A hybrid deep learning model based on EMD algorithm for non-stationary water level prediction of estuarine systems

The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates the application of three machine learning (ML) models (LSTM, GRU, CNN-LSTM) in non-stationary water level prediction, using the Yangtze Estua...

Full description

Saved in:
Bibliographic Details
Published inEstuarine, coastal and shelf science Vol. 314; p. 109128
Main Authors Gao, Sheng, Feng, Xi, Xu, Hang, Wu, Yirui, Feng, Weibing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Online AccessGet full text
ISSN0272-7714
DOI10.1016/j.ecss.2025.109128

Cover

Abstract The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates the application of three machine learning (ML) models (LSTM, GRU, CNN-LSTM) in non-stationary water level prediction, using the Yangtze Estuary as the test region. The statistical tool Empirical Mode Decomposition (EMD) is used for data pre-processing, and a novel integrated modeling system (EMD-ITG) is proposed. The EMD-ITG systematically combines EMD with various ML algorithms to enhance the accuracy of non-stationary water level forecasting. Results show that by using EMD-ML models, Root Mean Square Errors (RMSEs) are reduced by 5%–34% compared to conventional ML models. In tide-dominated areas (Wusong, Liyashan), GRU achieves the highest prediction accuracy, while in runoff-dominated areas (Zhenjiang), LSTM outperforms the other two. The EMD-ITG model, utilizing a high-frequency-GRU and mid-low-frequency-LSTM architecture, achieves the highest prediction accuracy at all stations, with RMSE reducing by 10–21% and Nash-Sutcliffe Efficiency (NSE) increasing by 0.2–1.2%, as compared to that of EMD-ML models. Additionally, all the EMD-ML models outperform popular harmonic tool, like NS_TIDE, with RMSE reduced by ∼30%. This study emphasizes that signal preprocessing and source interpretation are crucial for training ML models before resuming deep learning. The invented EMD-ITG model also provides a valuable reference for future hydrological forecasting. [Display omitted] Key points.1.Conventional and EMD-ML models were evaluated on nonstationary WL prediction in Yangtze Estuary.2.LSTM is superior for runoff dominated WL prediction, while GRU outperforms in tide-dominated WL.3.A hybrid EMD-ITG model was created in which decomposed WL signals go through matched ML algorithms.4.ML models are superior to NS_TIDE, while EMD-ML models outperform conventional ML models.5.EMD-ITG further reduced RMSE by 10–21% compared to EMD-ML model.
AbstractList The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates the application of three machine learning (ML) models (LSTM, GRU, CNN-LSTM) in non-stationary water level prediction, using the Yangtze Estuary as the test region. The statistical tool Empirical Mode Decomposition (EMD) is used for data pre-processing, and a novel integrated modeling system (EMD-ITG) is proposed. The EMD-ITG systematically combines EMD with various ML algorithms to enhance the accuracy of non-stationary water level forecasting. Results show that by using EMD-ML models, Root Mean Square Errors (RMSEs) are reduced by 5%–34% compared to conventional ML models. In tide-dominated areas (Wusong, Liyashan), GRU achieves the highest prediction accuracy, while in runoff-dominated areas (Zhenjiang), LSTM outperforms the other two. The EMD-ITG model, utilizing a high-frequency-GRU and mid-low-frequency-LSTM architecture, achieves the highest prediction accuracy at all stations, with RMSE reducing by 10–21% and Nash-Sutcliffe Efficiency (NSE) increasing by 0.2–1.2%, as compared to that of EMD-ML models. Additionally, all the EMD-ML models outperform popular harmonic tool, like NS_TIDE, with RMSE reduced by ∼30%. This study emphasizes that signal preprocessing and source interpretation are crucial for training ML models before resuming deep learning. The invented EMD-ITG model also provides a valuable reference for future hydrological forecasting. [Display omitted] Key points.1.Conventional and EMD-ML models were evaluated on nonstationary WL prediction in Yangtze Estuary.2.LSTM is superior for runoff dominated WL prediction, while GRU outperforms in tide-dominated WL.3.A hybrid EMD-ITG model was created in which decomposed WL signals go through matched ML algorithms.4.ML models are superior to NS_TIDE, while EMD-ML models outperform conventional ML models.5.EMD-ITG further reduced RMSE by 10–21% compared to EMD-ML model.
ArticleNumber 109128
Author Feng, Xi
Xu, Hang
Wu, Yirui
Gao, Sheng
Feng, Weibing
Author_xml – sequence: 1
  givenname: Sheng
  surname: Gao
  fullname: Gao, Sheng
  organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China
– sequence: 2
  givenname: Xi
  surname: Feng
  fullname: Feng, Xi
  email: xifeng@hhu.edu.cn
  organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China
– sequence: 3
  givenname: Hang
  surname: Xu
  fullname: Xu, Hang
  organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China
– sequence: 4
  givenname: Yirui
  surname: Wu
  fullname: Wu, Yirui
  organization: College of Computer Science and Software Engineering, Hohai University, Nanjing, Jiangsu, 210098, China
– sequence: 5
  givenname: Weibing
  surname: Feng
  fullname: Feng, Weibing
  organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China
BookMark eNp9kM9OAyEQhznUxLb6Ap54ga1AF1kSL02tf5IaL3omLMy2NLvQANb07WVTz54mmck385tvhiY-eEDojpIFJfTh_rAAk9KCEcZLQ1LWTNCUMMEqIWh9jWYpHQihlC_ZFMUV3p_b6Cy2AEfcg47e-R0egoUetzqBxcHjzfsT1v0uRJf3A-5CxOVolbLOLngdz_hHZ4gFPxXqGME6M05w6DCk_K2j84DTOWUY0g266nSf4PavztHX8-Zz_VptP17e1qttZRinuQJTC82ZIZJQRrheyroWwFrKpeyMFF3LLRDDpdVGNjVQEEQ3EmrRtLyRdDlH7LLXxJBShE4doxtKWEWJGk2pgxpNqdGUupgq0OMFgpLs5CCqZBx4Uz6KYLKywf2H_wLXg3do
Cites_doi 10.1007/s11069-013-0916-3
10.1016/j.cjpre.2022.01.003
10.3390/w13060820
10.1016/S0029-8018(01)00068-3
10.3390/jmse10060836
10.1162/089976600300015015
10.1109/TNNLS.2013.2294437
10.1016/j.ocemod.2024.102376
10.1016/j.jhydrol.2010.11.002
10.1016/j.ymssp.2021.108155
10.1016/j.oceaneng.2024.117151
10.1109/TNN.2006.872343
10.1016/j.coastaleng.2018.08.011
10.1016/j.epsr.2022.107908
10.1002/2014JC010491
10.1016/j.neucom.2020.01.029
10.1175/JTECH-D-17-0185.1
10.1016/j.oceaneng.2018.03.021
10.1016/j.oceaneng.2022.111460
10.1175/JTECH-D-12-00016.1
10.1109/TIA.2022.3162186
10.3390/app12010181
10.1002/2015RG000507
10.1016/j.neucom.2012.12.048
10.3390/atmos14101568
10.1016/j.oceaneng.2022.111985
10.1007/s11269-022-03401-z
10.1016/S0098-3004(02)00013-4
10.3390/w9050323
10.1162/neco.1997.9.8.1735
10.1016/j.jhydrol.2023.129686
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ecss.2025.109128
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Oceanography
ExternalDocumentID 10_1016_j_ecss_2025_109128
S027277142500006X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABGRD
ABMAC
ABPPZ
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADQTV
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG5
LW8
LY2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SEP
SES
SEW
SPC
SSA
SSE
SSH
SSZ
T5K
UHS
VJK
WUQ
YK3
ZKB
ZMT
ZU3
~02
~G-
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c251t-ec47a52c0901205a39447e2b1599fc97fb5de0c59dac984e1e70a89e478b58913
IEDL.DBID .~1
ISSN 0272-7714
IngestDate Wed Oct 01 06:04:33 EDT 2025
Sat Jun 21 16:54:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-ec47a52c0901205a39447e2b1599fc97fb5de0c59dac984e1e70a89e478b58913
ParticipantIDs crossref_primary_10_1016_j_ecss_2025_109128
elsevier_sciencedirect_doi_10_1016_j_ecss_2025_109128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Estuarine, coastal and shelf science
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fei, Liu (bib11) 2006; 17
Zhou, Pan, Gan, Zhang, Wang, Ying (bib47) 2024; 108845
Jalali, Ahmadian, Noman (bib24) 2022; 58
Matte, David, Edward (bib29) 2013; 30
Cai, Liu, Tan (bib4) 2021; 19
Elsayed, Maida, Bayoumi (bib10) 2019
Chen, Kuang, Wang (bib6) 2021; 12
Ide, Kurita (bib23) 2017
Pawlowicz, Bob, Steve (bib34) 2002; 28
Pan, Mei, Wang (bib31) 2020; 387
Feng, Hu, Li (bib12) 2022; 10
Gers, Schmidhuber, Cummins (bib15) 2000; 12
Mohguen, Bekka (bib30) 2019
Cai, Liu, Wang (bib5) 2018; 156
Yoon, Jun, Hyun (bib42) 2011; 396
Li, Xie, Wang (bib28) 2015
Chong, Goh, Ong (bib7) 2021
Zhou, Feng, Xu (bib46) 2022; 163
Gan, Chen, Pan (bib14) 2024
Doodson (bib9) 1921; 100
Hochreiter, Schmidhuber (bib19) 1997; 9
Yang, Yu, He (bib39) 2013; 113
Agga, Abbou, Labbadi (bib1) 2022; 208
Wu, Shi, Kirby, Liang (bib37) 2018; 140
Hoitink, David (bib20) 2016; 54
Zhang, Zhang, Yue (bib43) 2023; 622
Zhang, Hu, Zhou (bib44) 2023; 42
Pan, Guo, Wang (bib32) 2018; 35
Parisouj, Jun, Bateni (bib33) 2023; 17
Qian, Feng, Liu (bib35) 2022; 260
Fock (bib13) 2013; 25
Guo (bib16) 2015; 120
Yoon, Kim, Ha (bib41) 2017; 9
He, Sang, Yin (bib17) 2023; 37
Lee, Jeng (bib25) 2002; 29
Ye, Wang, Wang (bib40) 2022; 256
Tu, Gao, Xu (bib36) 2021; 13
Zhang, Liu, Yang (bib45) 2015
He, Gao, Wang (bib18) 2019; 49
Liu, Zhao, Hu (bib26) 2023; 14
Xu, Huang, Zhang (bib38) 2014; 71
Zhuge, Wu, Liang, Yuan, Zheng, Wang, Shi (bib48) 2024; 298
Hochreiter (10.1016/j.ecss.2025.109128_bib19) 1997; 9
Xu (10.1016/j.ecss.2025.109128_bib38) 2014; 71
Zhou (10.1016/j.ecss.2025.109128_bib47) 2024; 108845
Gers (10.1016/j.ecss.2025.109128_bib15) 2000; 12
Tu (10.1016/j.ecss.2025.109128_bib36) 2021; 13
Fei (10.1016/j.ecss.2025.109128_bib11) 2006; 17
Pawlowicz (10.1016/j.ecss.2025.109128_bib34) 2002; 28
Matte (10.1016/j.ecss.2025.109128_bib29) 2013; 30
Agga (10.1016/j.ecss.2025.109128_bib1) 2022; 208
Hoitink (10.1016/j.ecss.2025.109128_bib20) 2016; 54
Ide (10.1016/j.ecss.2025.109128_bib23) 2017
Yang (10.1016/j.ecss.2025.109128_bib39) 2013; 113
Liu (10.1016/j.ecss.2025.109128_bib26) 2023; 14
Gan (10.1016/j.ecss.2025.109128_bib14) 2024
Parisouj (10.1016/j.ecss.2025.109128_bib33) 2023; 17
Pan (10.1016/j.ecss.2025.109128_bib32) 2018; 35
Zhou (10.1016/j.ecss.2025.109128_bib46) 2022; 163
Fock (10.1016/j.ecss.2025.109128_bib13) 2013; 25
Cai (10.1016/j.ecss.2025.109128_bib5) 2018; 156
Elsayed (10.1016/j.ecss.2025.109128_bib10) 2019
Guo (10.1016/j.ecss.2025.109128_bib16) 2015; 120
Yoon (10.1016/j.ecss.2025.109128_bib41) 2017; 9
Pan (10.1016/j.ecss.2025.109128_bib31) 2020; 387
Zhang (10.1016/j.ecss.2025.109128_bib43) 2023; 622
Doodson (10.1016/j.ecss.2025.109128_bib9) 1921; 100
Zhuge (10.1016/j.ecss.2025.109128_bib48) 2024; 298
Cai (10.1016/j.ecss.2025.109128_bib4) 2021; 19
Mohguen (10.1016/j.ecss.2025.109128_bib30) 2019
Chong (10.1016/j.ecss.2025.109128_bib7) 2021
Yoon (10.1016/j.ecss.2025.109128_bib42) 2011; 396
Jalali (10.1016/j.ecss.2025.109128_bib24) 2022; 58
He (10.1016/j.ecss.2025.109128_bib17) 2023; 37
Qian (10.1016/j.ecss.2025.109128_bib35) 2022; 260
Chen (10.1016/j.ecss.2025.109128_bib6) 2021; 12
Ye (10.1016/j.ecss.2025.109128_bib40) 2022; 256
Zhang (10.1016/j.ecss.2025.109128_bib44) 2023; 42
Feng (10.1016/j.ecss.2025.109128_bib12) 2022; 10
Li (10.1016/j.ecss.2025.109128_bib28) 2015
Wu (10.1016/j.ecss.2025.109128_bib37) 2018; 140
Zhang (10.1016/j.ecss.2025.109128_bib45) 2015
He (10.1016/j.ecss.2025.109128_bib18) 2019; 49
Lee (10.1016/j.ecss.2025.109128_bib25) 2002; 29
References_xml – volume: 17
  start-page: 696
  year: 2006
  end-page: 704
  ident: bib11
  article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm
  publication-title: IEEE Trans. Neural Network.
– volume: 10
  start-page: 836
  year: 2022
  ident: bib12
  article-title: Prediction of significant wave height in offshore China based on the machine learning method
  publication-title: J. Mar. Sci. Eng.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib19
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 12
  start-page: 181
  year: 2021
  ident: bib6
  article-title: Storm surge prediction based on long short-term memory neural network in the East China Sea
  publication-title: Appl. Sci.
– volume: 37
  start-page: 747
  year: 2023
  end-page: 768
  ident: bib17
  article-title: Short-term runoff prediction optimization method based on BGRU-BP and BLSTM-BP neural networks
  publication-title: Water Resour. Manag.
– volume: 298
  year: 2024
  ident: bib48
  article-title: A statistical method to quantify the tide-surge interaction effects with application in probabilistic prediction of extreme storm tides along the northern coasts of the South China Sea
  publication-title: Ocean Eng.
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: bib42
  article-title: A comparative study of artificial neural networks and support vector machines for predicting ground water level in a coastal aquifer
  publication-title: J. Hydrol.
– volume: 29
  start-page: 1003
  year: 2002
  end-page: 1022
  ident: bib25
  article-title: Application of artificial neural networks in tide-forecasting
  publication-title: Ocean Eng.
– volume: 19
  start-page: 304
  year: 2021
  end-page: 310
  ident: bib4
  article-title: Climate change and China's coastal zones and seas: impacts, risks, and adaptation
  publication-title: Chin. J. Popul. Resour. Environ.
– volume: 54
  start-page: 240
  year: 2016
  end-page: 272
  ident: bib20
  article-title: Tidal river dynamics: implications for deltas
  publication-title: Rev. Geophys.
– volume: 35
  start-page: 809
  year: 2018
  end-page: 819
  ident: bib32
  article-title: Application of the EMD method to river tides
  publication-title: J. Atmos. Ocean. Technol.
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: bib15
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
– start-page: 2684
  year: 2017
  end-page: 2691
  ident: bib23
  article-title: Improvement of learning for CNN with ReLU activation by sparse regularization[C]
  publication-title: 2017 International Joint Conference on Neural Networks (IJCNN)
– start-page: 1207
  year: 2019
  end-page: 1210
  ident: bib10
  article-title: Gated recurrent neural networks empirical utilization for time series classification[C]
  publication-title: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
– volume: 256
  year: 2022
  ident: bib40
  article-title: An EMD-LSTM-SVR model for the short-term roll and sway predictions of semi-submersible
  publication-title: Ocean Eng.
– volume: 387
  start-page: 150
  year: 2020
  end-page: 160
  ident: bib31
  article-title: Spectral-spatial classification for hyperspectral image based on a single GRU
  publication-title: Neurocomputing
– volume: 208
  year: 2022
  ident: bib1
  article-title: CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production
  publication-title: Elec. Power Syst. Res.
– volume: 58
  start-page: 3324
  year: 2022
  end-page: 3332
  ident: bib24
  article-title: Novel uncertainty-aware deep neuroevolution algorithm to quantify tidal forecasting
  publication-title: IEEE Trans. Ind. Appl.
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib7
  article-title: Efficient implementation of activation functions for lstm accelerators[C]
  publication-title: 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC)
– volume: 100
  start-page: 305
  year: 1921
  end-page: 329
  ident: bib9
  article-title: The harmonic development of the tide-generating potential
  publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character
– volume: 17
  year: 2023
  ident: bib33
  article-title: Machine learning models coupled with empirical mode decomposition for simulating monthly and yearly streamflows: a case study of three watersheds in Ontario, Canada
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 108845
  year: 2024
  ident: bib47
  article-title: Study on the tidal variability related to flooding and hydroelectric operations in the qiantang river estuary
  publication-title: Estuar. Coast Shelf Sci.
– volume: 120
  start-page: 3499
  year: 2015
  end-page: 3521
  ident: bib16
  article-title: River‐tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary
  publication-title: J. Geophys. Res.: Oceans
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib28
  article-title: Unmixing: a new direction from classical tidal harmonic analysis?[C]//OCEANS 2015-MTS/IEEE Washington
  publication-title: IEEE
– volume: 42
  start-page: 1
  year: 2023
  end-page: 14
  ident: bib44
  article-title: Storm surge simulations of the coastal area of Shenzhen using different types of typhoon meteorological fields—a case study of Typhoon Mangkhut
  publication-title: J. Trop. Oceanogr.
– volume: 49
  start-page: 329
  year: 2019
  end-page: 336
  ident: bib18
  article-title: Research on integrated forecasting of stock price based on EMD and support vector regression
  publication-title: J. NW Univ.
– start-page: 126
  year: 2019
  end-page: 130
  ident: bib30
  article-title: Comparative study of ECG signal denoising by empirical mode decomposition and thresholding functions[C]
  publication-title: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE)
– volume: 13
  start-page: 820
  year: 2021
  ident: bib36
  article-title: A novel method for regional short-term forecasting of water level
  publication-title: Water
– volume: 14
  start-page: 1568
  year: 2023
  ident: bib26
  article-title: Prediction of storm surge water level based on machine learning methods
  publication-title: Atmosphere
– volume: 113
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib39
  article-title: The one-against-all partition based binary tree support vector machine algorithms for multi-class classification
  publication-title: Neurocomputing
– year: 2024
  ident: bib14
  article-title: An improved machine learning-based model to predict estuarine water levels
  publication-title: Ocean Model.
– volume: 156
  start-page: 489
  year: 2018
  end-page: 499
  ident: bib5
  article-title: Short-term tidal level prediction using normal time-frequency transform
  publication-title: Ocean Eng.
– volume: 25
  start-page: 1484
  year: 2013
  end-page: 1495
  ident: bib13
  article-title: Global sensitivity analysis approach for input selection and system identification purposes—a new framework for feedforward neural networks
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 71
  start-page: 703
  year: 2014
  end-page: 721
  ident: bib38
  article-title: Integrating Monte Carlo and hydrodynamic models for estimating extreme water level by storm surge in Colombo, Sri Lanka
  publication-title: Nat. Hazards
– volume: 30
  start-page: 569
  year: 2013
  end-page: 589
  ident: bib29
  article-title: Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides
  publication-title: J. Atmos. Ocean. Technol.
– volume: 28
  start-page: 929
  year: 2002
  end-page: 937
  ident: bib34
  article-title: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE
  publication-title: Comput. Geosci.
– volume: 163
  year: 2022
  ident: bib46
  article-title: Empirical Fourier decomposition: an accurate signal decomposition method for nonlinear and non-stationary time series analysis
  publication-title: Mech. Syst. Signal Process.
– start-page: 4801
  year: 2015
  end-page: 4806
  ident: bib45
  article-title: EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C]
  publication-title: 2015 34th Chinese Control Conference (CCC)
– volume: 260
  year: 2022
  ident: bib35
  article-title: Tidal current prediction based on a hybrid machine learning method
  publication-title: Ocean Eng.
– volume: 140
  start-page: 371
  year: 2018
  end-page: 382
  ident: bib37
  article-title: Modeling wave effects on storm surge and coastal inundation
  publication-title: Coast Eng.
– volume: 622
  year: 2023
  ident: bib43
  article-title: Correction of nonstationary tidal prediction using deep-learning neural network models in tidal estuaries and rivers
  publication-title: J. Hydrol.
– volume: 9
  start-page: 323
  year: 2017
  ident: bib41
  article-title: Comparative evaluation of ANN-and SVM-time series models for predicting freshwater-saltwater interface fluctuations
  publication-title: Water
– start-page: 1
  year: 2015
  ident: 10.1016/j.ecss.2025.109128_bib28
  article-title: Unmixing: a new direction from classical tidal harmonic analysis?[C]//OCEANS 2015-MTS/IEEE Washington
  publication-title: IEEE
– volume: 71
  start-page: 703
  year: 2014
  ident: 10.1016/j.ecss.2025.109128_bib38
  article-title: Integrating Monte Carlo and hydrodynamic models for estimating extreme water level by storm surge in Colombo, Sri Lanka
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0916-3
– volume: 17
  issue: 1
  year: 2023
  ident: 10.1016/j.ecss.2025.109128_bib33
  article-title: Machine learning models coupled with empirical mode decomposition for simulating monthly and yearly streamflows: a case study of three watersheds in Ontario, Canada
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 19
  start-page: 304
  issue: 4
  year: 2021
  ident: 10.1016/j.ecss.2025.109128_bib4
  article-title: Climate change and China's coastal zones and seas: impacts, risks, and adaptation
  publication-title: Chin. J. Popul. Resour. Environ.
  doi: 10.1016/j.cjpre.2022.01.003
– volume: 13
  start-page: 820
  issue: 6
  year: 2021
  ident: 10.1016/j.ecss.2025.109128_bib36
  article-title: A novel method for regional short-term forecasting of water level
  publication-title: Water
  doi: 10.3390/w13060820
– start-page: 2684
  year: 2017
  ident: 10.1016/j.ecss.2025.109128_bib23
  article-title: Improvement of learning for CNN with ReLU activation by sparse regularization[C]
– volume: 29
  start-page: 1003
  issue: 9
  year: 2002
  ident: 10.1016/j.ecss.2025.109128_bib25
  article-title: Application of artificial neural networks in tide-forecasting
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(01)00068-3
– volume: 10
  start-page: 836
  issue: 6
  year: 2022
  ident: 10.1016/j.ecss.2025.109128_bib12
  article-title: Prediction of significant wave height in offshore China based on the machine learning method
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10060836
– volume: 49
  start-page: 329
  year: 2019
  ident: 10.1016/j.ecss.2025.109128_bib18
  article-title: Research on integrated forecasting of stock price based on EMD and support vector regression
  publication-title: J. NW Univ.
– volume: 100
  start-page: 305
  issue: 704
  year: 1921
  ident: 10.1016/j.ecss.2025.109128_bib9
  article-title: The harmonic development of the tide-generating potential
  publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  ident: 10.1016/j.ecss.2025.109128_bib15
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 25
  start-page: 1484
  issue: 8
  year: 2013
  ident: 10.1016/j.ecss.2025.109128_bib13
  article-title: Global sensitivity analysis approach for input selection and system identification purposes—a new framework for feedforward neural networks
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2013.2294437
– year: 2024
  ident: 10.1016/j.ecss.2025.109128_bib14
  article-title: An improved machine learning-based model to predict estuarine water levels
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2024.102376
– volume: 396
  start-page: 128
  issue: 1–2
  year: 2011
  ident: 10.1016/j.ecss.2025.109128_bib42
  article-title: A comparative study of artificial neural networks and support vector machines for predicting ground water level in a coastal aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 163
  year: 2022
  ident: 10.1016/j.ecss.2025.109128_bib46
  article-title: Empirical Fourier decomposition: an accurate signal decomposition method for nonlinear and non-stationary time series analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108155
– volume: 298
  year: 2024
  ident: 10.1016/j.ecss.2025.109128_bib48
  article-title: A statistical method to quantify the tide-surge interaction effects with application in probabilistic prediction of extreme storm tides along the northern coasts of the South China Sea
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117151
– start-page: 1207
  year: 2019
  ident: 10.1016/j.ecss.2025.109128_bib10
  article-title: Gated recurrent neural networks empirical utilization for time series classification[C]
– volume: 17
  start-page: 696
  issue: 3
  year: 2006
  ident: 10.1016/j.ecss.2025.109128_bib11
  article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/TNN.2006.872343
– volume: 140
  start-page: 371
  year: 2018
  ident: 10.1016/j.ecss.2025.109128_bib37
  article-title: Modeling wave effects on storm surge and coastal inundation
  publication-title: Coast Eng.
  doi: 10.1016/j.coastaleng.2018.08.011
– volume: 208
  year: 2022
  ident: 10.1016/j.ecss.2025.109128_bib1
  article-title: CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.107908
– volume: 120
  start-page: 3499
  issue: 5
  year: 2015
  ident: 10.1016/j.ecss.2025.109128_bib16
  article-title: River‐tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1002/2014JC010491
– volume: 387
  start-page: 150
  year: 2020
  ident: 10.1016/j.ecss.2025.109128_bib31
  article-title: Spectral-spatial classification for hyperspectral image based on a single GRU
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.029
– volume: 35
  start-page: 809
  issue: 4
  year: 2018
  ident: 10.1016/j.ecss.2025.109128_bib32
  article-title: Application of the EMD method to river tides
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-17-0185.1
– volume: 156
  start-page: 489
  year: 2018
  ident: 10.1016/j.ecss.2025.109128_bib5
  article-title: Short-term tidal level prediction using normal time-frequency transform
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.03.021
– volume: 256
  year: 2022
  ident: 10.1016/j.ecss.2025.109128_bib40
  article-title: An EMD-LSTM-SVR model for the short-term roll and sway predictions of semi-submersible
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111460
– volume: 30
  start-page: 569
  issue: 3
  year: 2013
  ident: 10.1016/j.ecss.2025.109128_bib29
  article-title: Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-12-00016.1
– start-page: 1
  year: 2021
  ident: 10.1016/j.ecss.2025.109128_bib7
  article-title: Efficient implementation of activation functions for lstm accelerators[C]
– volume: 58
  start-page: 3324
  issue: 3
  year: 2022
  ident: 10.1016/j.ecss.2025.109128_bib24
  article-title: Novel uncertainty-aware deep neuroevolution algorithm to quantify tidal forecasting
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2022.3162186
– volume: 12
  start-page: 181
  issue: 1
  year: 2021
  ident: 10.1016/j.ecss.2025.109128_bib6
  article-title: Storm surge prediction based on long short-term memory neural network in the East China Sea
  publication-title: Appl. Sci.
  doi: 10.3390/app12010181
– volume: 54
  start-page: 240
  issue: 1
  year: 2016
  ident: 10.1016/j.ecss.2025.109128_bib20
  article-title: Tidal river dynamics: implications for deltas
  publication-title: Rev. Geophys.
  doi: 10.1002/2015RG000507
– volume: 113
  start-page: 1
  year: 2013
  ident: 10.1016/j.ecss.2025.109128_bib39
  article-title: The one-against-all partition based binary tree support vector machine algorithms for multi-class classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.048
– volume: 14
  start-page: 1568
  issue: 10
  year: 2023
  ident: 10.1016/j.ecss.2025.109128_bib26
  article-title: Prediction of storm surge water level based on machine learning methods
  publication-title: Atmosphere
  doi: 10.3390/atmos14101568
– volume: 260
  year: 2022
  ident: 10.1016/j.ecss.2025.109128_bib35
  article-title: Tidal current prediction based on a hybrid machine learning method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111985
– volume: 37
  start-page: 747
  issue: 2
  year: 2023
  ident: 10.1016/j.ecss.2025.109128_bib17
  article-title: Short-term runoff prediction optimization method based on BGRU-BP and BLSTM-BP neural networks
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03401-z
– volume: 28
  start-page: 929
  issue: 8
  year: 2002
  ident: 10.1016/j.ecss.2025.109128_bib34
  article-title: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(02)00013-4
– start-page: 4801
  year: 2015
  ident: 10.1016/j.ecss.2025.109128_bib45
  article-title: EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C]
– volume: 9
  start-page: 323
  issue: 5
  year: 2017
  ident: 10.1016/j.ecss.2025.109128_bib41
  article-title: Comparative evaluation of ANN-and SVM-time series models for predicting freshwater-saltwater interface fluctuations
  publication-title: Water
  doi: 10.3390/w9050323
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.ecss.2025.109128_bib19
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 622
  year: 2023
  ident: 10.1016/j.ecss.2025.109128_bib43
  article-title: Correction of nonstationary tidal prediction using deep-learning neural network models in tidal estuaries and rivers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129686
– volume: 42
  start-page: 1
  issue: 6
  year: 2023
  ident: 10.1016/j.ecss.2025.109128_bib44
  article-title: Storm surge simulations of the coastal area of Shenzhen using different types of typhoon meteorological fields—a case study of Typhoon Mangkhut
  publication-title: J. Trop. Oceanogr.
– start-page: 126
  year: 2019
  ident: 10.1016/j.ecss.2025.109128_bib30
  article-title: Comparative study of ECG signal denoising by empirical mode decomposition and thresholding functions[C]
– volume: 108845
  year: 2024
  ident: 10.1016/j.ecss.2025.109128_bib47
  article-title: Study on the tidal variability related to flooding and hydroelectric operations in the qiantang river estuary
  publication-title: Estuar. Coast Shelf Sci.
SSID ssj0011532
Score 2.4502962
Snippet The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109128
Title A hybrid deep learning model based on EMD algorithm for non-stationary water level prediction of estuarine systems
URI https://dx.doi.org/10.1016/j.ecss.2025.109128
Volume 314
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0272-7714
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011532
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0272-7714
  databaseCode: .~1
  dateStart: 0
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011532
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0272-7714
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011532
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0272-7714
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011532
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0272-7714
  databaseCode: AKRWK
  dateStart: 19810101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011532
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5DEUQQnYrzx8iDb1LXtUmzPo65MZXNBx3srSRpuk10K91U9uLf7l3TioL44GObHITLcfcdubuPkAufBVLEcQDGywOHedJ3pC85ZCnKMJVoL86HuA6GQX_Ebsd8XCGdshcGyyoL3299eu6tiz-NQpuNdDZrPEBC5QnRBKPLne4YO9iZQBaDq4-vMg8APDlJGW52cHfROGNrvIxe4shuj-NUpSYysv8WnL4FnN4e2S2QIm3bw-yTiplXyZbljlxXyc69NnJeDJw-IFmbTtfYfUVjY1JakEFMaM50QzFWxXQxp93BNZXPk0U2W01fKABWCum_s7Tv8TJb03fAnhmIv4FUmuErDq7QRUIhfIA5ASildvrz8pCMet3HTt8p-BQcDShm5RjNhOSedkPsmOUSe2KF8RQgmjDRoUgUj42reRhLHbaYaRrhylZomGgpJB_0j8gGHMocEyphFYBEIuJQM0-plqcYMlGq0Piuq4IauSwVGaV2bEZU1pM9Raj2CNUeWbXXCC91Hf24_Aj8-h9yJ_-UOyXb-GVLyc7Ixip7NeeALVaqnhtPnWy2b-76w0-wG85Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IIogWhXf5uBN1m53k033WKpSH9WDFXpbkmxWK9qWbVV68bc7s9mKgnjwmslAmAwzX8jMfABHIY-UTNMInVdEHg9U6KlQCXylaMt1ZoK0GOLavola9_yyK7oz0Jz2wlBZZRn7XUwvonW5Ui2tWR32etU7fFAFUtbQ6Yqg252FeS5wBZ365OOrzgMRT8FSRrs92l52zrgiL2tGNLM7EDRWqUaU7L9lp28Z53wVVkqoyBruNGswY_sVWHDkkZMKLN8aq_rlxOl1yBvscULtVyy1dshKNogHVlDdMEpWKRv02Vn7lKnnh0HeGz--MESsDN__3sh9yKt8wt4RfOao_oZaw5y-cUjCBhnD_IH-hKiUufHPow24Pz_rNFteSajgGYQxY88aLpUIjB9Ty6xQ1BQrbaAR0sSZiWWmRWp9I-JUmbjObc1KX9Vjy2VdE_tguAlzeCi7BUyhFJFEJtPY8EDreqA5UVHq2Ia-r6NtOJ4aMhm6uRnJtKDsKSGzJ2T2xJl9G8TU1smP208wsP-ht_NPvUNYbHXa18n1xc3VLiyRxNWV7cHcOH-1-wg0xvqgcKRPpxHP7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+deep+learning+model+based+on+EMD+algorithm+for+non-stationary+water+level+prediction+of+estuarine+systems&rft.jtitle=Estuarine%2C+coastal+and+shelf+science&rft.au=Gao%2C+Sheng&rft.au=Feng%2C+Xi&rft.au=Xu%2C+Hang&rft.au=Wu%2C+Yirui&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0272-7714&rft.volume=314&rft_id=info:doi/10.1016%2Fj.ecss.2025.109128&rft.externalDocID=S027277142500006X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-7714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-7714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-7714&client=summon