An empirical study on machine learning algorithms for heart disease prediction
In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this s...
Saved in:
Published in | IAES International Journal of Artificial Intelligence Vol. 11; no. 3; p. 1066 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2089-4872 2252-8938 2089-4872 |
DOI | 10.11591/ijai.v11.i3.pp1066-1073 |
Cover
Abstract | In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this study focuses on exploring the impact of the quality of heart disease features on the performance of the machine learning model on heart disease prediction by employing recursive feature elimination with cross-validation (RFECV). Furthermore, the study explores heart disease features with a significant effect on model output. The dataset for experimentation is obtained from the University of California Irvine (UCI) machine learning dataset. The experiment is implemented using a support vector machine (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are employed. The performance of the SVM, LR, DT, and RF models. The result appears to prove that the quality of the feature significantly affects the performance of the model. Overall, the experiment proves that RF outperforms as compared to other algorithms. In conclusion, the predictive accuracy of 99.7% is achieved with RF. |
---|---|
AbstractList | In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this study focuses on exploring the impact of the quality of heart disease features on the performance of the machine learning model on heart disease prediction by employing recursive feature elimination with cross-validation (RFECV). Furthermore, the study explores heart disease features with a significant effect on model output. The dataset for experimentation is obtained from the University of California Irvine (UCI) machine learning dataset. The experiment is implemented using a support vector machine (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are employed. The performance of the SVM, LR, DT, and RF models. The result appears to prove that the quality of the feature significantly affects the performance of the model. Overall, the experiment proves that RF outperforms as compared to other algorithms. In conclusion, the predictive accuracy of 99.7% is achieved with RF. |
Author | Kumar, Napa Komal Vigneswari, Dhamodaran Rangarajan, Prasanna Kumar Assegie, Tsehay Admassu |
Author_xml | – sequence: 1 givenname: Tsehay Admassu orcidid: 0000-0003-1566-0901 surname: Assegie fullname: Assegie, Tsehay Admassu – sequence: 2 givenname: Prasanna Kumar orcidid: 0000-0001-6103-259X surname: Rangarajan fullname: Rangarajan, Prasanna Kumar – sequence: 3 givenname: Napa Komal orcidid: 0000-0001-8662-0224 surname: Kumar fullname: Kumar, Napa Komal – sequence: 4 givenname: Dhamodaran orcidid: 0000-0002-4288-9341 surname: Vigneswari fullname: Vigneswari, Dhamodaran |
BookMark | eNqFkE9LAzEQxYNUsNZ-h4DnXTfJJptchFL8B0Uveg7ZNNtO2SZrshX67U2tJy-eZhjevHnzu0YTH7xDCJOqJIQrcgc7A-UXISWwchhIJURBqoZdoCmlnBZSMTnJfSVVUcuGXqF5StBWhCgquWqm6HXhsdsPEMGaHqfxsD7i4PHe2C14h3tnoge_wabfhAjjdp9wFyLe5vmI15CcSQ4P0a3BjhD8DbrsTJ_c_LfO0Mfjw_vyuVi9Pb0sF6vC5liskMRUTihG6rrpFFet49y2lLrKGkOZUrzNXyijaltzKZuWCscFlR01jknB2Qzdnn2HGD4PLo16Fw7R55OaNkIIpWStsur-rLIxpBRdpy2M5pRzjAZ6TSr9g1GfMOqMUQPTZ4z6hDEbyD8GQ4S9icf_V78BdWB8pQ |
CitedBy_id | crossref_primary_10_3233_JIFS_231681 crossref_primary_10_1109_ACCESS_2023_3289586 crossref_primary_10_1109_ACCESS_2023_3338369 crossref_primary_10_1109_ACCESS_2024_3406748 crossref_primary_10_1109_ACCESS_2023_3342044 |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science 2022 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science 2022 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.11591/ijai.v11.i3.pp1066-1073 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) East & South Asia Database ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2252-8938 2089-4872 |
ExternalDocumentID | 10_11591_ijai_v11_i3_pp1066_1073 |
GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQQKQ PROAC RNS 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N M~E PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2523-81a0e6931447f959be55cb22e0caa23995b0739a94c45887b26e5628f2ae38653 |
IEDL.DBID | 8FG |
ISSN | 2089-4872 |
IngestDate | Mon Jun 30 02:26:02 EDT 2025 Tue Jul 01 03:27:30 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2523-81a0e6931447f959be55cb22e0caa23995b0739a94c45887b26e5628f2ae38653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6103-259X 0000-0002-4288-9341 0000-0003-1566-0901 0000-0001-8662-0224 |
OpenAccessLink | https://ijai.iaescore.com/index.php/IJAI/article/download/20985/13433 |
PQID | 2766699849 |
PQPubID | 1686339 |
ParticipantIDs | proquest_journals_2766699849 crossref_citationtrail_10_11591_ijai_v11_i3_pp1066_1073 crossref_primary_10_11591_ijai_v11_i3_pp1066_1073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | IAES International Journal of Artificial Intelligence |
PublicationYear | 2022 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
Score | 2.3820658 |
Snippet | In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1066 |
SubjectTerms | Accuracy Algorithms Cardiovascular disease Datasets Decision trees Experimentation Heart Heart diseases Machine learning Prediction models Support vector machines |
Title | An empirical study on machine learning algorithms for heart disease prediction |
URI | https://www.proquest.com/docview/2766699849 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: East & South Asia Database (ProQuest) customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2089-4872 databaseCode: 8FG dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELX4WFgQCBCflQfWtLUdx86ECmqpkKgQAoktchwHito00MLIb-fOdahYEFuiyEMul_M93917hJyXRpXcWRcpowQAFGMjbUoVJanmTpbGdi3OO9-OkuFjfPMkn8KB2zy0VTYx0QfqYmbxjLzDFSTagA3i9KJ-i1A1CqurQUJjnWwyDp6Ek-KD68afGGQvWq6qZAK55OSKXT2OldBaxk2Dj0xZZ_xqxu1PxtpjwJg14KUEApUSv3et30Hb70SDHbIdUkjaW37zXbLmqj0y6lXUTeuxZ_ygnjSWzio69b2SjgZxiGdqJs_wVouX6ZxCukpRz3pBQ5WG1u9YtsFPtU8eB_2Hq2EUtBIiywFLRpqZrktSAfhIlalMcyelzTl3XWuMn1_NsSZn0tjibKrKeeIg9dElNw5lP8UB2ahmlTsktBB5UaoSqduKWADAUs5ooY0sGMtt0T0iqrFFZgOROOpZTDIPKMCKGVoR4DdciGxpxQyteETYz8p6SabxjzWnjbmz8HvNs5UzHP_9-IRscZxX8E1hp2Rj8f7hziCLWOQt7yotsnnZH93dw93tV_8bJnfHhw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwELX4GGBBIEB8FPAAY0pjx7EzIISAUr46UYktOI5Tito00ALiT_EbuXMTKhbEwhYpSiK9vNj3cnfvCNnPtMyYNdaTWnIQKNp4SmfSCyPFrMi0aRjsd75th61OcHUv7mfIZ9ULg2WV1ZroFup0aPAf-SGTEGiDNgii4-LZw6lRmF2tRmhMaHFtP95Bso2OLs_g_R4w1jy_O2155VQBzzBQXZ7ydcOGEQclIbNIRIkVwiSM2YbR2nV6Jpi90lFgsItTJiy0ECSojGmLAzI53HeWzAecc_TqV82Lir8-REtKTLNyHL3rxNTNHR7IlRJBVVAkIv-w96R79Tffr_dA0xagz0JYGCX_uUv-3CTcztdcJktlyEpPJhxbITM2XyXtk5zaQdFzDiPUmdTSYU4HrjbT0nIYRZfqfhdQHD8ORhTCY4rzs8e0zArR4gXTREiNNdL5FxTXyVw-zO0GoSlP0kxmaBWXBhwEnbRacaVF6vuJSRubRFZYxKY0Lsf5Gf3YCRhAMUYUQe7DAY8nKMaI4ibxv68sJuYdf7imVsEdl5_zKJ6Sb-v303tkoXV3exPfXLavt8kiw14JV5BWI3Pjl1e7AxHMONl1tKHk4b95-gWtpf8o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+study+on+machine+learning+algorithms+for+heart+disease+prediction&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Assegie%2C+Tsehay+Admassu&rft.au=Rangarajan%2C+Prasanna+Kumar&rft.au=Kumar%2C+Napa+Komal&rft.au=Vigneswari%2C+Dhamodaran&rft.date=2022-09-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=11&rft.issue=3&rft.spage=1066&rft_id=info:doi/10.11591%2Fijai.v11.i3.pp1066-1073&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v11_i3_pp1066_1073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |