A Learning Vector Particle Swarm Algorithm Incorporating Sparrow for UAV Path Planning
UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes a learning vector particle swarm optimization algorithm (slpso) based on sparrow, which uses vector decomposition of individual position to...
Saved in:
| Published in | International journal of swarm intelligence research Vol. 13; no. 1; pp. 1 - 20 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
19.08.2022
|
| Online Access | Get full text |
| ISSN | 1947-9263 1947-9271 |
| DOI | 10.4018/IJSIR.307105 |
Cover
| Abstract | UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes a learning vector particle swarm optimization algorithm (slpso) based on sparrow, which uses vector decomposition of individual position to control the safety in the path; Firstly, the elite secondary reverse learning strategy is used to increase the distribution of the population; Then, the discoverer phase of sparrow search algorithm is introduced to update the optimal location of particle swarm optimization algorithm and enhance the population diversity. When the algorithm comes to a standstill, a one-dimensional learning strategy is used to improve the subsequent optimization means to help the algorithm jump out of the local optimization. Through the path planning experiments of the two models and Wilcoxon rank sum test, it can be seen that slpso has better effect than other algorithms in terms of path planning and convergence speed, and the route planned in complex environment is more secure and stable. |
|---|---|
| AbstractList | UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes a learning vector particle swarm optimization algorithm (slpso) based on sparrow, which uses vector decomposition of individual position to control the safety in the path; Firstly, the elite secondary reverse learning strategy is used to increase the distribution of the population; Then, the discoverer phase of sparrow search algorithm is introduced to update the optimal location of particle swarm optimization algorithm and enhance the population diversity. When the algorithm comes to a standstill, a one-dimensional learning strategy is used to improve the subsequent optimization means to help the algorithm jump out of the local optimization. Through the path planning experiments of the two models and Wilcoxon rank sum test, it can be seen that slpso has better effect than other algorithms in terms of path planning and convergence speed, and the route planned in complex environment is more secure and stable. |
| Author | Zhu, Donglin Hu, Chunan Deng, Mingjie |
| AuthorAffiliation | Jiangxi University of Science and Technology, China |
| AuthorAffiliation_xml | – name: Jiangxi University of Science and Technology, China |
| Author_xml | – sequence: 1 givenname: Chunan surname: Hu fullname: Hu, Chunan organization: Jiangxi University of Science and Technology, China – sequence: 2 givenname: Mingjie surname: Deng fullname: Deng, Mingjie organization: Jiangxi University of Science and Technology, China – sequence: 3 givenname: Donglin surname: Zhu fullname: Zhu, Donglin organization: Jiangxi University of Science and Technology, China |
| BookMark | eNptkM1OwzAQhC1UJErpjQfwA5DinzhOjlHFT1AlKkJ7tVzHblOldrUJqnh7UgKc2Mvu4ZvRzlyjkQ_eInRLySwmNL0vXsribcaJpERcoDHNYhllTNLR353wKzRt2z3pR8RSCj5G6xwvrAZf-y1eW9MFwEsNXW0ai8uThgPOm22AutsdcOFNgGMA3Z3p8qgBwgm7XrLK172s2-Flo_3Z6wZdOt20dvqzJ2j1-PA-f44Wr0_FPF9EhgnWRZuUJbpKhTTSxZQLwVNmWGwr4zKuuUgSF5uNEDQ1WlpWUacpzYgURlQ02RA-QXeDr4HQtmCdOkJ90PCpKFHnWtR3LWqopcfnA15va7UPH-D759QQXw3x1W98VZ7-86CcfwGhsG26 |
| Cites_doi | 10.12677/CSA.2022.125135 10.1007/978-0-387-21830-4_6 10.1016/j.knosys.2020.106729 10.1016/B978-0-12-819972-5.00003-3 10.1080/21642583.2019.1708830 10.1016/j.matcom.2021.10.003 10.1016/j.ast.2011.02.006 10.1007/978-981-15-0029-9_45 10.1016/j.asoc.2021.107376 10.1109/HIS.2011.6122097 10.1109/CACSD.2008.4627357 10.1109/CIMCA.2005.1631345 10.1016/j.autcon.2017.04.013 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.4018/IJSIR.307105 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1947-9271 |
| EndPage | 20 |
| ExternalDocumentID | 10_4018_IJSIR_307105 arning_Vector_Particle_Sw10_4018_IJSIR_30710513 |
| GroupedDBID | 0R~ 4.4 AAYVP ABEFF ABEPT ABGRR ACOJC ADEKF ALMA_UNASSIGNED_HOLDINGS BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG CTSEY EBS HCIFZ HZ~ IGYUU JRD MV1 N95 NEEBM O9- RIF AAYXX ABJCF ADMLS CITATION H13 |
| ID | FETCH-LOGICAL-c252t-b826ad857c7f41355382c24edcf93a3566f4cb5518ca7e2d1fa119075c5d16b03 |
| ISSN | 1947-9263 |
| IngestDate | Wed Oct 15 13:10:22 EDT 2025 Mon Jun 10 08:35:11 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c252t-b826ad857c7f41355382c24edcf93a3566f4cb5518ca7e2d1fa119075c5d16b03 |
| PageCount | 20 |
| ParticipantIDs | igi_journals_arning_Vector_Particle_Sw10_4018_IJSIR_30710513 crossref_primary_10_4018_IJSIR_307105 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-19T00:00:00 |
| PublicationDateYYYYMMDD | 2022-08-19 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-19T00:00:00 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of swarm intelligence research |
| PublicationYear | 2022 |
| References | Xionghuajie (IJSIR.307105-25) 2020; 28 Shu (IJSIR.307105-18) 2021 IJSIR.307105-20 IJSIR.307105-21 IJSIR.307105-22 IJSIR.307105-23 IJSIR.307105-8 IJSIR.307105-13 IJSIR.307105-9 IJSIR.307105-14 IJSIR.307105-6 IJSIR.307105-15 IJSIR.307105-16 IJSIR.307105-17 IJSIR.307105-0 Lan (IJSIR.307105-7) 2021; 61 H.Duan (IJSIR.307105-1) 2005; Vol. 12 IJSIR.307105-4 IJSIR.307105-5 IJSIR.307105-2 IJSIR.307105-3 S.Yu (IJSIR.307105-28) 2019 IJSIR.307105-10 IJSIR.307105-11 IJSIR.307105-12 IJSIR.307105-24 IJSIR.307105-26 IJSIR.307105-27 IJSIR.307105-29 H.Shuzhao (IJSIR.307105-19) 2021; 41 |
| References_xml | – ident: IJSIR.307105-2 – ident: IJSIR.307105-10 doi: 10.12677/CSA.2022.125135 – ident: IJSIR.307105-20 – ident: IJSIR.307105-0 – ident: IJSIR.307105-9 doi: 10.1007/978-0-387-21830-4_6 – volume: 28 start-page: 144 issue: 2 year: 2020 ident: IJSIR.307105-25 article-title: UAV track planning method based on improved particle swarm optimization algorithm publication-title: Jisuanji Celiang Yu Kongzhi – ident: IJSIR.307105-15 doi: 10.1016/j.knosys.2020.106729 – ident: IJSIR.307105-6 doi: 10.1016/B978-0-12-819972-5.00003-3 – ident: IJSIR.307105-26 doi: 10.1080/21642583.2019.1708830 – ident: IJSIR.307105-8 doi: 10.1016/j.matcom.2021.10.003 – volume: 61 start-page: 560 issue: 5 year: 2021 ident: IJSIR.307105-7 article-title: UAV track planning with improved bacterial foraging optimization algorithm. publication-title: Telecommunication Engineering – ident: IJSIR.307105-14 doi: 10.1016/j.ast.2011.02.006 – volume: Vol. 12 year: 2005 ident: IJSIR.307105-1 publication-title: Principle and application of ant colony algorithm – ident: IJSIR.307105-13 doi: 10.1007/978-981-15-0029-9_45 – year: 2021 ident: IJSIR.307105-18 article-title: Intelligent path planning of UAV in data collection of Internet of things publication-title: Journal of Communication – start-page: 3 year: 2019 ident: IJSIR.307105-28 article-title: An improved particle swarm optimization algorithm for UAV 3D path planning publication-title: Collections – ident: IJSIR.307105-12 – ident: IJSIR.307105-16 doi: 10.1016/j.asoc.2021.107376 – ident: IJSIR.307105-3 – ident: IJSIR.307105-21 – ident: IJSIR.307105-24 doi: 10.1109/HIS.2011.6122097 – ident: IJSIR.307105-27 – ident: IJSIR.307105-4 doi: 10.1109/CACSD.2008.4627357 – ident: IJSIR.307105-5 – ident: IJSIR.307105-23 – ident: IJSIR.307105-29 – volume: 41 start-page: 390 issue: 2 year: 2021 ident: IJSIR.307105-19 article-title: Unmanned aerial vehicle path planning based on improved genetic algorithm publication-title: Jisuanji Yingyong – ident: IJSIR.307105-22 doi: 10.1109/CIMCA.2005.1631345 – ident: IJSIR.307105-17 doi: 10.1016/j.autcon.2017.04.013 – ident: IJSIR.307105-11 |
| SSID | ssj0000547753 |
| Score | 2.2013876 |
| Snippet | UAV path planning has become a research hotspot in the current era. In order to make UAV plan the route reasonably in the real environment, this paper proposes... |
| SourceID | crossref igi |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| Title | A Learning Vector Particle Swarm Algorithm Incorporating Sparrow for UAV Path Planning |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.307105 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1947-9271 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547753 issn: 1947-9263 databaseCode: ADMLS dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZKuexlea6Wp3yAUxU2D7tpJC4RDwGie9jSCu3Fsh2n7WoJCFoh-PWMYyd1oQd2L1Fl1U4683X8jeP5jNBBJijhAYA35yT3CM0Cj5Mg8HI_EZIAYRBKL-h3f7Yv-uTqlt42Gi_OrqXpRBzJ14V1Jf_jVWgDv-oq2X_wbD0oNMBn8C9cwcNw_ZSP00oeddgalKvvQAjNt1q9Z_5410r_Du8h-x_d6ThgNYtLCe6HUnux3GPYTwdaqH9Un1_k8tX5BUNHZuKpHH_sCnpa3aDRDCnmff60mCHwVJnY0oX7_BnXoPo9mho2r4uKC3clApJYrQybOMEzIbGXhDZgKbfNHLNSR9zoA7JM-AycebiskfsQ4SEd1FULl1e9y19HkeZHdDaTVW_v301w9bZDSHh0f1b2Zqb3EloOYULwm2g5Pe1e9-oFOuCysVExrX-XKZzQQ_xwH2CO0iyNh2OHodysoq82tcCpQcAaaqhiHa1Ux3ZgG8U30CDFFWywgQ2uYINL2OAaNngONtjCBgNsMMAGa9jgCjabqH9-dnNy4dnjNTwZ0nDiCcgsedahsYxzoDIUpr5QhkRlMk8iHgHPz4kUWrFP8liFWZDzAOhjTCX8o9vCj76hZnFfqO8IE6KACfFcASMiPvc7WdbWvTpCxqJDsy10WFmIPRgVFbbIGVvoGMzHLJqfmLEFM7ZglS1Y73lR5yDa_uRtdtCXGX53UXPyOFV7wC0nYt-i4A0Kcnrb |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning+Vector+Particle+Swarm+Algorithm+Incorporating+Sparrow+for+UAV+Path+Planning&rft.jtitle=International+journal+of+swarm+intelligence+research&rft.au=Hu%2C+Chunan&rft.au=Deng%2C+Mingjie&rft.au=Zhu%2C+Donglin&rft.date=2022-08-19&rft.issn=1947-9263&rft.eissn=1947-9271&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.4018%2FIJSIR.307105&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJSIR_307105 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-9263&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-9263&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-9263&client=summon |