An improved third term backpropagation algorithm – inertia expanded chebyshev orthogonal polynomial
The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local minima and slow convergence rate. To address these issues, a modified backpropagation algorithm has been proposed by adding a third term call...
Saved in:
| Published in | Journal of intelligent & fuzzy systems Vol. 37; no. 3; pp. 3795 - 3804 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London, England
SAGE Publications
01.01.2019
Sage Publications Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1064-1246 1875-8967 |
| DOI | 10.3233/JIFS-190063 |
Cover
| Abstract | The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local minima and slow convergence rate. To address these issues, a modified backpropagation algorithm has been proposed by adding a third term called inertia, the physical component used to accelerate the network towards the convergence without getting stuck into local minima. The Chebyshev polynomial form is a convenient method for expanding a function in a linear independent term. Inertia has been expanded using Chebyshev polynomial which is used as a third term in weight updation. The performance of the proposed algorithm outperforms the standard backpropagation algorithm (SBP) and the backpropagation algorithm with momentum (SBPM). The proposed algorithm was tested with the standard benchmark problems such as XOR problem, parity checking problem and dataset from UCI machine learning repository such as iris flower classification, wheat classification, breast cancer detection and wine classification. Experimental results show that the addition of the third parameter called inertia in the backpropagation algorithm gave better performance and faster convergence rate compared to the SBP and SBPM. |
|---|---|
| AbstractList | The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local minima and slow convergence rate. To address these issues, a modified backpropagation algorithm has been proposed by adding a third term called inertia, the physical component used to accelerate the network towards the convergence without getting stuck into local minima. The Chebyshev polynomial form is a convenient method for expanding a function in a linear independent term. Inertia has been expanded using Chebyshev polynomial which is used as a third term in weight updation. The performance of the proposed algorithm outperforms the standard backpropagation algorithm (SBP) and the backpropagation algorithm with momentum (SBPM). The proposed algorithm was tested with the standard benchmark problems such as XOR problem, parity checking problem and dataset from UCI machine learning repository such as iris flower classification, wheat classification, breast cancer detection and wine classification. Experimental results show that the addition of the third parameter called inertia in the backpropagation algorithm gave better performance and faster convergence rate compared to the SBP and SBPM. |
| Author | Sornam, Madasamy Vanitha, Venkateswaran |
| Author_xml | – sequence: 1 givenname: Madasamy surname: Sornam fullname: Sornam, Madasamy email: madasamy.sornam@gmail.com organization: Department of Computer Science – sequence: 2 givenname: Venkateswaran surname: Vanitha fullname: Vanitha, Venkateswaran organization: Department of Computer Science |
| BookMark | eNptkM1KxDAUhYOM4MzoyhcIuBGkmp82SZfD4OiI4EJdl6RNf8Y2qUlncHa-g2_ok5ihghs3914O3z0czgxMjDUagHOMrimh9OZhvXqOcIoQo0dgigVPIpEyPgk3YnGEScxOwMz7DUKYJwRNgV4Y2HS9sztdwKFuXJjadVDJ_C2ovazk0FgDZVtZ1wx1B78_v2BjtBsaCfVHL00RPvNaq72v9Q5aN9S2ska2sLft3tiuke0pOC5l6_XZ756D19Xty_I-eny6Wy8Xj1FOEjJEglBFBBYYES1ZzjnHJVYlLmWqWJmKUijKFeJJWSSUxznjAhVMFAqrQCaSzsHF6Buiv2-1H7KN3bqQxWeEIpoyHLM0UFcjlTvrvdNl1rumk26fYZQdeswOPWZjj4G-HGkvK_3n9x_6A-EwdgQ |
| Cites_doi | 10.5120/ijca2017913242 10.1016/j.tics.2018.12.005 10.1016/j.procs.2017.10.068 10.1016/j.procs.2018.10.401 10.7763/IJESD.2012.V3.215 10.5121/ijcses.2012.3112 10.5194/isprs-archives-XLII-5-823-2018 10.1029/2018MS001472 10.1162/089976698300017197 10.1007/978-3-319-01857-7_38 10.1371/journal.pone.0203192 10.1371/journal.pone.0212356 10.1007/978-3-642-39637-3_33 10.1016/j.jbi.2016.08.004 10.1504/IJAISC.2011.042713 10.18535/ijecs/v7i3.18 |
| ContentType | Journal Article |
| Copyright | 2019 – IOS Press and the authors. All rights reserved Copyright IOS Press BV 2019 |
| Copyright_xml | – notice: 2019 – IOS Press and the authors. All rights reserved – notice: Copyright IOS Press BV 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.3233/JIFS-190063 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1875-8967 |
| EndPage | 3804 |
| ExternalDocumentID | 10_3233_JIFS_190063 10.3233_JIFS-190063 |
| GroupedDBID | .4S .DC 4.4 5GY 8VB AAGLT ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EPL EST ESX HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 0R~ AAYXX CITATION H13 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c252t-823b2818102ea6c7771f1bf1fa9b6f98f8b37b075fd5374c6780d68db1b71f5a3 |
| ISSN | 1064-1246 |
| IngestDate | Mon Jun 30 08:07:09 EDT 2025 Wed Oct 01 06:32:53 EDT 2025 Sun Jul 13 06:01:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Back propagation feed forward neural network inertia chebyshev polynomial momentum |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c252t-823b2818102ea6c7771f1bf1fa9b6f98f8b37b075fd5374c6780d68db1b71f5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2303961469 |
| PQPubID | 2046407 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2303961469 crossref_primary_10_3233_JIFS_190063 sage_journals_10_3233_JIFS_190063 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: London |
| PublicationTitle | Journal of intelligent & fuzzy systems |
| PublicationYear | 2019 |
| Publisher | SAGE Publications Sage Publications Ltd |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
| References | 2018; 7 2018; 6 2018; 143 2012; 3 2011; 2 2019; 11 2019; 13 2019; 23 2019; 14 2016; 63 2017; 161 2013; 240 2014 2016; 28 1998; 10 2018; 42 2017; 116 Essid O. (e_1_3_1_6_2) 2019; 13 Sornam M. (e_1_3_1_23_2) 2018; 6 Dai Q. (e_1_3_1_19_2); 2014 Abbas Q. (e_1_3_1_13_2) 2016; 28 e_1_3_1_21_2 e_1_3_1_22_2 e_1_3_1_24_2 e_1_3_1_8_2 e_1_3_1_7_2 e_1_3_1_9_2 e_1_3_1_20_2 e_1_3_1_4_2 e_1_3_1_3_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_26_2 e_1_3_1_2_2 e_1_3_1_12_2 e_1_3_1_11_2 e_1_3_1_10_2 e_1_3_1_17_2 e_1_3_1_16_2 e_1_3_1_15_2 e_1_3_1_14_2 e_1_3_1_18_2 |
| References_xml | – volume: 143 start-page: 309 year: 2018 end-page: 316 publication-title: Procedia Computer Science, Elsevier – volume: 13 start-page: e0203192 issue: 11 year: 2019 article-title: Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks publication-title: PLoS One – volume: 3 start-page: 199 issue: 2 year: 2012 end-page: 204 article-title: Moisture prediction in maize using three term back propagation neural network publication-title: International Journal of Environmental Science and Development – volume: 63 start-page: 74 year: 2016 end-page: 81 article-title: Boosting backpropagation algorithm by stimulus-sampling: Application in computer-aided medical diagnosis publication-title: Journal of biomedical informatics, Elsevier – volume: 7 start-page: 23761 issue: 03 year: 2018 end-page: 23768 article-title: Neural network based handwritten character recognition system publication-title: International Journal of Engineering and Computer Science – volume: 11 start-page: 376 year: 2019 end-page: 399 article-title: Applications of deep learning to ocean data inferenceand subgrid parameterization publication-title: Journal of Advances in Modeling Earth Systems – volume: 14 start-page: 0212356 issue: 02 year: 2019 article-title: Applications of artificial neural networks in health care organizational decision-making: A scoping review,e publication-title: PLOS One – volume: 23 start-page: 235 issue: 3 year: 2019 end-page: 250 article-title: Theories of error back-propagation in the brain publication-title: Trends in Cognitive Sciences – volume: 240 start-page: 395 year: 2013 end-page: 404 article-title: A new bat based backpropagation (BAT-BP) algorithm publication-title: Advances in Intelligent Systems and Computing – volume: 2 start-page: 321 issue: 4 year: 2011 end-page: 333 article-title: An improved three-term optical backpropagation algorithm publication-title: International Journal of Artificial Intelligence and Soft Computing – volume: 116 start-page: 365 year: 2017 end-page: 372 article-title: Plate recognition using backpropagation neural network and genetic algorithm publication-title: Procedia Computer Science, Elsevier – volume: 42 start-page: 823 issue: 05 year: 2018 end-page: 827 article-title: Earthquake forecasting using artificial neural networks publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 3 start-page: 127 issue: 1 year: 2012 article-title: Pattern association for character recognition by Back-Propagation algorithm using Neural Network approach publication-title: International Journal of Computer Science and Engineering Survey – volume: 6 start-page: 201 issue: 4 year: 2018 end-page: 204 article-title: Application of chebyshev neural network for function approximation publication-title: International Journal of Computer Sciences and Engineering – volume: 2014 start-page: 1124 issue: 24 end-page: 1135 article-title: A two-phased and Ensemble scheme integrated Backpropagation algorithm publication-title: Applied Soft Computing, Elsevier – volume: 10 start-page: 1895 issue: 7 year: 1998 end-page: 1923 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Computation – volume: 28 start-page: 2369 issue: 3 year: 2016 end-page: 2380 article-title: Variable learning rate based modification in backpropagation algorithm (Mbpa) of artificial neural network for data classification publication-title: Science International – volume: 161 start-page: 5 issue: 8 year: 2017 end-page: 9 article-title: Improving error back propagation algorithm by using cross entropy error function and adaptive learning rate publication-title: International Journal of Computer Applications – ident: e_1_3_1_14_2 doi: 10.5120/ijca2017913242 – ident: e_1_3_1_12_2 doi: 10.1016/j.tics.2018.12.005 – volume: 28 start-page: 2369 issue: 3 year: 2016 ident: e_1_3_1_13_2 article-title: Variable learning rate based modification in backpropagation algorithm (Mbpa) of artificial neural network for data classification publication-title: Science International – ident: e_1_3_1_9_2 – ident: e_1_3_1_18_2 doi: 10.1016/j.procs.2017.10.068 – ident: e_1_3_1_17_2 doi: 10.1016/j.procs.2018.10.401 – ident: e_1_3_1_10_2 doi: 10.7763/IJESD.2012.V3.215 – ident: e_1_3_1_15_2 doi: 10.5121/ijcses.2012.3112 – ident: e_1_3_1_3_2 doi: 10.5194/isprs-archives-XLII-5-823-2018 – volume: 2014 start-page: 1124 issue: 24 ident: e_1_3_1_19_2 article-title: A two-phased and Ensemble scheme integrated Backpropagation algorithm publication-title: Applied Soft Computing, Elsevier – ident: e_1_3_1_5_2 doi: 10.1029/2018MS001472 – ident: e_1_3_1_25_2 – ident: e_1_3_1_8_2 – ident: e_1_3_1_26_2 doi: 10.1162/089976698300017197 – ident: e_1_3_1_7_2 doi: 10.1007/978-3-319-01857-7_38 – ident: e_1_3_1_22_2 – volume: 13 start-page: e0203192 issue: 11 year: 2019 ident: e_1_3_1_6_2 article-title: Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0203192 – ident: e_1_3_1_4_2 doi: 10.1371/journal.pone.0212356 – ident: e_1_3_1_11_2 doi: 10.1007/978-3-642-39637-3_33 – ident: e_1_3_1_24_2 – ident: e_1_3_1_20_2 doi: 10.1016/j.jbi.2016.08.004 – ident: e_1_3_1_16_2 doi: 10.1504/IJAISC.2011.042713 – volume: 6 start-page: 201 issue: 4 year: 2018 ident: e_1_3_1_23_2 article-title: Application of chebyshev neural network for function approximation publication-title: International Journal of Computer Sciences and Engineering – ident: e_1_3_1_21_2 – ident: e_1_3_1_2_2 doi: 10.18535/ijecs/v7i3.18 |
| SSID | ssj0017520 |
| Score | 2.153007 |
| Snippet | The standard backpropagation algorithm has already proven its effectiveness in most of the potential problems, but the major limitation is entrapment of local... |
| SourceID | proquest crossref sage |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3795 |
| SubjectTerms | Algorithms Back propagation Chebyshev approximation Classification Convergence Entrapment Inertia Machine learning Polynomials Wheat |
| Title | An improved third term backpropagation algorithm – inertia expanded chebyshev orthogonal polynomial |
| URI | https://journals.sagepub.com/doi/full/10.3233/JIFS-190063 https://www.proquest.com/docview/2303961469 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8967 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: AMVHM dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYDGSk3aJAE8eJc6wQVZlULtuq3SI7cUa1LZmybGg9wd_Af8hfwnux86Ojh8HFqlwnav19tr_37PdMyL7mqeJcaNcPeAYGSqhdoXTsBlxmEhbEkDVRrouv4fw4ODjhJ6PRz2F0Sa0-pOutcSX_gyrUAa4YJfsPyHYvhQr4DPhCCQhDeS-MpwVGOVbljcZTkKsKSphoHSXTM6iFqcKgK89Py2pVf7tw2qMNzMGYPxjcmOEf3ciZA-Chq1rfOLiTU542HsLL8vwW45btD_lbxK66jJ51Q6L8er2-temhO7V-iLcgG9crQHMl-yCKJSbfMFtOS12coe79LitLWOuLwPCnDV-E2QTb6m4EyxPzI1p3ozZ1YCu5IjbXcbSzsUkBY1nHBlMri8xtnHaZZsJcW3x3CWA-uqhnB19mhy6InYmdPjdzatt2yaDVA7Ljw8IwGZOd6WI5X3RbURH3TUoL-wdMkCc-_nHw-Kas6W2VwfHARrEcPSGPLUp0anjzlIx08Yw8GiSgfE70tKAtg2jDIIoMoncYRDsG0d8_flHLHdpyh3bcoT13aM-dF-R49vno09y1F2-4qc_92hU-U5glDMSnlmEaRZGXeyr3chmrMI9FLhSLFIjNPOMsClIQPJMsFJnyFLTkkr0k46Is9CtCfRj9fs5zDXQJ1EQqIVNPSD_zWCrCMN4l-22_JZcmv0oCdmmHTmK6d5fstX2a2AF4lYD1zGKQl_iW99jP_VdbXvH6Hm3ekIc9rffIuK6u9VsQnbV6Z2nxB9j9hKo |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+third+term+backpropagation+algorithm+%E2%80%93+inertia+expanded+chebyshev+orthogonal+polynomial&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Sornam%2C+Madasamy&rft.au=Vanitha%2C+Venkateswaran&rft.date=2019-01-01&rft.pub=SAGE+Publications&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=37&rft.issue=3&rft.spage=3795&rft.epage=3804&rft_id=info:doi/10.3233%2FJIFS-190063&rft.externalDocID=10.3233_JIFS-190063 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |