An improved third term backpropagation algorithm – inertia expanded chebyshev orthogonal polynomial

The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local minima and slow convergence rate. To address these issues, a modified backpropagation algorithm has been proposed by adding a third term call...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 37; no. 3; pp. 3795 - 3804
Main Authors Sornam, Madasamy, Vanitha, Venkateswaran
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2019
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-190063

Cover

Abstract The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local minima and slow convergence rate. To address these issues, a modified backpropagation algorithm has been proposed by adding a third term called inertia, the physical component used to accelerate the network towards the convergence without getting stuck into local minima. The Chebyshev polynomial form is a convenient method for expanding a function in a linear independent term. Inertia has been expanded using Chebyshev polynomial which is used as a third term in weight updation. The performance of the proposed algorithm outperforms the standard backpropagation algorithm (SBP) and the backpropagation algorithm with momentum (SBPM). The proposed algorithm was tested with the standard benchmark problems such as XOR problem, parity checking problem and dataset from UCI machine learning repository such as iris flower classification, wheat classification, breast cancer detection and wine classification. Experimental results show that the addition of the third parameter called inertia in the backpropagation algorithm gave better performance and faster convergence rate compared to the SBP and SBPM.
AbstractList The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local minima and slow convergence rate. To address these issues, a modified backpropagation algorithm has been proposed by adding a third term called inertia, the physical component used to accelerate the network towards the convergence without getting stuck into local minima. The Chebyshev polynomial form is a convenient method for expanding a function in a linear independent term. Inertia has been expanded using Chebyshev polynomial which is used as a third term in weight updation. The performance of the proposed algorithm outperforms the standard backpropagation algorithm (SBP) and the backpropagation algorithm with momentum (SBPM). The proposed algorithm was tested with the standard benchmark problems such as XOR problem, parity checking problem and dataset from UCI machine learning repository such as iris flower classification, wheat classification, breast cancer detection and wine classification. Experimental results show that the addition of the third parameter called inertia in the backpropagation algorithm gave better performance and faster convergence rate compared to the SBP and SBPM.
Author Sornam, Madasamy
Vanitha, Venkateswaran
Author_xml – sequence: 1
  givenname: Madasamy
  surname: Sornam
  fullname: Sornam, Madasamy
  email: madasamy.sornam@gmail.com
  organization: Department of Computer Science
– sequence: 2
  givenname: Venkateswaran
  surname: Vanitha
  fullname: Vanitha, Venkateswaran
  organization: Department of Computer Science
BookMark eNptkM1KxDAUhYOM4MzoyhcIuBGkmp82SZfD4OiI4EJdl6RNf8Y2qUlncHa-g2_ok5ihghs3914O3z0czgxMjDUagHOMrimh9OZhvXqOcIoQo0dgigVPIpEyPgk3YnGEScxOwMz7DUKYJwRNgV4Y2HS9sztdwKFuXJjadVDJ_C2ovazk0FgDZVtZ1wx1B78_v2BjtBsaCfVHL00RPvNaq72v9Q5aN9S2ska2sLft3tiuke0pOC5l6_XZ756D19Xty_I-eny6Wy8Xj1FOEjJEglBFBBYYES1ZzjnHJVYlLmWqWJmKUijKFeJJWSSUxznjAhVMFAqrQCaSzsHF6Buiv2-1H7KN3bqQxWeEIpoyHLM0UFcjlTvrvdNl1rumk26fYZQdeswOPWZjj4G-HGkvK_3n9x_6A-EwdgQ
Cites_doi 10.5120/ijca2017913242
10.1016/j.tics.2018.12.005
10.1016/j.procs.2017.10.068
10.1016/j.procs.2018.10.401
10.7763/IJESD.2012.V3.215
10.5121/ijcses.2012.3112
10.5194/isprs-archives-XLII-5-823-2018
10.1029/2018MS001472
10.1162/089976698300017197
10.1007/978-3-319-01857-7_38
10.1371/journal.pone.0203192
10.1371/journal.pone.0212356
10.1007/978-3-642-39637-3_33
10.1016/j.jbi.2016.08.004
10.1504/IJAISC.2011.042713
10.18535/ijecs/v7i3.18
ContentType Journal Article
Copyright 2019 – IOS Press and the authors. All rights reserved
Copyright IOS Press BV 2019
Copyright_xml – notice: 2019 – IOS Press and the authors. All rights reserved
– notice: Copyright IOS Press BV 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-190063
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 3804
ExternalDocumentID 10_3233_JIFS_190063
10.3233_JIFS-190063
GroupedDBID .4S
.DC
4.4
5GY
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EPL
EST
ESX
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
0R~
AAYXX
CITATION
H13
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c252t-823b2818102ea6c7771f1bf1fa9b6f98f8b37b075fd5374c6780d68db1b71f5a3
ISSN 1064-1246
IngestDate Mon Jun 30 08:07:09 EDT 2025
Wed Oct 01 06:32:53 EDT 2025
Sun Jul 13 06:01:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Back propagation
feed forward neural network
inertia
chebyshev polynomial
momentum
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-823b2818102ea6c7771f1bf1fa9b6f98f8b37b075fd5374c6780d68db1b71f5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2303961469
PQPubID 2046407
PageCount 10
ParticipantIDs proquest_journals_2303961469
crossref_primary_10_3233_JIFS_190063
sage_journals_10_3233_JIFS_190063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2019
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References 2018; 7
2018; 6
2018; 143
2012; 3
2011; 2
2019; 11
2019; 13
2019; 23
2019; 14
2016; 63
2017; 161
2013; 240
2014
2016; 28
1998; 10
2018; 42
2017; 116
Essid O. (e_1_3_1_6_2) 2019; 13
Sornam M. (e_1_3_1_23_2) 2018; 6
Dai Q. (e_1_3_1_19_2); 2014
Abbas Q. (e_1_3_1_13_2) 2016; 28
e_1_3_1_21_2
e_1_3_1_22_2
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_7_2
e_1_3_1_9_2
e_1_3_1_20_2
e_1_3_1_4_2
e_1_3_1_3_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_26_2
e_1_3_1_2_2
e_1_3_1_12_2
e_1_3_1_11_2
e_1_3_1_10_2
e_1_3_1_17_2
e_1_3_1_16_2
e_1_3_1_15_2
e_1_3_1_14_2
e_1_3_1_18_2
References_xml – volume: 143
  start-page: 309
  year: 2018
  end-page: 316
  publication-title: Procedia Computer Science, Elsevier
– volume: 13
  start-page: e0203192
  issue: 11
  year: 2019
  article-title: Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks
  publication-title: PLoS One
– volume: 3
  start-page: 199
  issue: 2
  year: 2012
  end-page: 204
  article-title: Moisture prediction in maize using three term back propagation neural network
  publication-title: International Journal of Environmental Science and Development
– volume: 63
  start-page: 74
  year: 2016
  end-page: 81
  article-title: Boosting backpropagation algorithm by stimulus-sampling: Application in computer-aided medical diagnosis
  publication-title: Journal of biomedical informatics, Elsevier
– volume: 7
  start-page: 23761
  issue: 03
  year: 2018
  end-page: 23768
  article-title: Neural network based handwritten character recognition system
  publication-title: International Journal of Engineering and Computer Science
– volume: 11
  start-page: 376
  year: 2019
  end-page: 399
  article-title: Applications of deep learning to ocean data inferenceand subgrid parameterization
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 14
  start-page: 0212356
  issue: 02
  year: 2019
  article-title: Applications of artificial neural networks in health care organizational decision-making: A scoping review,e
  publication-title: PLOS One
– volume: 23
  start-page: 235
  issue: 3
  year: 2019
  end-page: 250
  article-title: Theories of error back-propagation in the brain
  publication-title: Trends in Cognitive Sciences
– volume: 240
  start-page: 395
  year: 2013
  end-page: 404
  article-title: A new bat based backpropagation (BAT-BP) algorithm
  publication-title: Advances in Intelligent Systems and Computing
– volume: 2
  start-page: 321
  issue: 4
  year: 2011
  end-page: 333
  article-title: An improved three-term optical backpropagation algorithm
  publication-title: International Journal of Artificial Intelligence and Soft Computing
– volume: 116
  start-page: 365
  year: 2017
  end-page: 372
  article-title: Plate recognition using backpropagation neural network and genetic algorithm
  publication-title: Procedia Computer Science, Elsevier
– volume: 42
  start-page: 823
  issue: 05
  year: 2018
  end-page: 827
  article-title: Earthquake forecasting using artificial neural networks
  publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 3
  start-page: 127
  issue: 1
  year: 2012
  article-title: Pattern association for character recognition by Back-Propagation algorithm using Neural Network approach
  publication-title: International Journal of Computer Science and Engineering Survey
– volume: 6
  start-page: 201
  issue: 4
  year: 2018
  end-page: 204
  article-title: Application of chebyshev neural network for function approximation
  publication-title: International Journal of Computer Sciences and Engineering
– volume: 2014
  start-page: 1124
  issue: 24
  end-page: 1135
  article-title: A two-phased and Ensemble scheme integrated Backpropagation algorithm
  publication-title: Applied Soft Computing, Elsevier
– volume: 10
  start-page: 1895
  issue: 7
  year: 1998
  end-page: 1923
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Computation
– volume: 28
  start-page: 2369
  issue: 3
  year: 2016
  end-page: 2380
  article-title: Variable learning rate based modification in backpropagation algorithm (Mbpa) of artificial neural network for data classification
  publication-title: Science International
– volume: 161
  start-page: 5
  issue: 8
  year: 2017
  end-page: 9
  article-title: Improving error back propagation algorithm by using cross entropy error function and adaptive learning rate
  publication-title: International Journal of Computer Applications
– ident: e_1_3_1_14_2
  doi: 10.5120/ijca2017913242
– ident: e_1_3_1_12_2
  doi: 10.1016/j.tics.2018.12.005
– volume: 28
  start-page: 2369
  issue: 3
  year: 2016
  ident: e_1_3_1_13_2
  article-title: Variable learning rate based modification in backpropagation algorithm (Mbpa) of artificial neural network for data classification
  publication-title: Science International
– ident: e_1_3_1_9_2
– ident: e_1_3_1_18_2
  doi: 10.1016/j.procs.2017.10.068
– ident: e_1_3_1_17_2
  doi: 10.1016/j.procs.2018.10.401
– ident: e_1_3_1_10_2
  doi: 10.7763/IJESD.2012.V3.215
– ident: e_1_3_1_15_2
  doi: 10.5121/ijcses.2012.3112
– ident: e_1_3_1_3_2
  doi: 10.5194/isprs-archives-XLII-5-823-2018
– volume: 2014
  start-page: 1124
  issue: 24
  ident: e_1_3_1_19_2
  article-title: A two-phased and Ensemble scheme integrated Backpropagation algorithm
  publication-title: Applied Soft Computing, Elsevier
– ident: e_1_3_1_5_2
  doi: 10.1029/2018MS001472
– ident: e_1_3_1_25_2
– ident: e_1_3_1_8_2
– ident: e_1_3_1_26_2
  doi: 10.1162/089976698300017197
– ident: e_1_3_1_7_2
  doi: 10.1007/978-3-319-01857-7_38
– ident: e_1_3_1_22_2
– volume: 13
  start-page: e0203192
  issue: 11
  year: 2019
  ident: e_1_3_1_6_2
  article-title: Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0203192
– ident: e_1_3_1_4_2
  doi: 10.1371/journal.pone.0212356
– ident: e_1_3_1_11_2
  doi: 10.1007/978-3-642-39637-3_33
– ident: e_1_3_1_24_2
– ident: e_1_3_1_20_2
  doi: 10.1016/j.jbi.2016.08.004
– ident: e_1_3_1_16_2
  doi: 10.1504/IJAISC.2011.042713
– volume: 6
  start-page: 201
  issue: 4
  year: 2018
  ident: e_1_3_1_23_2
  article-title: Application of chebyshev neural network for function approximation
  publication-title: International Journal of Computer Sciences and Engineering
– ident: e_1_3_1_21_2
– ident: e_1_3_1_2_2
  doi: 10.18535/ijecs/v7i3.18
SSID ssj0017520
Score 2.153007
Snippet The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Index Database
Publisher
StartPage 3795
SubjectTerms Algorithms
Back propagation
Chebyshev approximation
Classification
Convergence
Entrapment
Inertia
Machine learning
Polynomials
Wheat
Title An improved third term backpropagation algorithm – inertia expanded chebyshev orthogonal polynomial
URI https://journals.sagepub.com/doi/full/10.3233/JIFS-190063
https://www.proquest.com/docview/2303961469
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: AMVHM
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYDGSk3aJAE8eJc6wQVZlULtuq3SI7cUa1LZmybGg9wd_Af8hfwnux86Ojh8HFqlwnav19tr_37PdMyL7mqeJcaNcPeAYGSqhdoXTsBlxmEhbEkDVRrouv4fw4ODjhJ6PRz2F0Sa0-pOutcSX_gyrUAa4YJfsPyHYvhQr4DPhCCQhDeS-MpwVGOVbljcZTkKsKSphoHSXTM6iFqcKgK89Py2pVf7tw2qMNzMGYPxjcmOEf3ciZA-Chq1rfOLiTU542HsLL8vwW45btD_lbxK66jJ51Q6L8er2-temhO7V-iLcgG9crQHMl-yCKJSbfMFtOS12coe79LitLWOuLwPCnDV-E2QTb6m4EyxPzI1p3ozZ1YCu5IjbXcbSzsUkBY1nHBlMri8xtnHaZZsJcW3x3CWA-uqhnB19mhy6InYmdPjdzatt2yaDVA7Ljw8IwGZOd6WI5X3RbURH3TUoL-wdMkCc-_nHw-Kas6W2VwfHARrEcPSGPLUp0anjzlIx08Yw8GiSgfE70tKAtg2jDIIoMoncYRDsG0d8_flHLHdpyh3bcoT13aM-dF-R49vno09y1F2-4qc_92hU-U5glDMSnlmEaRZGXeyr3chmrMI9FLhSLFIjNPOMsClIQPJMsFJnyFLTkkr0k46Is9CtCfRj9fs5zDXQJ1EQqIVNPSD_zWCrCMN4l-22_JZcmv0oCdmmHTmK6d5fstX2a2AF4lYD1zGKQl_iW99jP_VdbXvH6Hm3ekIc9rffIuK6u9VsQnbV6Z2nxB9j9hKo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+third+term+backpropagation+algorithm+%E2%80%93+inertia+expanded+chebyshev+orthogonal+polynomial&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Sornam%2C+Madasamy&rft.au=Vanitha%2C+Venkateswaran&rft.date=2019-01-01&rft.pub=SAGE+Publications&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=37&rft.issue=3&rft.spage=3795&rft.epage=3804&rft_id=info:doi/10.3233%2FJIFS-190063&rft.externalDocID=10.3233_JIFS-190063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon