A feature selection algorithm for intrusion detection system based on the enhanced heuristic optimizer
With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which affect the performance of network intrusion detection systems. Feature selection has thus become a key aspect in building these systems. In...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 265; p. 125860 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.03.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 | 
| DOI | 10.1016/j.eswa.2024.125860 | 
Cover
| Abstract | With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which affect the performance of network intrusion detection systems. Feature selection has thus become a key aspect in building these systems. In this paper, an enhanced heuristic optimization algorithm (EHO) is proposed, demonstrating excellent global convergence and superior search capabilities. The CEC standard test functions are used to evaluate the effectiveness of the algorithm. Experimental results show that the proposed algorithm has a faster convergence speed and stronger exploration ability when dealing with multimodal problems, significantly outperforming CSA, CSO, EFA, BWO, and RIME methods. Additionally, a wrapper feature selection method based on the optimization algorithm is proposed, and the algorithm’s performance is evaluated using three public datasets (NSL_KDD, UNSW_NB15, and CIC-IDS2018). The results indicate that the proposed method outperforms existing feature selection algorithms in terms of accuracy, precision, recall, and F1-score, achieving 90.95%, 93.39%, and 98.50% accuracy on the NSL_KDD, UNSW_NB15, and CIC-IDS2018 datasets, respectively. | 
    
|---|---|
| AbstractList | With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which affect the performance of network intrusion detection systems. Feature selection has thus become a key aspect in building these systems. In this paper, an enhanced heuristic optimization algorithm (EHO) is proposed, demonstrating excellent global convergence and superior search capabilities. The CEC standard test functions are used to evaluate the effectiveness of the algorithm. Experimental results show that the proposed algorithm has a faster convergence speed and stronger exploration ability when dealing with multimodal problems, significantly outperforming CSA, CSO, EFA, BWO, and RIME methods. Additionally, a wrapper feature selection method based on the optimization algorithm is proposed, and the algorithm’s performance is evaluated using three public datasets (NSL_KDD, UNSW_NB15, and CIC-IDS2018). The results indicate that the proposed method outperforms existing feature selection algorithms in terms of accuracy, precision, recall, and F1-score, achieving 90.95%, 93.39%, and 98.50% accuracy on the NSL_KDD, UNSW_NB15, and CIC-IDS2018 datasets, respectively. | 
    
| ArticleNumber | 125860 | 
    
| Author | Kang, Chunying Xue, Yankun Yu, Hongchen Zhang, Wei  | 
    
| Author_xml | – sequence: 1 givenname: Hongchen orcidid: 0009-0001-7185-0606 surname: Yu fullname: Yu, Hongchen email: 2212634@s.hlju.edu.cn organization: School of Cyberspace, Hangzhou Dianzi University, Baiyang Street, Hangzhou 310018, China – sequence: 2 givenname: Wei orcidid: 0000-0002-3477-718X surname: Zhang fullname: Zhang, Wei email: zhangwei@hlju.edu.cn organization: Modern Education Technology Center, University of the Heilongjiang, Harbin, Heilongjiang, 150000, China – sequence: 3 givenname: Chunying surname: Kang fullname: Kang, Chunying email: kangchunying@hlju.edu.cn organization: School of Data Science and Technology, University of the Heilongjiang, Harbin, Heilongjiang, 150000, China – sequence: 4 givenname: Yankun surname: Xue fullname: Xue, Yankun email: 22226773@s.hlju.edu.cn organization: School of Data Science and Technology, University of the Heilongjiang, Harbin, Heilongjiang, 150000, China  | 
    
| BookMark | eNp9kM1OwzAQhH0oEi3wApz8AgnrnySOxKWq-JMqcYGz5Thr4qpJKtsFlacnUXvmtJrVzGrnW5HFMA5IyD2DnAErH3Y5xh-Tc-AyZ7xQJSzIEuqiyiSr5DVZxbgDYBVAtSRuTR2adAxII-7RJj8O1Oy_xuBT11M3BuqHFI5x3reYLo54igl72piILZ106pDi0JnBTrrDY_AxeUvHQ_K9_8VwS66c2Ue8u8wb8vn89LF5zbbvL2-b9TazvGApa5UQpaptU1rB68qVAKJgUkqnAEwri7phXCnXCEDLOTYFq5yqJba2Fq1i4obw810bxhgDOn0IvjfhpBnomY7e6ZmOnunoM50p9HgO4fTZt8ego_U4V_Fh6qvb0f8X_wNu6nOF | 
    
| Cites_doi | 10.1109/ICREST.2019.8644161 10.1016/j.cose.2017.06.005 10.1109/ACCESS.2018.2820092 10.1016/j.inffus.2017.12.003 10.1016/j.comnet.2020.107247 10.1016/j.compstruc.2016.03.001 10.1007/s10586-019-03008-x 10.5220/0010021700170027 10.3390/s22197548 10.1007/s12652-020-02841-y 10.1016/j.asoc.2015.10.011 10.1016/j.eswa.2022.118439 10.1016/j.inffus.2022.09.026 10.1109/ACCESS.2019.2928048 10.1007/s11276-021-02866-x 10.1016/j.eswa.2018.11.018 10.1016/j.inffus.2017.12.005 10.1109/SPACES.2015.7058223 10.1145/3400286.3418255 10.1016/j.future.2019.02.028 10.14569/IJACSA.2017.080651 10.1016/j.neucom.2023.02.010 10.1080/21681015.2021.1950227 10.1109/ISCIT.2012.6380910 10.1016/j.comcom.2022.07.027 10.1109/ACCESS.2019.2903723 10.3390/sym13081377 10.1038/s41598-022-19366-3 10.1016/j.jnca.2012.09.004 10.1007/978-3-319-99807-7_20 10.1016/j.jnca.2015.11.016 10.1186/s40537-020-00382-x 10.1186/s40537-023-00694-8 10.1109/ACCESS.2022.3172789 10.1007/s10462-019-09682-y 10.1016/j.knosys.2022.109215 10.1109/CISDA.2009.5356528 10.1109/ICAC353642.2021.9697187 10.29304/jqcm.2020.12.3.706 10.1016/j.cogsys.2018.12.002  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.eswa.2024.125860 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| ExternalDocumentID | 10_1016_j_eswa_2024_125860 S0957417424027271  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYWO AAYXX ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD  | 
    
| ID | FETCH-LOGICAL-c251t-d833689cb6c3297f600351444f800ad459b1288fb30ec22eb517f894edc93d813 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Wed Oct 01 06:32:12 EDT 2025 Sat Apr 05 15:39:13 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Feature selection Crow search algorithm Network attacks Intrusion detection system  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c251t-d833689cb6c3297f600351444f800ad459b1288fb30ec22eb517f894edc93d813 | 
    
| ORCID | 0000-0002-3477-718X 0009-0001-7185-0606  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_125860 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125860  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-03-15 | 
    
| PublicationDateYYYYMMDD | 2025-03-15 | 
    
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zhong, Li, Meng (b54) 2022; 251 Thakkar, A., Rane, N., Meher, A., & Pawar, S. (2021). Application for counterfeit detection in supply chain using blockchain technology. In Zheng, Janecek, Tan (b53) 2013 Fierrez, Morales, Vera-Rodriguez, Camacho (b17) 2018; 44 Trojovská, Dehghani, Trojovskỳ (b45) 2022; 10 Zong, W., Chow, Y. W., & Susilo, W. (2018a). A two-stage classifier approach for network intrusion detection. In Tang, Dai, Xiang (b41) 2019; 120 (pp. 92–96). Aburomman, Ibne Reaz (b2) 2016; 38 (pp. 643–646). Yin, Jang-Jaccard, Xu, Singh, Zhu, Sabrina, Kwak (b51) 2023; 10 Xiao, Kang, Yu, Fan, Zhang (b49) 2022; 22 Leevy, Khoshgoftaar (b26) 2020; 7 Farhan, Maolood, Hassan (b15) 2020 Abu Khurma, Almomani, Aljarah (b1) 2021; 13 Al Shorman, Faris, Castillo, Merelo Guervós, Al-Madi (b4) 2018 Damaeviius, Robertas (b14) 2021; 9 Ingre, Yadav (b19) 2015 Ingre, B., & Yadav, A. (2015a). Performance analysis of nsl-kdd dataset using ann. In AlazzamHadeel, Eddin (b7) 2020 Kana (b21) 2023 . Alazab, A., Hobbs, M., Abawajy, J., & Alazab, M. (2012). Using feature selection for intrusion detection system. In Júnior, da Cruz, Diniz, da Silva, Junior, Silva, de Paiva, Nunes, Gattass (b20) 2021; 183 Zhang, Li, Wang (b52) 2019; 7 Zhou, Cheng, Jiang, Dai (b55) 2020; 174 Otair, Ibrahim, Abualigah, Altalhi, Sumari (b33) 2022; 28 Khurma, R. A., Castillo, P. A., Sharieh, A. A., & Aljarah, I. (2020). Feature selection using binary moth flame optimization with time varying flames strategies. In Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the kdd cup 99 data set. In Thakkar, Lohiya (b43) 2023; 90 Alkareem, Tajudin, Azmi, Xin-She, Abed, Hameed, Seifedine, Imran (b9) 2022 Wei (b48) 2022 Moustafa, Slay (b32) 2017 Ren, Zeng, Cao, Zhang (b35) 2022; 12 B, C, D, D, E, F (b12) 2019; 97 Li, Lee, Jung, Youn, Camacho (b27) 2020 Martín, Lara-Cabrera, Camacho (b30) 2019 Valls, Aler, Galván, Camacho (b47) 2021 (pp. 1–6). Previti, Rodríguez-Fernández, Camacho, Carchiolo, Malgeri (b34) 2020 Fierrez, Camacho, David (b16) 2018; 44 Lee, G. J., Li, G., Camacho, D., & Jung, J. J. (2020). Discovering synergic association by feature clustering from soccer players. In