An empirical study on machine learning algorithms for heart disease prediction

In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this s...

Full description

Saved in:
Bibliographic Details
Published inIAES International Journal of Artificial Intelligence Vol. 11; no. 3; p. 1066
Main Authors Assegie, Tsehay Admassu, Rangarajan, Prasanna Kumar, Kumar, Napa Komal, Vigneswari, Dhamodaran
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.09.2022
Subjects
Online AccessGet full text
ISSN2089-4872
2252-8938
2089-4872
DOI10.11591/ijai.v11.i3.pp1066-1073

Cover

Abstract In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this study focuses on exploring the impact of the quality of heart disease features on the performance of the machine learning model on heart disease prediction by employing recursive feature elimination with cross-validation (RFECV). Furthermore, the study explores heart disease features with a significant effect on model output. The dataset for experimentation is obtained from the University of California Irvine (UCI) machine learning dataset. The experiment is implemented using a support vector machine (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are employed. The performance of the SVM, LR, DT, and RF models. The result appears to prove that the quality of the feature significantly affects the performance of the model. Overall, the experiment proves that RF outperforms as compared to other algorithms. In conclusion, the predictive accuracy of 99.7% is achieved with RF.
AbstractList In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this study focuses on exploring the impact of the quality of heart disease features on the performance of the machine learning model on heart disease prediction by employing recursive feature elimination with cross-validation (RFECV). Furthermore, the study explores heart disease features with a significant effect on model output. The dataset for experimentation is obtained from the University of California Irvine (UCI) machine learning dataset. The experiment is implemented using a support vector machine (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are employed. The performance of the SVM, LR, DT, and RF models. The result appears to prove that the quality of the feature significantly affects the performance of the model. Overall, the experiment proves that RF outperforms as compared to other algorithms. In conclusion, the predictive accuracy of 99.7% is achieved with RF.
Author Kumar, Napa Komal
Vigneswari, Dhamodaran
Rangarajan, Prasanna Kumar
Assegie, Tsehay Admassu
Author_xml – sequence: 1
  givenname: Tsehay Admassu
  orcidid: 0000-0003-1566-0901
  surname: Assegie
  fullname: Assegie, Tsehay Admassu
– sequence: 2
  givenname: Prasanna Kumar
  orcidid: 0000-0001-6103-259X
  surname: Rangarajan
  fullname: Rangarajan, Prasanna Kumar
– sequence: 3
  givenname: Napa Komal
  orcidid: 0000-0001-8662-0224
  surname: Kumar
  fullname: Kumar, Napa Komal
– sequence: 4
  givenname: Dhamodaran
  orcidid: 0000-0002-4288-9341
  surname: Vigneswari
  fullname: Vigneswari, Dhamodaran
BookMark eNqFkE9LAzEQxYNUsNZ-h4DnXTfJJptchFL8B0Uveg7ZNNtO2SZrshX67U2tJy-eZhjevHnzu0YTH7xDCJOqJIQrcgc7A-UXISWwchhIJURBqoZdoCmlnBZSMTnJfSVVUcuGXqF5StBWhCgquWqm6HXhsdsPEMGaHqfxsD7i4PHe2C14h3tnoge_wabfhAjjdp9wFyLe5vmI15CcSQ4P0a3BjhD8DbrsTJ_c_LfO0Mfjw_vyuVi9Pb0sF6vC5liskMRUTihG6rrpFFet49y2lLrKGkOZUrzNXyijaltzKZuWCscFlR01jknB2Qzdnn2HGD4PLo16Fw7R55OaNkIIpWStsur-rLIxpBRdpy2M5pRzjAZ6TSr9g1GfMOqMUQPTZ4z6hDEbyD8GQ4S9icf_V78BdWB8pQ
CitedBy_id crossref_primary_10_3233_JIFS_231681
crossref_primary_10_1109_ACCESS_2023_3289586
crossref_primary_10_1109_ACCESS_2023_3338369
crossref_primary_10_1109_ACCESS_2024_3406748
crossref_primary_10_1109_ACCESS_2023_3342044
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science 2022
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science 2022
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.11591/ijai.v11.i3.pp1066-1073
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
East & South Asia Database
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2252-8938
2089-4872
ExternalDocumentID 10_11591_ijai_v11_i3_pp1066_1073
GroupedDBID 8FE
8FG
AAKDD
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
M~E
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2523-81a0e6931447f959be55cb22e0caa23995b0739a94c45887b26e5628f2ae38653
IEDL.DBID 8FG
ISSN 2089-4872
IngestDate Mon Jun 30 02:26:02 EDT 2025
Tue Jul 01 03:27:30 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2523-81a0e6931447f959be55cb22e0caa23995b0739a94c45887b26e5628f2ae38653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6103-259X
0000-0002-4288-9341
0000-0003-1566-0901
0000-0001-8662-0224
OpenAccessLink https://ijai.iaescore.com/index.php/IJAI/article/download/20985/13433
PQID 2766699849
PQPubID 1686339
ParticipantIDs proquest_journals_2766699849
crossref_citationtrail_10_11591_ijai_v11_i3_pp1066_1073
crossref_primary_10_11591_ijai_v11_i3_pp1066_1073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle IAES International Journal of Artificial Intelligence
PublicationYear 2022
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib011928597
ssib033899589
ssj0001341662
ssib044738854
Score 2.3820658
Snippet In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1066
SubjectTerms Accuracy
Algorithms
Cardiovascular disease
Datasets
Decision trees
Experimentation
Heart
Heart diseases
Machine learning
Prediction models
Support vector machines
Title An empirical study on machine learning algorithms for heart disease prediction
URI https://www.proquest.com/docview/2766699849
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738854
  issn: 2089-4872
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: East & South Asia Database (ProQuest)
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BVBZV
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2252-8938
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341662
  issn: 2089-4872
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELX4WFgQCBCflQfWtLUdx86ECmqpkKgQAoktchwHito00MLIb-fOdahYEFuiyEMul_M93917hJyXRpXcWRcpowQAFGMjbUoVJanmTpbGdi3OO9-OkuFjfPMkn8KB2zy0VTYx0QfqYmbxjLzDFSTagA3i9KJ-i1A1CqurQUJjnWwyDp6Ek-KD68afGGQvWq6qZAK55OSKXT2OldBaxk2Dj0xZZ_xqxu1PxtpjwJg14KUEApUSv3et30Hb70SDHbIdUkjaW37zXbLmqj0y6lXUTeuxZ_ygnjSWzio69b2SjgZxiGdqJs_wVouX6ZxCukpRz3pBQ5WG1u9YtsFPtU8eB_2Hq2EUtBIiywFLRpqZrktSAfhIlalMcyelzTl3XWuMn1_NsSZn0tjibKrKeeIg9dElNw5lP8UB2ahmlTsktBB5UaoSqduKWADAUs5ooY0sGMtt0T0iqrFFZgOROOpZTDIPKMCKGVoR4DdciGxpxQyteETYz8p6SabxjzWnjbmz8HvNs5UzHP_9-IRscZxX8E1hp2Rj8f7hziCLWOQt7yotsnnZH93dw93tV_8bJnfHhw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwELX4GGBBIEB8FPAAY0pjx7EzIISAUr46UYktOI5Tito00ALiT_EbuXMTKhbEwhYpSiK9vNj3cnfvCNnPtMyYNdaTWnIQKNp4SmfSCyPFrMi0aRjsd75th61OcHUv7mfIZ9ULg2WV1ZroFup0aPAf-SGTEGiDNgii4-LZw6lRmF2tRmhMaHFtP95Bso2OLs_g_R4w1jy_O2155VQBzzBQXZ7ydcOGEQclIbNIRIkVwiSM2YbR2nV6Jpi90lFgsItTJiy0ECSojGmLAzI53HeWzAecc_TqV82Lir8-REtKTLNyHL3rxNTNHR7IlRJBVVAkIv-w96R79Tffr_dA0xagz0JYGCX_uUv-3CTcztdcJktlyEpPJhxbITM2XyXtk5zaQdFzDiPUmdTSYU4HrjbT0nIYRZfqfhdQHD8ORhTCY4rzs8e0zArR4gXTREiNNdL5FxTXyVw-zO0GoSlP0kxmaBWXBhwEnbRacaVF6vuJSRubRFZYxKY0Lsf5Gf3YCRhAMUYUQe7DAY8nKMaI4ibxv68sJuYdf7imVsEdl5_zKJ6Sb-v303tkoXV3exPfXLavt8kiw14JV5BWI3Pjl1e7AxHMONl1tKHk4b95-gWtpf8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+study+on+machine+learning+algorithms+for+heart+disease+prediction&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Assegie%2C+Tsehay+Admassu&rft.au=Rangarajan%2C+Prasanna+Kumar&rft.au=Kumar%2C+Napa+Komal&rft.au=Vigneswari%2C+Dhamodaran&rft.date=2022-09-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=11&rft.issue=3&rft.spage=1066&rft_id=info:doi/10.11591%2Fijai.v11.i3.pp1066-1073&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v11_i3_pp1066_1073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon