) 2021
IJSIR.307105-20
IJSIR.307105-21
IJSIR.307105-22
IJSIR.307105-23
IJSIR.307105-8
IJSIR.307105-13
IJSIR.307105-9
IJSIR.307105-14
IJSIR.307105-6
IJSIR.307105-15
IJSIR.307105-16
IJSIR.307105-17
IJSIR.307105-0
Lan (IJSIR.307105-7) 2021; 61
H.Duan (IJSIR.307105-1) 2005; Vol. 12
IJSIR.307105-4
IJSIR.307105-5
IJSIR.307105-2
IJSIR.307105-3
S.Yu (IJSIR.307105-28) 2019
IJSIR.307105-10
IJSIR.307105-11
IJSIR.307105-12
IJSIR.307105-24
IJSIR.307105-26
IJSIR.307105-27
IJSIR.307105-29
H.Shuzhao (IJSIR.307105-19) 2021; 41
References_xml – ident: IJSIR.307105-2
– ident: IJSIR.307105-10
  doi: 10.12677/CSA.2022.125135
– ident: IJSIR.307105-20
– ident: IJSIR.307105-0
– ident: IJSIR.307105-9
  doi: 10.1007/978-0-387-21830-4_6
– volume: 28
  start-page: 144
  issue: 2
  year: 2020
  ident: IJSIR.307105-25
  article-title: UAV track planning method based on improved particle swarm optimization algorithm
  publication-title: Jisuanji Celiang Yu Kongzhi
– ident: IJSIR.307105-15
  doi: 10.1016/j.knosys.2020.106729
– ident: IJSIR.307105-6
  doi: 10.1016/B978-0-12-819972-5.00003-3
– ident: IJSIR.307105-26
  doi: 10.1080/21642583.2019.1708830
– ident: IJSIR.307105-8
  doi: 10.1016/j.matcom.2021.10.003
– volume: 61
  start-page: 560
  issue: 5
  year: 2021
  ident: IJSIR.307105-7
  article-title: UAV track planning with improved bacterial foraging optimization algorithm.
  publication-title: Telecommunication Engineering
– ident: IJSIR.307105-14
  doi: 10.1016/j.ast.2011.02.006
– volume: Vol. 12
  year: 2005
  ident: IJSIR.307105-1
  publication-title: Principle and application of ant colony algorithm
– ident: IJSIR.307105-13
  doi: 10.1007/978-981-15-0029-9_45
– year: 2021
  ident: IJSIR.307105-18
  article-title: Intelligent path planning of UAV in data collection of Internet of things
  publication-title: Journal of Communication
– start-page: 3
  year: 2019
  ident: IJSIR.307105-28
  article-title: An improved particle swarm optimization algorithm for UAV 3D path planning
  publication-title: Collections
– ident: IJSIR.307105-12
– ident: IJSIR.307105-16
  doi: 10.1016/j.asoc.2021.107376
– ident: IJSIR.307105-3
– ident: IJSIR.307105-21
– ident: IJSIR.307105-24
  doi: 10.1109/HIS.2011.6122097
– ident: IJSIR.307105-27
– ident: IJSIR.307105-4
  doi: 10.1109/CACSD.2008.4627357
– ident: IJSIR.307105-5
– ident: IJSIR.307105-23
– ident: IJSIR.307105-29
– volume: 41
  start-page: 390
  issue: 2
  year: 2021
  ident: IJSIR.307105-19
  article-title: Unmanned aerial vehicle path planning based on improved genetic algorithm
  publication-title: Jisuanji Yingyong
– ident: IJSIR.307105-22
  doi: 10.1109/CIMCA.2005.1631345
– ident: IJSIR.307105-17
  doi: 10.1016/j.autcon.2017.04.013
– ident: IJSIR.307105-11
SSID ssj0000547753
Score 2.2013876
Snippet UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes...
SourceID crossref
igi
SourceType Index Database
Publisher
StartPage 1
Title A Learning Vector Particle Swarm Algorithm Incorporating Sparrow for UAV Path Planning
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.307105
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1947-9271
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: ADMLS
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZKuexlea6Wp3yAUxU2D7tpJC4RDwGie9jSCu3Fsh2n7WoJCFoh-PWMYyd1oQd2L1Fl1U4683X8jeP5jNBBJijhAYA35yT3CM0Cj5Mg8HI_EZIAYRBKL-h3f7Yv-uTqlt42Gi_OrqXpRBzJ14V1Jf_jVWgDv-oq2X_wbD0oNMBn8C9cwcNw_ZSP00oeddgalKvvQAjNt1q9Z_5410r_Du8h-x_d6ThgNYtLCe6HUnux3GPYTwdaqH9Un1_k8tX5BUNHZuKpHH_sCnpa3aDRDCnmff60mCHwVJnY0oX7_BnXoPo9mho2r4uKC3clApJYrQybOMEzIbGXhDZgKbfNHLNSR9zoA7JM-AycebiskfsQ4SEd1FULl1e9y19HkeZHdDaTVW_v301w9bZDSHh0f1b2Zqb3EloOYULwm2g5Pe1e9-oFOuCysVExrX-XKZzQQ_xwH2CO0iyNh2OHodysoq82tcCpQcAaaqhiHa1Ux3ZgG8U30CDFFWywgQ2uYINL2OAaNngONtjCBgNsMMAGa9jgCjabqH9-dnNy4dnjNTwZ0nDiCcgsedahsYxzoDIUpr5QhkRlMk8iHgHPz4kUWrFP8liFWZDzAOhjTCX8o9vCj76hZnFfqO8IE6KACfFcASMiPvc7WdbWvTpCxqJDsy10WFmIPRgVFbbIGVvoGMzHLJqfmLEFM7ZglS1Y73lR5yDa_uRtdtCXGX53UXPyOFV7wC0nYt-i4A0Kcnrb
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning+Vector+Particle+Swarm+Algorithm+Incorporating+Sparrow+for+UAV+Path+Planning&rft.jtitle=International+journal+of+swarm+intelligence+research&rft.au=Hu%2C+Chunan&rft.au=Deng%2C+Mingjie&rft.au=Zhu%2C+Donglin&rft.date=2022-08-19&rft.issn=1947-9263&rft.eissn=1947-9271&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.4018%2FIJSIR.307105&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJSIR_307105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-9263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-9263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-9263&client=summon