Zong, Chow, Susilo (b57) 2018 Lopes, Zou, Abdulqadder, Ruambo, Yuan, Jin (b29) 2022; 194 Su, Zhao, Heidari, Liu, Zhang, Mafarja, Chen (b38) 2023; 532 Khammassi, Krichen (b22) 2017; 70 Xu, Fu, Fang, Cao, Su, Wei (b50) 2018 Ambusaidi, Mohammed, Xiangjian, Priyadarsi, Zhiyuan (b10) 2016 (pp. 107–112). Liao, Lin, Lin, Tung (b28) 2013; 36 Ahmed, Naser Mahmood, Hu (b3) 2016; 60 Sharma, Sundaram, Sharma, Sharma, Gupta (b36) 2019; 54 Belouch, El Hadaj, Idhammad (b13) 2017; 8 Alazab, Khurma, Awajan, Camacho (b6) 2022; 210 Tama, Comuzzi, Rhee (b40) 2019; 7 Askarzadeh (b11) 2016; 169 Kumar, VikashSinha, KumarPandey (b24) 2020; 23 Ali, Al Mohammed, Ismail, Zolkipli (b8) 2018; 6 Meng, Liu, Gao, Zhang (b31) 2014 Solorio-Fernandez, Trinidad, Fco (b37) 2020; 53 Taher, K. A., Mohammed Yasin Jisan, B., & Rahman, M. M. (2019). Network intrusion detection using supervised machine learning technique with feature selection. In Tseng, Tran, Ha, Bui, Lim (b46) 2021; 38 Ali (10.1016/j.eswa.2024.125860_b8) 2018; 6 Damaeviius (10.1016/j.eswa.2024.125860_b14) 2021; 9 Júnior (10.1016/j.eswa.2024.125860_b20) 2021; 183 Zhang (10.1016/j.eswa.2024.125860_b52) 2019; 7 Li (10.1016/j.eswa.2024.125860_b27) 2020 10.1016/j.eswa.2024.125860_b44 Belouch (10.1016/j.eswa.2024.125860_b13) 2017; 8 10.1016/j.eswa.2024.125860_b42 Xu (10.1016/j.eswa.2024.125860_b50) 2018 Meng (10.1016/j.eswa.2024.125860_b31) 2014 Leevy (10.1016/j.eswa.2024.125860_b26) 2020; 7 Previti (10.1016/j.eswa.2024.125860_b34) 2020 B (10.1016/j.eswa.2024.125860_b12) 2019; 97 Ren (10.1016/j.eswa.2024.125860_b35) 2022; 12 Martín (10.1016/j.eswa.2024.125860_b30) 2019 Moustafa (10.1016/j.eswa.2024.125860_b32) 2017 Sharma (10.1016/j.eswa.2024.125860_b36) 2019; 54 Fierrez (10.1016/j.eswa.2024.125860_b17) 2018; 44 10.1016/j.eswa.2024.125860_b39 Zheng (10.1016/j.eswa.2024.125860_b53) 2013 Farhan (10.1016/j.eswa.2024.125860_b15) 2020 Kana (10.1016/j.eswa.2024.125860_b21) 2023 Tseng (10.1016/j.eswa.2024.125860_b46) 2021; 38 Thakkar (10.1016/j.eswa.2024.125860_b43) 2023; 90 10.1016/j.eswa.2024.125860_b5 AlazzamHadeel (10.1016/j.eswa.2024.125860_b7) 2020 Yin (10.1016/j.eswa.2024.125860_b51) 2023; 10 Ahmed (10.1016/j.eswa.2024.125860_b3) 2016; 60 Ingre (10.1016/j.eswa.2024.125860_b19) 2015 Zhong (10.1016/j.eswa.2024.125860_b54) 2022; 251 Valls (10.1016/j.eswa.2024.125860_b47) 2021 10.1016/j.eswa.2024.125860_b25 Fierrez (10.1016/j.eswa.2024.125860_b16) 2018; 44 10.1016/j.eswa.2024.125860_b23 Askarzadeh (10.1016/j.eswa.2024.125860_b11) 2016; 169 Aburomman (10.1016/j.eswa.2024.125860_b2) 2016; 38 Tama (10.1016/j.eswa.2024.125860_b40) 2019; 7 Tang (10.1016/j.eswa.2024.125860_b41) 2019; 120 Trojovská (10.1016/j.eswa.2024.125860_b45) 2022; 10 Otair (10.1016/j.eswa.2024.125860_b33) 2022; 28 Alazab (10.1016/j.eswa.2024.125860_b6) 2022; 210 10.1016/j.eswa.2024.125860_b18 Wei (10.1016/j.eswa.2024.125860_b48) 2022 10.1016/j.eswa.2024.125860_b56 Abu Khurma (10.1016/j.eswa.2024.125860_b1) 2021; 13 Liao (10.1016/j.eswa.2024.125860_b28) 2013; 36 Al Shorman (10.1016/j.eswa.2024.125860_b4) 2018 Zhou (10.1016/j.eswa.2024.125860_b55) 2020; 174 Alkareem (10.1016/j.eswa.2024.125860_b9) 2022 Su (10.1016/j.eswa.2024.125860_b38) 2023; 532 Lopes (10.1016/j.eswa.2024.125860_b29) 2022; 194 Kumar (10.1016/j.eswa.2024.125860_b24) 2020; 23 Zong (10.1016/j.eswa.2024.125860_b57) 2018 Khammassi (10.1016/j.eswa.2024.125860_b22) 2017; 70 Solorio-Fernandez (10.1016/j.eswa.2024.125860_b37) 2020; 53 Xiao (10.1016/j.eswa.2024.125860_b49) 2022; 22 Ambusaidi (10.1016/j.eswa.2024.125860_b10) 2016  | 
    
| References_xml | – volume: 38 start-page: 360 year: 2016 end-page: 372 ident: b2 article-title: A novel SVM-KNN-PSO ensemble method for intrusion detection system publication-title: Applied Soft Computing – start-page: 339 year: 2020 end-page: 353 ident: b34 article-title: Fake news detection using time series and user features classification publication-title: EvoApplications – volume: 10 start-page: 49445 year: 2022 end-page: 49473 ident: b45 article-title: Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm publication-title: IEEE Access – year: 2020 ident: b27 article-title: Deep learning for eeg data analytics: a survey – volume: 36 start-page: 16 year: 2013 end-page: 24 ident: b28 article-title: Intrusion detection system: A comprehensive review publication-title: Journal of Network & Computer Applications – start-page: 92 year: 2015 end-page: 96 ident: b19 article-title: Performance analysis of nsl-kdd dataset using ann publication-title: 2015 international conference on signal processing and communication engineering systems – reference: Lee, G. J., Li, G., Camacho, D., & Jung, J. J. (2020). Discovering synergic association by feature clustering from soccer players. In – volume: 6 start-page: 20255 year: 2018 end-page: 20261 ident: b8 article-title: A new intrusion detection system based on fast learning network and particle swarm optimization publication-title: IEEE Access – volume: 120 start-page: 207 year: 2019 end-page: 216 ident: b41 article-title: Feature selection based on feature interactions with application to text categorization publication-title: Expert Systems with Applications – volume: 22 start-page: 7548 year: 2022 ident: b49 article-title: Anomalous network traffic detection method based on an elevated harris hawks optimization method and gated recurrent unit classifier publication-title: Sensors – volume: 532 start-page: 183 year: 2023 end-page: 214 ident: b38 article-title: Rime: A physics-based optimization publication-title: Neurocomputing – start-page: 329 year: 2018 end-page: 340 ident: b57 article-title: A two-stage classifier approach for network intrusion detection publication-title: Information security practice and experience: 14th international conference, ISPEC 2018, Tokyo, Japan, September 25-27, 2018, proceedings 14 – volume: 44 start-page: 57 year: 2018 end-page: 64 ident: b16 article-title: Multiple classifiers in biometrics. Part 1: Fundamentals and review publication-title: Information Fusion – volume: 54 start-page: 100 year: 2019 end-page: 115 ident: b36 article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization publication-title: Cognitive Systems Research – reference: Zong, W., Chow, Y. W., & Susilo, W. (2018a). A two-stage classifier approach for network intrusion detection. In – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b12 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – reference: Taher, K. A., Mohammed Yasin Jisan, B., & Rahman, M. M. (2019). Network intrusion detection using supervised machine learning technique with feature selection. In – reference: Khurma, R. A., Castillo, P. A., Sharieh, A. A., & Aljarah, I. (2020). Feature selection using binary moth flame optimization with time varying flames strategies. In – volume: 194 start-page: 55 year: 2022 end-page: 65 ident: b29 article-title: Effective network intrusion detection via representation learning: A denoising autoencoder approach publication-title: Computer Communications – reference: (pp. 92–96). – volume: 12 start-page: 15370 year: 2022 ident: b35 article-title: Id-rdrl: a deep reinforcement learning-based feature selection intrusion detection model publication-title: Scientific Reports – volume: 44 start-page: 103 year: 2018 end-page: 112 ident: b17 article-title: Multiple classifiers in biometrics. Part 2: Trends and challenges publication-title: Information Fusion – volume: 70 start-page: 255 year: 2017 end-page: 277 ident: b22 article-title: A ga-lr wrapper approach for feature selection in network intrusion detection publication-title: Computers & Security – year: 2020 ident: b7 article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer publication-title: Expert Systems with Applications – volume: 210 year: 2022 ident: b6 article-title: A new intrusion detection system based on moth–flame optimizer algorithm publication-title: Expert Systems with Applications – volume: 53 year: 2020 ident: b37 article-title: A review of unsupervised feature selection methods publication-title: Artificial Intelligence Review: An International Science and Engineering Journal – volume: 9 year: 2021 ident: b14 article-title: An enhanced evolutionary software defect prediction method using island moth flame optimization publication-title: Mathematics – start-page: 86 year: 2014 end-page: 94 ident: b31 article-title: A new bio-inspired algorithm: chicken swarm optimization publication-title: Advances in swarm intelligence: 5th international conference, ICSI 2014, Hefei, China, October 17-20, 2014, proceedings, part I 5 – year: 2017 ident: b32 article-title: A hybrid feature selection for network intrusion detection systems: Central points – reference: Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the kdd cup 99 data set. In – year: 2021 ident: b47 article-title: Supervised data transformation and dimensionality reduction with a 3-layer multi-layer perceptron for classification problems publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 251 year: 2022 ident: b54 article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm publication-title: Knowledge-Based Systems – year: 2023 ident: b21 article-title: Function optimization using swarm intelligence algorithms – reference: Thakkar, A., Rane, N., Meher, A., & Pawar, S. (2021). Application for counterfeit detection in supply chain using blockchain technology. In – reference: (pp. 1–6). – volume: 13 start-page: 1377 year: 2021 ident: b1 article-title: Iot Botnet detection using salp swarm and ant lion hybrid optimization model publication-title: Symmetry – volume: 8 year: 2017 ident: b13 article-title: A two-stage classifier approach using reptree algorithm for network intrusion detection publication-title: International Journal of Advanced Computer Science and Applications – start-page: 10 year: 2018 end-page: 15 ident: b50 article-title: An improved binary whale optimization algorithm for feature selection of network intrusion detection publication-title: 2018 IEEE 4th international symposium on wireless systems within the international conferences on intelligent data acquisition and advanced computing systems – reference: (pp. 643–646). – volume: 90 start-page: 353 year: 2023 end-page: 363 ident: b43 article-title: Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system publication-title: Information Fusion – reference: (pp. 107–112). – volume: 60 start-page: 19 year: 2016 end-page: 31 ident: b3 article-title: A survey of network anomaly detection techniques publication-title: Journal of Network and Computer Applications – volume: 7 start-page: 31711 year: 2019 end-page: 31722 ident: b52 article-title: Intrusion detection for iot based on improved genetic algorithm and deep belief network publication-title: IEEE Access – volume: 174 year: 2020 ident: b55 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier publication-title: Computer Networks – start-page: 2069 year: 2013 end-page: 2077 ident: b53 article-title: Enhanced fireworks algorithm publication-title: 2013 IEEE congress on evolutionary computation – year: 2019 ident: b30 article-title: Android malware detection through hybrid features fusion and ensemble classifiers: the andropytool framework and the omnidroid dataset – volume: 38 start-page: 581 year: 2021 end-page: 598 ident: b46 article-title: Sustainable industrial and operation engineering trends and challenges toward industry 4.0: a data driven analysis publication-title: Journal of Industrial and Production Engineering – year: 2020 ident: b15 article-title: Optimized deep learning with binary pso for intrusion detection on cse-cic-ids2018 dataset publication-title: Journal of Al-Qadisiyah for Computer Science and Mathematics – start-page: 285 year: 2022 end-page: 289 ident: b48 article-title: Research on internet text sentiment classification based on bert and cnn-bigru publication-title: 2022 11th international conference on communications, circuits and systems – reference: Ingre, B., & Yadav, A. (2015a). Performance analysis of nsl-kdd dataset using ann. In – year: 2016 ident: b10 article-title: Building an intrusion detection system using a filter-based feature selection algorithm publication-title: IEEE Transactions Onuters – start-page: 1 year: 2022 end-page: 20 ident: b9 article-title: Multi-objective flower pollination algorithm: a new technique for eeg signal denoising publication-title: Neural Computing and Applications – volume: 183 year: 2021 ident: b20 article-title: Automatic method for classifying covid-19 patients based on chest x-ray images, using deep features and pso-optimized xgboost publication-title: Expert Systems with Applications – volume: 28 year: 2022 ident: b33 article-title: An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks publication-title: Wireless Networks – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b11 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Computers & Structures – volume: 23 year: 2020 ident: b24 article-title: An integrated rule based intrusion detection system: analysis on unsw-nb15 data set and the real time online dataset publication-title: Cluster Computing – reference: . – start-page: 79 year: 2018 end-page: 85 ident: b4 article-title: The influence of input data standardization methods on the prediction accuracy of genetic programming generated classifiers – reference: Alazab, A., Hobbs, M., Abawajy, J., & Alazab, M. (2012). Using feature selection for intrusion detection system. In – volume: 7 start-page: 94497 year: 2019 end-page: 94507 ident: b40 article-title: Tse-ids: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system publication-title: IEEE Access – volume: 7 year: 2020 ident: b26 article-title: A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data publication-title: Journal of Big Data – volume: 10 start-page: 1 year: 2023 end-page: 26 ident: b51 article-title: Igrf-rfe: A hybrid feature selection method for mlp-based network intrusion detection on unsw-nb15 dataset publication-title: Journal of Big Data – ident: 10.1016/j.eswa.2024.125860_b39 doi: 10.1109/ICREST.2019.8644161 – volume: 70 start-page: 255 year: 2017 ident: 10.1016/j.eswa.2024.125860_b22 article-title: A ga-lr wrapper approach for feature selection in network intrusion detection publication-title: Computers & Security doi: 10.1016/j.cose.2017.06.005 – volume: 6 start-page: 20255 year: 2018 ident: 10.1016/j.eswa.2024.125860_b8 article-title: A new intrusion detection system based on fast learning network and particle swarm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820092 – start-page: 10 year: 2018 ident: 10.1016/j.eswa.2024.125860_b50 article-title: An improved binary whale optimization algorithm for feature selection of network intrusion detection – volume: 44 start-page: 57 year: 2018 ident: 10.1016/j.eswa.2024.125860_b16 article-title: Multiple classifiers in biometrics. Part 1: Fundamentals and review publication-title: Information Fusion doi: 10.1016/j.inffus.2017.12.003 – volume: 174 year: 2020 ident: 10.1016/j.eswa.2024.125860_b55 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier publication-title: Computer Networks doi: 10.1016/j.comnet.2020.107247 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2024.125860_b11 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2016.03.001 – volume: 23 year: 2020 ident: 10.1016/j.eswa.2024.125860_b24 article-title: An integrated rule based intrusion detection system: analysis on unsw-nb15 data set and the real time online dataset publication-title: Cluster Computing doi: 10.1007/s10586-019-03008-x – year: 2016 ident: 10.1016/j.eswa.2024.125860_b10 article-title: Building an intrusion detection system using a filter-based feature selection algorithm publication-title: IEEE Transactions Onuters – ident: 10.1016/j.eswa.2024.125860_b23 doi: 10.5220/0010021700170027 – start-page: 329 year: 2018 ident: 10.1016/j.eswa.2024.125860_b57 article-title: A two-stage classifier approach for network intrusion detection – volume: 22 start-page: 7548 year: 2022 ident: 10.1016/j.eswa.2024.125860_b49 article-title: Anomalous network traffic detection method based on an elevated harris hawks optimization method and gated recurrent unit classifier publication-title: Sensors doi: 10.3390/s22197548 – start-page: 79 year: 2018 ident: 10.1016/j.eswa.2024.125860_b4 – year: 2020 ident: 10.1016/j.eswa.2024.125860_b27 – year: 2021 ident: 10.1016/j.eswa.2024.125860_b47 article-title: Supervised data transformation and dimensionality reduction with a 3-layer multi-layer perceptron for classification problems publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-02841-y – start-page: 86 year: 2014 ident: 10.1016/j.eswa.2024.125860_b31 article-title: A new bio-inspired algorithm: chicken swarm optimization – volume: 38 start-page: 360 year: 2016 ident: 10.1016/j.eswa.2024.125860_b2 article-title: A novel SVM-KNN-PSO ensemble method for intrusion detection system publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.011 – volume: 210 year: 2022 ident: 10.1016/j.eswa.2024.125860_b6 article-title: A new intrusion detection system based on moth–flame optimizer algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118439 – start-page: 285 year: 2022 ident: 10.1016/j.eswa.2024.125860_b48 article-title: Research on internet text sentiment classification based on bert and cnn-bigru – volume: 90 start-page: 353 year: 2023 ident: 10.1016/j.eswa.2024.125860_b43 article-title: Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system publication-title: Information Fusion doi: 10.1016/j.inffus.2022.09.026 – year: 2017 ident: 10.1016/j.eswa.2024.125860_b32 – volume: 7 start-page: 94497 year: 2019 ident: 10.1016/j.eswa.2024.125860_b40 article-title: Tse-ids: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928048 – volume: 28 year: 2022 ident: 10.1016/j.eswa.2024.125860_b33 article-title: An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks publication-title: Wireless Networks doi: 10.1007/s11276-021-02866-x – volume: 120 start-page: 207 year: 2019 ident: 10.1016/j.eswa.2024.125860_b41 article-title: Feature selection based on feature interactions with application to text categorization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.11.018 – volume: 44 start-page: 103 year: 2018 ident: 10.1016/j.eswa.2024.125860_b17 article-title: Multiple classifiers in biometrics. Part 2: Trends and challenges publication-title: Information Fusion doi: 10.1016/j.inffus.2017.12.005 – start-page: 339 year: 2020 ident: 10.1016/j.eswa.2024.125860_b34 article-title: Fake news detection using time series and user features classification publication-title: EvoApplications – year: 2020 ident: 10.1016/j.eswa.2024.125860_b7 article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer publication-title: Expert Systems with Applications – year: 2019 ident: 10.1016/j.eswa.2024.125860_b30 – ident: 10.1016/j.eswa.2024.125860_b18 doi: 10.1109/SPACES.2015.7058223 – ident: 10.1016/j.eswa.2024.125860_b25 doi: 10.1145/3400286.3418255 – volume: 183 year: 2021 ident: 10.1016/j.eswa.2024.125860_b20 article-title: Automatic method for classifying covid-19 patients based on chest x-ray images, using deep features and pso-optimized xgboost publication-title: Expert Systems with Applications – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2024.125860_b12 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 8 year: 2017 ident: 10.1016/j.eswa.2024.125860_b13 article-title: A two-stage classifier approach using reptree algorithm for network intrusion detection publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2017.080651 – volume: 532 start-page: 183 year: 2023 ident: 10.1016/j.eswa.2024.125860_b38 article-title: Rime: A physics-based optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 38 start-page: 581 year: 2021 ident: 10.1016/j.eswa.2024.125860_b46 article-title: Sustainable industrial and operation engineering trends and challenges toward industry 4.0: a data driven analysis publication-title: Journal of Industrial and Production Engineering doi: 10.1080/21681015.2021.1950227 – start-page: 2069 year: 2013 ident: 10.1016/j.eswa.2024.125860_b53 article-title: Enhanced fireworks algorithm – ident: 10.1016/j.eswa.2024.125860_b5 doi: 10.1109/ISCIT.2012.6380910 – volume: 194 start-page: 55 year: 2022 ident: 10.1016/j.eswa.2024.125860_b29 article-title: Effective network intrusion detection via representation learning: A denoising autoencoder approach publication-title: Computer Communications doi: 10.1016/j.comcom.2022.07.027 – volume: 7 start-page: 31711 year: 2019 ident: 10.1016/j.eswa.2024.125860_b52 article-title: Intrusion detection for iot based on improved genetic algorithm and deep belief network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903723 – volume: 13 start-page: 1377 year: 2021 ident: 10.1016/j.eswa.2024.125860_b1 article-title: Iot Botnet detection using salp swarm and ant lion hybrid optimization model publication-title: Symmetry doi: 10.3390/sym13081377 – volume: 12 start-page: 15370 year: 2022 ident: 10.1016/j.eswa.2024.125860_b35 article-title: Id-rdrl: a deep reinforcement learning-based feature selection intrusion detection model publication-title: Scientific Reports doi: 10.1038/s41598-022-19366-3 – volume: 36 start-page: 16 year: 2013 ident: 10.1016/j.eswa.2024.125860_b28 article-title: Intrusion detection system: A comprehensive review publication-title: Journal of Network & Computer Applications doi: 10.1016/j.jnca.2012.09.004 – ident: 10.1016/j.eswa.2024.125860_b56 doi: 10.1007/978-3-319-99807-7_20 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2024.125860_b9 article-title: Multi-objective flower pollination algorithm: a new technique for eeg signal denoising publication-title: Neural Computing and Applications – volume: 9 year: 2021 ident: 10.1016/j.eswa.2024.125860_b14 article-title: An enhanced evolutionary software defect prediction method using island moth flame optimization publication-title: Mathematics – volume: 60 start-page: 19 year: 2016 ident: 10.1016/j.eswa.2024.125860_b3 article-title: A survey of network anomaly detection techniques publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2015.11.016 – year: 2023 ident: 10.1016/j.eswa.2024.125860_b21 – volume: 7 year: 2020 ident: 10.1016/j.eswa.2024.125860_b26 article-title: A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data publication-title: Journal of Big Data doi: 10.1186/s40537-020-00382-x – volume: 10 start-page: 1 year: 2023 ident: 10.1016/j.eswa.2024.125860_b51 article-title: Igrf-rfe: A hybrid feature selection method for mlp-based network intrusion detection on unsw-nb15 dataset publication-title: Journal of Big Data doi: 10.1186/s40537-023-00694-8 – volume: 10 start-page: 49445 year: 2022 ident: 10.1016/j.eswa.2024.125860_b45 article-title: Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3172789 – volume: 53 year: 2020 ident: 10.1016/j.eswa.2024.125860_b37 article-title: A review of unsupervised feature selection methods publication-title: Artificial Intelligence Review: An International Science and Engineering Journal doi: 10.1007/s10462-019-09682-y – volume: 251 year: 2022 ident: 10.1016/j.eswa.2024.125860_b54 article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109215 – ident: 10.1016/j.eswa.2024.125860_b42 doi: 10.1109/CISDA.2009.5356528 – ident: 10.1016/j.eswa.2024.125860_b44 doi: 10.1109/ICAC353642.2021.9697187 – year: 2020 ident: 10.1016/j.eswa.2024.125860_b15 article-title: Optimized deep learning with binary pso for intrusion detection on cse-cic-ids2018 dataset publication-title: Journal of Al-Qadisiyah for Computer Science and Mathematics doi: 10.29304/jqcm.2020.12.3.706 – start-page: 92 year: 2015 ident: 10.1016/j.eswa.2024.125860_b19 article-title: Performance analysis of nsl-kdd dataset using ann – volume: 54 start-page: 100 year: 2019 ident: 10.1016/j.eswa.2024.125860_b36 article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.12.002  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.4765682 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 125860 | 
    
| SubjectTerms | Crow search algorithm Feature selection Intrusion detection system Network attacks  | 
    
| Title | A feature selection algorithm for intrusion detection system based on the enhanced heuristic optimizer | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2024.125860 | 
    
| Volume | 265 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lB2-yfWyym-RYiqUq9qKF3pZNMrErdltsRfDgb3eyD1EQD14WdtlA-DaZ7ws78w0hF6kzXaZ7NpAKRMBRsgdSAl5wwaiupwXh653vxvFowm-m0bRBBnUtjE-rrGJ_GdOLaF096VRodpZZ1rlHcYB0iEc7PAIhCxcV7Fz4Lgbtj680D28_J0q_PT8VwavCmTLHC1Zv3nso5G3keVnYVP5CTt8IZ7hDtiqlSPvlZHZJA_I9sl13YaDVptwnrk8dFPacdFU0tUGkafr8uMBj_2xOUZTSLPelFf65hXX1RmnhTD2LWYr3KAQp5LMiIYDO4LV0cKYLDCnz7B1eDshkePUwGAVV94TAoGZZB1YyFktldGxYqISLi5-GnHOHGjG1PFIauUk6zbpgwhB01BNOKg7WKGZljx2SZr7I4YhQaQyeQgCEBMmVFsppaXD3gkmZsyI9Jpc1bMmyNMlI6uyxp8SDnHiQkxLkYxLVyCY_PnWCUfyPcSf_HHdKNkPftNcn4UVnpImIwzkqibVuFUulRTb617ej8SeuvskQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvTib3H-zMGbdD_atEmOYzimbru4wW6lSV_cxHXDTQQP_u2-tKkoiAcvhZYGwtfkfd-j730h5CoxuhmoVuoJCdxjKNk9IQAvuGBk09ICt_3Og2HUG7O7STipkE7ZC2PLKl3sL2J6Hq3dk4ZDs7GczRoPKA6QDjG1wxQIWRhToA0W-txmYPWPrzoP6z_HC8M9OxfOXOdMUeQFqzdrPuSzOhK9yH0qf2Gnb4zT3SXbTirSdjGbPVKBbJ_slMcwULcrD4hpUwO5Pydd5afaINQ0eX5cYN4_nVNUpXSW2d4K-zyFtXuj8HCmlsZSiveoBClk07wigE7htbBwpguMKfPZO7wcknH3ZtTpee74BE-jaFl7qQiCSEitIh34kpso_2vIGDMoEpOUhVIhOQmjgiZo3wcVtrgRkkGqZZCKVnBEqtkig2NChdaYhgBwAYJJxaVRQuP2BZ0EJuVJjVyXsMXLwiUjLsvHnmILcmxBjguQayQskY1_fOsYw_gf407-Oe6SbPZGg37cvx3en5It357gayvywjNSRfThHGXFWl3ky-YTi7XKpQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature+selection+algorithm+for+intrusion+detection+system+based+on+the+enhanced+heuristic+optimizer&rft.jtitle=Expert+systems+with+applications&rft.au=Yu%2C+Hongchen&rft.au=Zhang%2C+Wei&rft.au=Kang%2C+Chunying&rft.au=Xue%2C+Yankun&rft.date=2025-03-15&rft.issn=0957-4174&rft.volume=265&rft.spage=125860&rft_id=info:doi/10.1016%2Fj.eswa.2024.125860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125860 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |