A hybrid deep learning model based on EMD algorithm for non-stationary water level prediction of estuarine systems
The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates the application of three machine learning (ML) models (LSTM, GRU, CNN-LSTM) in non-stationary water level prediction, using the Yangtze Estua...
        Saved in:
      
    
          | Published in | Estuarine, coastal and shelf science Vol. 314; p. 109128 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.03.2025
     | 
| Online Access | Get full text | 
| ISSN | 0272-7714 | 
| DOI | 10.1016/j.ecss.2025.109128 | 
Cover
| Abstract | The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates the application of three machine learning (ML) models (LSTM, GRU, CNN-LSTM) in non-stationary water level prediction, using the Yangtze Estuary as the test region. The statistical tool Empirical Mode Decomposition (EMD) is used for data pre-processing, and a novel integrated modeling system (EMD-ITG) is proposed. The EMD-ITG systematically combines EMD with various ML algorithms to enhance the accuracy of non-stationary water level forecasting. Results show that by using EMD-ML models, Root Mean Square Errors (RMSEs) are reduced by 5%–34% compared to conventional ML models. In tide-dominated areas (Wusong, Liyashan), GRU achieves the highest prediction accuracy, while in runoff-dominated areas (Zhenjiang), LSTM outperforms the other two. The EMD-ITG model, utilizing a high-frequency-GRU and mid-low-frequency-LSTM architecture, achieves the highest prediction accuracy at all stations, with RMSE reducing by 10–21% and Nash-Sutcliffe Efficiency (NSE) increasing by 0.2–1.2%, as compared to that of EMD-ML models. Additionally, all the EMD-ML models outperform popular harmonic tool, like NS_TIDE, with RMSE reduced by ∼30%. This study emphasizes that signal preprocessing and source interpretation are crucial for training ML models before resuming deep learning. The invented EMD-ITG model also provides a valuable reference for future hydrological forecasting.
[Display omitted]
Key points.1.Conventional and EMD-ML models were evaluated on nonstationary WL prediction in Yangtze Estuary.2.LSTM is superior for runoff dominated WL prediction, while GRU outperforms in tide-dominated WL.3.A hybrid EMD-ITG model was created in which decomposed WL signals go through matched ML algorithms.4.ML models are superior to NS_TIDE, while EMD-ML models outperform conventional ML models.5.EMD-ITG further reduced RMSE by 10–21% compared to EMD-ML model. | 
    
|---|---|
| AbstractList | The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates the application of three machine learning (ML) models (LSTM, GRU, CNN-LSTM) in non-stationary water level prediction, using the Yangtze Estuary as the test region. The statistical tool Empirical Mode Decomposition (EMD) is used for data pre-processing, and a novel integrated modeling system (EMD-ITG) is proposed. The EMD-ITG systematically combines EMD with various ML algorithms to enhance the accuracy of non-stationary water level forecasting. Results show that by using EMD-ML models, Root Mean Square Errors (RMSEs) are reduced by 5%–34% compared to conventional ML models. In tide-dominated areas (Wusong, Liyashan), GRU achieves the highest prediction accuracy, while in runoff-dominated areas (Zhenjiang), LSTM outperforms the other two. The EMD-ITG model, utilizing a high-frequency-GRU and mid-low-frequency-LSTM architecture, achieves the highest prediction accuracy at all stations, with RMSE reducing by 10–21% and Nash-Sutcliffe Efficiency (NSE) increasing by 0.2–1.2%, as compared to that of EMD-ML models. Additionally, all the EMD-ML models outperform popular harmonic tool, like NS_TIDE, with RMSE reduced by ∼30%. This study emphasizes that signal preprocessing and source interpretation are crucial for training ML models before resuming deep learning. The invented EMD-ITG model also provides a valuable reference for future hydrological forecasting.
[Display omitted]
Key points.1.Conventional and EMD-ML models were evaluated on nonstationary WL prediction in Yangtze Estuary.2.LSTM is superior for runoff dominated WL prediction, while GRU outperforms in tide-dominated WL.3.A hybrid EMD-ITG model was created in which decomposed WL signals go through matched ML algorithms.4.ML models are superior to NS_TIDE, while EMD-ML models outperform conventional ML models.5.EMD-ITG further reduced RMSE by 10–21% compared to EMD-ML model. | 
    
| ArticleNumber | 109128 | 
    
| Author | Feng, Xi Xu, Hang Wu, Yirui Gao, Sheng Feng, Weibing  | 
    
| Author_xml | – sequence: 1 givenname: Sheng surname: Gao fullname: Gao, Sheng organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China – sequence: 2 givenname: Xi surname: Feng fullname: Feng, Xi email: xifeng@hhu.edu.cn organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China – sequence: 3 givenname: Hang surname: Xu fullname: Xu, Hang organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China – sequence: 4 givenname: Yirui surname: Wu fullname: Wu, Yirui organization: College of Computer Science and Software Engineering, Hohai University, Nanjing, Jiangsu, 210098, China – sequence: 5 givenname: Weibing surname: Feng fullname: Feng, Weibing organization: Key Laboratory of Coastal Disaster and Protection, Hohai University, Ministry of Education, Nanjing, Jiangsu, 210098, China  | 
    
| BookMark | eNp9kM9OAyEQhznUxLb6Ap54ga1AF1kSL02tf5IaL3omLMy2NLvQANb07WVTz54mmck385tvhiY-eEDojpIFJfTh_rAAk9KCEcZLQ1LWTNCUMMEqIWh9jWYpHQihlC_ZFMUV3p_b6Cy2AEfcg47e-R0egoUetzqBxcHjzfsT1v0uRJf3A-5CxOVolbLOLngdz_hHZ4gFPxXqGME6M05w6DCk_K2j84DTOWUY0g266nSf4PavztHX8-Zz_VptP17e1qttZRinuQJTC82ZIZJQRrheyroWwFrKpeyMFF3LLRDDpdVGNjVQEEQ3EmrRtLyRdDlH7LLXxJBShE4doxtKWEWJGk2pgxpNqdGUupgq0OMFgpLs5CCqZBx4Uz6KYLKywf2H_wLXg3do | 
    
| Cites_doi | 10.1007/s11069-013-0916-3 10.1016/j.cjpre.2022.01.003 10.3390/w13060820 10.1016/S0029-8018(01)00068-3 10.3390/jmse10060836 10.1162/089976600300015015 10.1109/TNNLS.2013.2294437 10.1016/j.ocemod.2024.102376 10.1016/j.jhydrol.2010.11.002 10.1016/j.ymssp.2021.108155 10.1016/j.oceaneng.2024.117151 10.1109/TNN.2006.872343 10.1016/j.coastaleng.2018.08.011 10.1016/j.epsr.2022.107908 10.1002/2014JC010491 10.1016/j.neucom.2020.01.029 10.1175/JTECH-D-17-0185.1 10.1016/j.oceaneng.2018.03.021 10.1016/j.oceaneng.2022.111460 10.1175/JTECH-D-12-00016.1 10.1109/TIA.2022.3162186 10.3390/app12010181 10.1002/2015RG000507 10.1016/j.neucom.2012.12.048 10.3390/atmos14101568 10.1016/j.oceaneng.2022.111985 10.1007/s11269-022-03401-z 10.1016/S0098-3004(02)00013-4 10.3390/w9050323 10.1162/neco.1997.9.8.1735 10.1016/j.jhydrol.2023.129686  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2025 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ecss.2025.109128 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology Oceanography  | 
    
| ExternalDocumentID | 10_1016_j_ecss_2025_109128 S027277142500006X  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABGRD ABMAC ABPPZ ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADQTV AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ IHE IMUCA J1W KOM LG5 LW8 LY2 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SEP SES SEW SPC SSA SSE SSH SSZ T5K UHS VJK WUQ YK3 ZKB ZMT ZU3 ~02 ~G- AAYXX ACLOT CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c251t-ec47a52c0901205a39447e2b1599fc97fb5de0c59dac984e1e70a89e478b58913 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0272-7714 | 
    
| IngestDate | Wed Oct 01 06:04:33 EDT 2025 Sat Jun 21 16:54:05 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c251t-ec47a52c0901205a39447e2b1599fc97fb5de0c59dac984e1e70a89e478b58913 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_ecss_2025_109128 elsevier_sciencedirect_doi_10_1016_j_ecss_2025_109128  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2025 2025-03-00  | 
    
| PublicationDateYYYYMMDD | 2025-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Estuarine, coastal and shelf science | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Fei, Liu (bib11) 2006; 17 Zhou, Pan, Gan, Zhang, Wang, Ying (bib47) 2024; 108845 Jalali, Ahmadian, Noman (bib24) 2022; 58 Matte, David, Edward (bib29) 2013; 30 Cai, Liu, Tan (bib4) 2021; 19 Elsayed, Maida, Bayoumi (bib10) 2019 Chen, Kuang, Wang (bib6) 2021; 12 Ide, Kurita (bib23) 2017 Pawlowicz, Bob, Steve (bib34) 2002; 28 Pan, Mei, Wang (bib31) 2020; 387 Feng, Hu, Li (bib12) 2022; 10 Gers, Schmidhuber, Cummins (bib15) 2000; 12 Mohguen, Bekka (bib30) 2019 Cai, Liu, Wang (bib5) 2018; 156 Yoon, Jun, Hyun (bib42) 2011; 396 Li, Xie, Wang (bib28) 2015 Chong, Goh, Ong (bib7) 2021 Zhou, Feng, Xu (bib46) 2022; 163 Gan, Chen, Pan (bib14) 2024 Doodson (bib9) 1921; 100 Hochreiter, Schmidhuber (bib19) 1997; 9 Yang, Yu, He (bib39) 2013; 113 Agga, Abbou, Labbadi (bib1) 2022; 208 Wu, Shi, Kirby, Liang (bib37) 2018; 140 Hoitink, David (bib20) 2016; 54 Zhang, Zhang, Yue (bib43) 2023; 622 Zhang, Hu, Zhou (bib44) 2023; 42 Pan, Guo, Wang (bib32) 2018; 35 Parisouj, Jun, Bateni (bib33) 2023; 17 Qian, Feng, Liu (bib35) 2022; 260 Fock (bib13) 2013; 25 Guo (bib16) 2015; 120 Yoon, Kim, Ha (bib41) 2017; 9 He, Sang, Yin (bib17) 2023; 37 Lee, Jeng (bib25) 2002; 29 Ye, Wang, Wang (bib40) 2022; 256 Tu, Gao, Xu (bib36) 2021; 13 Zhang, Liu, Yang (bib45) 2015 He, Gao, Wang (bib18) 2019; 49 Liu, Zhao, Hu (bib26) 2023; 14 Xu, Huang, Zhang (bib38) 2014; 71 Zhuge, Wu, Liang, Yuan, Zheng, Wang, Shi (bib48) 2024; 298 Hochreiter (10.1016/j.ecss.2025.109128_bib19) 1997; 9 Xu (10.1016/j.ecss.2025.109128_bib38) 2014; 71 Zhou (10.1016/j.ecss.2025.109128_bib47) 2024; 108845 Gers (10.1016/j.ecss.2025.109128_bib15) 2000; 12 Tu (10.1016/j.ecss.2025.109128_bib36) 2021; 13 Fei (10.1016/j.ecss.2025.109128_bib11) 2006; 17 Pawlowicz (10.1016/j.ecss.2025.109128_bib34) 2002; 28 Matte (10.1016/j.ecss.2025.109128_bib29) 2013; 30 Agga (10.1016/j.ecss.2025.109128_bib1) 2022; 208 Hoitink (10.1016/j.ecss.2025.109128_bib20) 2016; 54 Ide (10.1016/j.ecss.2025.109128_bib23) 2017 Yang (10.1016/j.ecss.2025.109128_bib39) 2013; 113 Liu (10.1016/j.ecss.2025.109128_bib26) 2023; 14 Gan (10.1016/j.ecss.2025.109128_bib14) 2024 Parisouj (10.1016/j.ecss.2025.109128_bib33) 2023; 17 Pan (10.1016/j.ecss.2025.109128_bib32) 2018; 35 Zhou (10.1016/j.ecss.2025.109128_bib46) 2022; 163 Fock (10.1016/j.ecss.2025.109128_bib13) 2013; 25 Cai (10.1016/j.ecss.2025.109128_bib5) 2018; 156 Elsayed (10.1016/j.ecss.2025.109128_bib10) 2019 Guo (10.1016/j.ecss.2025.109128_bib16) 2015; 120 Yoon (10.1016/j.ecss.2025.109128_bib41) 2017; 9 Pan (10.1016/j.ecss.2025.109128_bib31) 2020; 387 Zhang (10.1016/j.ecss.2025.109128_bib43) 2023; 622 Doodson (10.1016/j.ecss.2025.109128_bib9) 1921; 100 Zhuge (10.1016/j.ecss.2025.109128_bib48) 2024; 298 Cai (10.1016/j.ecss.2025.109128_bib4) 2021; 19 Mohguen (10.1016/j.ecss.2025.109128_bib30) 2019 Chong (10.1016/j.ecss.2025.109128_bib7) 2021 Yoon (10.1016/j.ecss.2025.109128_bib42) 2011; 396 Jalali (10.1016/j.ecss.2025.109128_bib24) 2022; 58 He (10.1016/j.ecss.2025.109128_bib17) 2023; 37 Qian (10.1016/j.ecss.2025.109128_bib35) 2022; 260 Chen (10.1016/j.ecss.2025.109128_bib6) 2021; 12 Ye (10.1016/j.ecss.2025.109128_bib40) 2022; 256 Zhang (10.1016/j.ecss.2025.109128_bib44) 2023; 42 Feng (10.1016/j.ecss.2025.109128_bib12) 2022; 10 Li (10.1016/j.ecss.2025.109128_bib28) 2015 Wu (10.1016/j.ecss.2025.109128_bib37) 2018; 140 Zhang (10.1016/j.ecss.2025.109128_bib45) 2015 He (10.1016/j.ecss.2025.109128_bib18) 2019; 49 Lee (10.1016/j.ecss.2025.109128_bib25) 2002; 29  | 
    
| References_xml | – volume: 17 start-page: 696 year: 2006 end-page: 704 ident: bib11 article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm publication-title: IEEE Trans. Neural Network. – volume: 10 start-page: 836 year: 2022 ident: bib12 article-title: Prediction of significant wave height in offshore China based on the machine learning method publication-title: J. Mar. Sci. Eng. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib19 article-title: Long short-term memory publication-title: Neural Comput. – volume: 12 start-page: 181 year: 2021 ident: bib6 article-title: Storm surge prediction based on long short-term memory neural network in the East China Sea publication-title: Appl. Sci. – volume: 37 start-page: 747 year: 2023 end-page: 768 ident: bib17 article-title: Short-term runoff prediction optimization method based on BGRU-BP and BLSTM-BP neural networks publication-title: Water Resour. Manag. – volume: 298 year: 2024 ident: bib48 article-title: A statistical method to quantify the tide-surge interaction effects with application in probabilistic prediction of extreme storm tides along the northern coasts of the South China Sea publication-title: Ocean Eng. – volume: 396 start-page: 128 year: 2011 end-page: 138 ident: bib42 article-title: A comparative study of artificial neural networks and support vector machines for predicting ground water level in a coastal aquifer publication-title: J. Hydrol. – volume: 29 start-page: 1003 year: 2002 end-page: 1022 ident: bib25 article-title: Application of artificial neural networks in tide-forecasting publication-title: Ocean Eng. – volume: 19 start-page: 304 year: 2021 end-page: 310 ident: bib4 article-title: Climate change and China's coastal zones and seas: impacts, risks, and adaptation publication-title: Chin. J. Popul. Resour. Environ. – volume: 54 start-page: 240 year: 2016 end-page: 272 ident: bib20 article-title: Tidal river dynamics: implications for deltas publication-title: Rev. Geophys. – volume: 35 start-page: 809 year: 2018 end-page: 819 ident: bib32 article-title: Application of the EMD method to river tides publication-title: J. Atmos. Ocean. Technol. – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: bib15 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. – start-page: 2684 year: 2017 end-page: 2691 ident: bib23 article-title: Improvement of learning for CNN with ReLU activation by sparse regularization[C] publication-title: 2017 International Joint Conference on Neural Networks (IJCNN) – start-page: 1207 year: 2019 end-page: 1210 ident: bib10 article-title: Gated recurrent neural networks empirical utilization for time series classification[C] publication-title: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) – volume: 256 year: 2022 ident: bib40 article-title: An EMD-LSTM-SVR model for the short-term roll and sway predictions of semi-submersible publication-title: Ocean Eng. – volume: 387 start-page: 150 year: 2020 end-page: 160 ident: bib31 article-title: Spectral-spatial classification for hyperspectral image based on a single GRU publication-title: Neurocomputing – volume: 208 year: 2022 ident: bib1 article-title: CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production publication-title: Elec. Power Syst. Res. – volume: 58 start-page: 3324 year: 2022 end-page: 3332 ident: bib24 article-title: Novel uncertainty-aware deep neuroevolution algorithm to quantify tidal forecasting publication-title: IEEE Trans. Ind. Appl. – start-page: 1 year: 2021 end-page: 5 ident: bib7 article-title: Efficient implementation of activation functions for lstm accelerators[C] publication-title: 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC) – volume: 100 start-page: 305 year: 1921 end-page: 329 ident: bib9 article-title: The harmonic development of the tide-generating potential publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character – volume: 17 year: 2023 ident: bib33 article-title: Machine learning models coupled with empirical mode decomposition for simulating monthly and yearly streamflows: a case study of three watersheds in Ontario, Canada publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 108845 year: 2024 ident: bib47 article-title: Study on the tidal variability related to flooding and hydroelectric operations in the qiantang river estuary publication-title: Estuar. Coast Shelf Sci. – volume: 120 start-page: 3499 year: 2015 end-page: 3521 ident: bib16 article-title: River‐tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary publication-title: J. Geophys. Res.: Oceans – start-page: 1 year: 2015 end-page: 5 ident: bib28 article-title: Unmixing: a new direction from classical tidal harmonic analysis?[C]//OCEANS 2015-MTS/IEEE Washington publication-title: IEEE – volume: 42 start-page: 1 year: 2023 end-page: 14 ident: bib44 article-title: Storm surge simulations of the coastal area of Shenzhen using different types of typhoon meteorological fields—a case study of Typhoon Mangkhut publication-title: J. Trop. Oceanogr. – volume: 49 start-page: 329 year: 2019 end-page: 336 ident: bib18 article-title: Research on integrated forecasting of stock price based on EMD and support vector regression publication-title: J. NW Univ. – start-page: 126 year: 2019 end-page: 130 ident: bib30 article-title: Comparative study of ECG signal denoising by empirical mode decomposition and thresholding functions[C] publication-title: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE) – volume: 13 start-page: 820 year: 2021 ident: bib36 article-title: A novel method for regional short-term forecasting of water level publication-title: Water – volume: 14 start-page: 1568 year: 2023 ident: bib26 article-title: Prediction of storm surge water level based on machine learning methods publication-title: Atmosphere – volume: 113 start-page: 1 year: 2013 end-page: 7 ident: bib39 article-title: The one-against-all partition based binary tree support vector machine algorithms for multi-class classification publication-title: Neurocomputing – year: 2024 ident: bib14 article-title: An improved machine learning-based model to predict estuarine water levels publication-title: Ocean Model. – volume: 156 start-page: 489 year: 2018 end-page: 499 ident: bib5 article-title: Short-term tidal level prediction using normal time-frequency transform publication-title: Ocean Eng. – volume: 25 start-page: 1484 year: 2013 end-page: 1495 ident: bib13 article-title: Global sensitivity analysis approach for input selection and system identification purposes—a new framework for feedforward neural networks publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 71 start-page: 703 year: 2014 end-page: 721 ident: bib38 article-title: Integrating Monte Carlo and hydrodynamic models for estimating extreme water level by storm surge in Colombo, Sri Lanka publication-title: Nat. Hazards – volume: 30 start-page: 569 year: 2013 end-page: 589 ident: bib29 article-title: Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides publication-title: J. Atmos. Ocean. Technol. – volume: 28 start-page: 929 year: 2002 end-page: 937 ident: bib34 article-title: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE publication-title: Comput. Geosci. – volume: 163 year: 2022 ident: bib46 article-title: Empirical Fourier decomposition: an accurate signal decomposition method for nonlinear and non-stationary time series analysis publication-title: Mech. Syst. Signal Process. – start-page: 4801 year: 2015 end-page: 4806 ident: bib45 article-title: EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C] publication-title: 2015 34th Chinese Control Conference (CCC) – volume: 260 year: 2022 ident: bib35 article-title: Tidal current prediction based on a hybrid machine learning method publication-title: Ocean Eng. – volume: 140 start-page: 371 year: 2018 end-page: 382 ident: bib37 article-title: Modeling wave effects on storm surge and coastal inundation publication-title: Coast Eng. – volume: 622 year: 2023 ident: bib43 article-title: Correction of nonstationary tidal prediction using deep-learning neural network models in tidal estuaries and rivers publication-title: J. Hydrol. – volume: 9 start-page: 323 year: 2017 ident: bib41 article-title: Comparative evaluation of ANN-and SVM-time series models for predicting freshwater-saltwater interface fluctuations publication-title: Water – start-page: 1 year: 2015 ident: 10.1016/j.ecss.2025.109128_bib28 article-title: Unmixing: a new direction from classical tidal harmonic analysis?[C]//OCEANS 2015-MTS/IEEE Washington publication-title: IEEE – volume: 71 start-page: 703 year: 2014 ident: 10.1016/j.ecss.2025.109128_bib38 article-title: Integrating Monte Carlo and hydrodynamic models for estimating extreme water level by storm surge in Colombo, Sri Lanka publication-title: Nat. Hazards doi: 10.1007/s11069-013-0916-3 – volume: 17 issue: 1 year: 2023 ident: 10.1016/j.ecss.2025.109128_bib33 article-title: Machine learning models coupled with empirical mode decomposition for simulating monthly and yearly streamflows: a case study of three watersheds in Ontario, Canada publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 19 start-page: 304 issue: 4 year: 2021 ident: 10.1016/j.ecss.2025.109128_bib4 article-title: Climate change and China's coastal zones and seas: impacts, risks, and adaptation publication-title: Chin. J. Popul. Resour. Environ. doi: 10.1016/j.cjpre.2022.01.003 – volume: 13 start-page: 820 issue: 6 year: 2021 ident: 10.1016/j.ecss.2025.109128_bib36 article-title: A novel method for regional short-term forecasting of water level publication-title: Water doi: 10.3390/w13060820 – start-page: 2684 year: 2017 ident: 10.1016/j.ecss.2025.109128_bib23 article-title: Improvement of learning for CNN with ReLU activation by sparse regularization[C] – volume: 29 start-page: 1003 issue: 9 year: 2002 ident: 10.1016/j.ecss.2025.109128_bib25 article-title: Application of artificial neural networks in tide-forecasting publication-title: Ocean Eng. doi: 10.1016/S0029-8018(01)00068-3 – volume: 10 start-page: 836 issue: 6 year: 2022 ident: 10.1016/j.ecss.2025.109128_bib12 article-title: Prediction of significant wave height in offshore China based on the machine learning method publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10060836 – volume: 49 start-page: 329 year: 2019 ident: 10.1016/j.ecss.2025.109128_bib18 article-title: Research on integrated forecasting of stock price based on EMD and support vector regression publication-title: J. NW Univ. – volume: 100 start-page: 305 issue: 704 year: 1921 ident: 10.1016/j.ecss.2025.109128_bib9 article-title: The harmonic development of the tide-generating potential publication-title: Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character – volume: 12 start-page: 2451 issue: 10 year: 2000 ident: 10.1016/j.ecss.2025.109128_bib15 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 25 start-page: 1484 issue: 8 year: 2013 ident: 10.1016/j.ecss.2025.109128_bib13 article-title: Global sensitivity analysis approach for input selection and system identification purposes—a new framework for feedforward neural networks publication-title: IEEE Transact. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2013.2294437 – year: 2024 ident: 10.1016/j.ecss.2025.109128_bib14 article-title: An improved machine learning-based model to predict estuarine water levels publication-title: Ocean Model. doi: 10.1016/j.ocemod.2024.102376 – volume: 396 start-page: 128 issue: 1–2 year: 2011 ident: 10.1016/j.ecss.2025.109128_bib42 article-title: A comparative study of artificial neural networks and support vector machines for predicting ground water level in a coastal aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.002 – volume: 163 year: 2022 ident: 10.1016/j.ecss.2025.109128_bib46 article-title: Empirical Fourier decomposition: an accurate signal decomposition method for nonlinear and non-stationary time series analysis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108155 – volume: 298 year: 2024 ident: 10.1016/j.ecss.2025.109128_bib48 article-title: A statistical method to quantify the tide-surge interaction effects with application in probabilistic prediction of extreme storm tides along the northern coasts of the South China Sea publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117151 – start-page: 1207 year: 2019 ident: 10.1016/j.ecss.2025.109128_bib10 article-title: Gated recurrent neural networks empirical utilization for time series classification[C] – volume: 17 start-page: 696 issue: 3 year: 2006 ident: 10.1016/j.ecss.2025.109128_bib11 article-title: Binary tree of SVM: a new fast multiclass training and classification algorithm publication-title: IEEE Trans. Neural Network. doi: 10.1109/TNN.2006.872343 – volume: 140 start-page: 371 year: 2018 ident: 10.1016/j.ecss.2025.109128_bib37 article-title: Modeling wave effects on storm surge and coastal inundation publication-title: Coast Eng. doi: 10.1016/j.coastaleng.2018.08.011 – volume: 208 year: 2022 ident: 10.1016/j.ecss.2025.109128_bib1 article-title: CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production publication-title: Elec. Power Syst. Res. doi: 10.1016/j.epsr.2022.107908 – volume: 120 start-page: 3499 issue: 5 year: 2015 ident: 10.1016/j.ecss.2025.109128_bib16 article-title: River‐tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary publication-title: J. Geophys. Res.: Oceans doi: 10.1002/2014JC010491 – volume: 387 start-page: 150 year: 2020 ident: 10.1016/j.ecss.2025.109128_bib31 article-title: Spectral-spatial classification for hyperspectral image based on a single GRU publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.029 – volume: 35 start-page: 809 issue: 4 year: 2018 ident: 10.1016/j.ecss.2025.109128_bib32 article-title: Application of the EMD method to river tides publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-17-0185.1 – volume: 156 start-page: 489 year: 2018 ident: 10.1016/j.ecss.2025.109128_bib5 article-title: Short-term tidal level prediction using normal time-frequency transform publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.021 – volume: 256 year: 2022 ident: 10.1016/j.ecss.2025.109128_bib40 article-title: An EMD-LSTM-SVR model for the short-term roll and sway predictions of semi-submersible publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111460 – volume: 30 start-page: 569 issue: 3 year: 2013 ident: 10.1016/j.ecss.2025.109128_bib29 article-title: Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-12-00016.1 – start-page: 1 year: 2021 ident: 10.1016/j.ecss.2025.109128_bib7 article-title: Efficient implementation of activation functions for lstm accelerators[C] – volume: 58 start-page: 3324 issue: 3 year: 2022 ident: 10.1016/j.ecss.2025.109128_bib24 article-title: Novel uncertainty-aware deep neuroevolution algorithm to quantify tidal forecasting publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2022.3162186 – volume: 12 start-page: 181 issue: 1 year: 2021 ident: 10.1016/j.ecss.2025.109128_bib6 article-title: Storm surge prediction based on long short-term memory neural network in the East China Sea publication-title: Appl. Sci. doi: 10.3390/app12010181 – volume: 54 start-page: 240 issue: 1 year: 2016 ident: 10.1016/j.ecss.2025.109128_bib20 article-title: Tidal river dynamics: implications for deltas publication-title: Rev. Geophys. doi: 10.1002/2015RG000507 – volume: 113 start-page: 1 year: 2013 ident: 10.1016/j.ecss.2025.109128_bib39 article-title: The one-against-all partition based binary tree support vector machine algorithms for multi-class classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.048 – volume: 14 start-page: 1568 issue: 10 year: 2023 ident: 10.1016/j.ecss.2025.109128_bib26 article-title: Prediction of storm surge water level based on machine learning methods publication-title: Atmosphere doi: 10.3390/atmos14101568 – volume: 260 year: 2022 ident: 10.1016/j.ecss.2025.109128_bib35 article-title: Tidal current prediction based on a hybrid machine learning method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111985 – volume: 37 start-page: 747 issue: 2 year: 2023 ident: 10.1016/j.ecss.2025.109128_bib17 article-title: Short-term runoff prediction optimization method based on BGRU-BP and BLSTM-BP neural networks publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03401-z – volume: 28 start-page: 929 issue: 8 year: 2002 ident: 10.1016/j.ecss.2025.109128_bib34 article-title: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(02)00013-4 – start-page: 4801 year: 2015 ident: 10.1016/j.ecss.2025.109128_bib45 article-title: EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C] – volume: 9 start-page: 323 issue: 5 year: 2017 ident: 10.1016/j.ecss.2025.109128_bib41 article-title: Comparative evaluation of ANN-and SVM-time series models for predicting freshwater-saltwater interface fluctuations publication-title: Water doi: 10.3390/w9050323 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.ecss.2025.109128_bib19 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 622 year: 2023 ident: 10.1016/j.ecss.2025.109128_bib43 article-title: Correction of nonstationary tidal prediction using deep-learning neural network models in tidal estuaries and rivers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129686 – volume: 42 start-page: 1 issue: 6 year: 2023 ident: 10.1016/j.ecss.2025.109128_bib44 article-title: Storm surge simulations of the coastal area of Shenzhen using different types of typhoon meteorological fields—a case study of Typhoon Mangkhut publication-title: J. Trop. Oceanogr. – start-page: 126 year: 2019 ident: 10.1016/j.ecss.2025.109128_bib30 article-title: Comparative study of ECG signal denoising by empirical mode decomposition and thresholding functions[C] – volume: 108845 year: 2024 ident: 10.1016/j.ecss.2025.109128_bib47 article-title: Study on the tidal variability related to flooding and hydroelectric operations in the qiantang river estuary publication-title: Estuar. Coast Shelf Sci.  | 
    
| SSID | ssj0011532 | 
    
| Score | 2.4502962 | 
    
| Snippet | The randomness and complexity brought by multiple driving factors make it difficult to achieve fast and accurate water level forecasting. This study evaluates... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 109128 | 
    
| Title | A hybrid deep learning model based on EMD algorithm for non-stationary water level prediction of estuarine systems | 
    
| URI | https://dx.doi.org/10.1016/j.ecss.2025.109128 | 
    
| Volume | 314 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0272-7714 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0011532 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0272-7714 databaseCode: .~1 dateStart: 0 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0011532 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0272-7714 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0011532 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0272-7714 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0011532 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0272-7714 databaseCode: AKRWK dateStart: 19810101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011532 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5DEUQQnYrzx8iDb1LXtUmzPo65MZXNBx3srSRpuk10K91U9uLf7l3TioL44GObHITLcfcdubuPkAufBVLEcQDGywOHedJ3pC85ZCnKMJVoL86HuA6GQX_Ebsd8XCGdshcGyyoL3299eu6tiz-NQpuNdDZrPEBC5QnRBKPLne4YO9iZQBaDq4-vMg8APDlJGW52cHfROGNrvIxe4shuj-NUpSYysv8WnL4FnN4e2S2QIm3bw-yTiplXyZbljlxXyc69NnJeDJw-IFmbTtfYfUVjY1JakEFMaM50QzFWxXQxp93BNZXPk0U2W01fKABWCum_s7Tv8TJb03fAnhmIv4FUmuErDq7QRUIhfIA5ASildvrz8pCMet3HTt8p-BQcDShm5RjNhOSedkPsmOUSe2KF8RQgmjDRoUgUj42reRhLHbaYaRrhylZomGgpJB_0j8gGHMocEyphFYBEIuJQM0-plqcYMlGq0Piuq4IauSwVGaV2bEZU1pM9Raj2CNUeWbXXCC91Hf24_Aj8-h9yJ_-UOyXb-GVLyc7Ixip7NeeALVaqnhtPnWy2b-76w0-wG85Y | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58IIogWhXf5uBN1m53k033WKpSH9WDFXpbkmxWK9qWbVV68bc7s9mKgnjwmslAmAwzX8jMfABHIY-UTNMInVdEHg9U6KlQCXylaMt1ZoK0GOLavola9_yyK7oz0Jz2wlBZZRn7XUwvonW5Ui2tWR32etU7fFAFUtbQ6Yqg252FeS5wBZ365OOrzgMRT8FSRrs92l52zrgiL2tGNLM7EDRWqUaU7L9lp28Z53wVVkqoyBruNGswY_sVWHDkkZMKLN8aq_rlxOl1yBvscULtVyy1dshKNogHVlDdMEpWKRv02Vn7lKnnh0HeGz--MESsDN__3sh9yKt8wt4RfOao_oZaw5y-cUjCBhnD_IH-hKiUufHPow24Pz_rNFteSajgGYQxY88aLpUIjB9Ty6xQ1BQrbaAR0sSZiWWmRWp9I-JUmbjObc1KX9Vjy2VdE_tguAlzeCi7BUyhFJFEJtPY8EDreqA5UVHq2Ia-r6NtOJ4aMhm6uRnJtKDsKSGzJ2T2xJl9G8TU1smP208wsP-ht_NPvUNYbHXa18n1xc3VLiyRxNWV7cHcOH-1-wg0xvqgcKRPpxHP7Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+deep+learning+model+based+on+EMD+algorithm+for+non-stationary+water+level+prediction+of+estuarine+systems&rft.jtitle=Estuarine%2C+coastal+and+shelf+science&rft.au=Gao%2C+Sheng&rft.au=Feng%2C+Xi&rft.au=Xu%2C+Hang&rft.au=Wu%2C+Yirui&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0272-7714&rft.volume=314&rft_id=info:doi/10.1016%2Fj.ecss.2025.109128&rft.externalDocID=S027277142500006X | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-7714&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-7714&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-7714&client=summon |