A feature selection algorithm for intrusion detection system based on the enhanced heuristic optimizer

With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which affect the performance of network intrusion detection systems. Feature selection has thus become a key aspect in building these systems. In...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 265; p. 125860
Main Authors Yu, Hongchen, Zhang, Wei, Kang, Chunying, Xue, Yankun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2025
Subjects
Online AccessGet full text
ISSN0957-4174
DOI10.1016/j.eswa.2024.125860

Cover

Abstract With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which affect the performance of network intrusion detection systems. Feature selection has thus become a key aspect in building these systems. In this paper, an enhanced heuristic optimization algorithm (EHO) is proposed, demonstrating excellent global convergence and superior search capabilities. The CEC standard test functions are used to evaluate the effectiveness of the algorithm. Experimental results show that the proposed algorithm has a faster convergence speed and stronger exploration ability when dealing with multimodal problems, significantly outperforming CSA, CSO, EFA, BWO, and RIME methods. Additionally, a wrapper feature selection method based on the optimization algorithm is proposed, and the algorithm’s performance is evaluated using three public datasets (NSL_KDD, UNSW_NB15, and CIC-IDS2018). The results indicate that the proposed method outperforms existing feature selection algorithms in terms of accuracy, precision, recall, and F1-score, achieving 90.95%, 93.39%, and 98.50% accuracy on the NSL_KDD, UNSW_NB15, and CIC-IDS2018 datasets, respectively.
AbstractList With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which affect the performance of network intrusion detection systems. Feature selection has thus become a key aspect in building these systems. In this paper, an enhanced heuristic optimization algorithm (EHO) is proposed, demonstrating excellent global convergence and superior search capabilities. The CEC standard test functions are used to evaluate the effectiveness of the algorithm. Experimental results show that the proposed algorithm has a faster convergence speed and stronger exploration ability when dealing with multimodal problems, significantly outperforming CSA, CSO, EFA, BWO, and RIME methods. Additionally, a wrapper feature selection method based on the optimization algorithm is proposed, and the algorithm’s performance is evaluated using three public datasets (NSL_KDD, UNSW_NB15, and CIC-IDS2018). The results indicate that the proposed method outperforms existing feature selection algorithms in terms of accuracy, precision, recall, and F1-score, achieving 90.95%, 93.39%, and 98.50% accuracy on the NSL_KDD, UNSW_NB15, and CIC-IDS2018 datasets, respectively.
ArticleNumber 125860
Author Kang, Chunying
Xue, Yankun
Yu, Hongchen
Zhang, Wei
Author_xml – sequence: 1
  givenname: Hongchen
  orcidid: 0009-0001-7185-0606
  surname: Yu
  fullname: Yu, Hongchen
  email: 2212634@s.hlju.edu.cn
  organization: School of Cyberspace, Hangzhou Dianzi University, Baiyang Street, Hangzhou 310018, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-3477-718X
  surname: Zhang
  fullname: Zhang, Wei
  email: zhangwei@hlju.edu.cn
  organization: Modern Education Technology Center, University of the Heilongjiang, Harbin, Heilongjiang, 150000, China
– sequence: 3
  givenname: Chunying
  surname: Kang
  fullname: Kang, Chunying
  email: kangchunying@hlju.edu.cn
  organization: School of Data Science and Technology, University of the Heilongjiang, Harbin, Heilongjiang, 150000, China
– sequence: 4
  givenname: Yankun
  surname: Xue
  fullname: Xue, Yankun
  email: 22226773@s.hlju.edu.cn
  organization: School of Data Science and Technology, University of the Heilongjiang, Harbin, Heilongjiang, 150000, China
BookMark eNp9kM1OwzAQhH0oEi3wApz8AgnrnySOxKWq-JMqcYGz5Thr4qpJKtsFlacnUXvmtJrVzGrnW5HFMA5IyD2DnAErH3Y5xh-Tc-AyZ7xQJSzIEuqiyiSr5DVZxbgDYBVAtSRuTR2adAxII-7RJj8O1Oy_xuBT11M3BuqHFI5x3reYLo54igl72piILZ106pDi0JnBTrrDY_AxeUvHQ_K9_8VwS66c2Ue8u8wb8vn89LF5zbbvL2-b9TazvGApa5UQpaptU1rB68qVAKJgUkqnAEwri7phXCnXCEDLOTYFq5yqJba2Fq1i4obw810bxhgDOn0IvjfhpBnomY7e6ZmOnunoM50p9HgO4fTZt8ego_U4V_Fh6qvb0f8X_wNu6nOF
Cites_doi 10.1109/ICREST.2019.8644161
10.1016/j.cose.2017.06.005
10.1109/ACCESS.2018.2820092
10.1016/j.inffus.2017.12.003
10.1016/j.comnet.2020.107247
10.1016/j.compstruc.2016.03.001
10.1007/s10586-019-03008-x
10.5220/0010021700170027
10.3390/s22197548
10.1007/s12652-020-02841-y
10.1016/j.asoc.2015.10.011
10.1016/j.eswa.2022.118439
10.1016/j.inffus.2022.09.026
10.1109/ACCESS.2019.2928048
10.1007/s11276-021-02866-x
10.1016/j.eswa.2018.11.018
10.1016/j.inffus.2017.12.005
10.1109/SPACES.2015.7058223
10.1145/3400286.3418255
10.1016/j.future.2019.02.028
10.14569/IJACSA.2017.080651
10.1016/j.neucom.2023.02.010
10.1080/21681015.2021.1950227
10.1109/ISCIT.2012.6380910
10.1016/j.comcom.2022.07.027
10.1109/ACCESS.2019.2903723
10.3390/sym13081377
10.1038/s41598-022-19366-3
10.1016/j.jnca.2012.09.004
10.1007/978-3-319-99807-7_20
10.1016/j.jnca.2015.11.016
10.1186/s40537-020-00382-x
10.1186/s40537-023-00694-8
10.1109/ACCESS.2022.3172789
10.1007/s10462-019-09682-y
10.1016/j.knosys.2022.109215
10.1109/CISDA.2009.5356528
10.1109/ICAC353642.2021.9697187
10.29304/jqcm.2020.12.3.706
10.1016/j.cogsys.2018.12.002
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2024.125860
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_125860
S0957417424027271
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c251t-d833689cb6c3297f600351444f800ad459b1288fb30ec22eb517f894edc93d813
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Wed Oct 01 06:32:12 EDT 2025
Sat Apr 05 15:39:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Crow search algorithm
Network attacks
Intrusion detection system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-d833689cb6c3297f600351444f800ad459b1288fb30ec22eb517f894edc93d813
ORCID 0000-0002-3477-718X
0009-0001-7185-0606
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_125860
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_125860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhong, Li, Meng (b54) 2022; 251
Thakkar, A., Rane, N., Meher, A., & Pawar, S. (2021). Application for counterfeit detection in supply chain using blockchain technology. In
Zheng, Janecek, Tan (b53) 2013
Fierrez, Morales, Vera-Rodriguez, Camacho (b17) 2018; 44
Trojovská, Dehghani, Trojovskỳ (b45) 2022; 10
Zong, W., Chow, Y. W., & Susilo, W. (2018a). A two-stage classifier approach for network intrusion detection. In
Tang, Dai, Xiang (b41) 2019; 120
(pp. 92–96).
Aburomman, Ibne Reaz (b2) 2016; 38
(pp. 643–646).
Yin, Jang-Jaccard, Xu, Singh, Zhu, Sabrina, Kwak (b51) 2023; 10
Xiao, Kang, Yu, Fan, Zhang (b49) 2022; 22
Leevy, Khoshgoftaar (b26) 2020; 7
Farhan, Maolood, Hassan (b15) 2020
Abu Khurma, Almomani, Aljarah (b1) 2021; 13
Al Shorman, Faris, Castillo, Merelo Guervós, Al-Madi (b4) 2018
Damaeviius, Robertas (b14) 2021; 9
Ingre, Yadav (b19) 2015
Ingre, B., & Yadav, A. (2015a). Performance analysis of nsl-kdd dataset using ann. In
AlazzamHadeel, Eddin (b7) 2020
Kana (b21) 2023
.
Alazab, A., Hobbs, M., Abawajy, J., & Alazab, M. (2012). Using feature selection for intrusion detection system. In
Júnior, da Cruz, Diniz, da Silva, Junior, Silva, de Paiva, Nunes, Gattass (b20) 2021; 183
Zhang, Li, Wang (b52) 2019; 7
Zhou, Cheng, Jiang, Dai (b55) 2020; 174
Otair, Ibrahim, Abualigah, Altalhi, Sumari (b33) 2022; 28
Khurma, R. A., Castillo, P. A., Sharieh, A. A., & Aljarah, I. (2020). Feature selection using binary moth flame optimization with time varying flames strategies. In
Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the kdd cup 99 data set. In
Thakkar, Lohiya (b43) 2023; 90
Alkareem, Tajudin, Azmi, Xin-She, Abed, Hameed, Seifedine, Imran (b9) 2022
Wei (b48) 2022
Moustafa, Slay (b32) 2017
Ren, Zeng, Cao, Zhang (b35) 2022; 12
B, C, D, D, E, F (b12) 2019; 97
Li, Lee, Jung, Youn, Camacho (b27) 2020
Martín, Lara-Cabrera, Camacho (b30) 2019
Valls, Aler, Galván, Camacho (b47) 2021
(pp. 1–6).
Previti, Rodríguez-Fernández, Camacho, Carchiolo, Malgeri (b34) 2020
Fierrez, Camacho, David (b16) 2018; 44
Lee, G. J., Li, G., Camacho, D., & Jung, J. J. (2020). Discovering synergic association by feature clustering from soccer players. In
Zong, Chow, Susilo (b57) 2018
Lopes, Zou, Abdulqadder, Ruambo, Yuan, Jin (b29) 2022; 194
Su, Zhao, Heidari, Liu, Zhang, Mafarja, Chen (b38) 2023; 532
Khammassi, Krichen (b22) 2017; 70
Xu, Fu, Fang, Cao, Su, Wei (b50) 2018
Ambusaidi, Mohammed, Xiangjian, Priyadarsi, Zhiyuan (b10) 2016
(pp. 107–112).
Liao, Lin, Lin, Tung (b28) 2013; 36
Ahmed, Naser Mahmood, Hu (b3) 2016; 60
Sharma, Sundaram, Sharma, Sharma, Gupta (b36) 2019; 54
Belouch, El Hadaj, Idhammad (b13) 2017; 8
Alazab, Khurma, Awajan, Camacho (b6) 2022; 210
Tama, Comuzzi, Rhee (b40) 2019; 7
Askarzadeh (b11) 2016; 169
Kumar, VikashSinha, KumarPandey (b24) 2020; 23
Ali, Al Mohammed, Ismail, Zolkipli (b8) 2018; 6
Meng, Liu, Gao, Zhang (b31) 2014
Solorio-Fernandez, Trinidad, Fco (b37) 2020; 53
Taher, K. A., Mohammed Yasin Jisan, B., & Rahman, M. M. (2019). Network intrusion detection using supervised machine learning technique with feature selection. In
Tseng, Tran, Ha, Bui, Lim (b46) 2021; 38
Ali (10.1016/j.eswa.2024.125860_b8) 2018; 6
Damaeviius (10.1016/j.eswa.2024.125860_b14) 2021; 9
Júnior (10.1016/j.eswa.2024.125860_b20) 2021; 183
Zhang (10.1016/j.eswa.2024.125860_b52) 2019; 7
Li (10.1016/j.eswa.2024.125860_b27) 2020
10.1016/j.eswa.2024.125860_b44
Belouch (10.1016/j.eswa.2024.125860_b13) 2017; 8
10.1016/j.eswa.2024.125860_b42
Xu (10.1016/j.eswa.2024.125860_b50) 2018
Meng (10.1016/j.eswa.2024.125860_b31) 2014
Leevy (10.1016/j.eswa.2024.125860_b26) 2020; 7
Previti (10.1016/j.eswa.2024.125860_b34) 2020
B (10.1016/j.eswa.2024.125860_b12) 2019; 97
Ren (10.1016/j.eswa.2024.125860_b35) 2022; 12
Martín (10.1016/j.eswa.2024.125860_b30) 2019
Moustafa (10.1016/j.eswa.2024.125860_b32) 2017
Sharma (10.1016/j.eswa.2024.125860_b36) 2019; 54
Fierrez (10.1016/j.eswa.2024.125860_b17) 2018; 44
10.1016/j.eswa.2024.125860_b39
Zheng (10.1016/j.eswa.2024.125860_b53) 2013
Farhan (10.1016/j.eswa.2024.125860_b15) 2020
Kana (10.1016/j.eswa.2024.125860_b21) 2023
Tseng (10.1016/j.eswa.2024.125860_b46) 2021; 38
Thakkar (10.1016/j.eswa.2024.125860_b43) 2023; 90
10.1016/j.eswa.2024.125860_b5
AlazzamHadeel (10.1016/j.eswa.2024.125860_b7) 2020
Yin (10.1016/j.eswa.2024.125860_b51) 2023; 10
Ahmed (10.1016/j.eswa.2024.125860_b3) 2016; 60
Ingre (10.1016/j.eswa.2024.125860_b19) 2015
Zhong (10.1016/j.eswa.2024.125860_b54) 2022; 251
Valls (10.1016/j.eswa.2024.125860_b47) 2021
10.1016/j.eswa.2024.125860_b25
Fierrez (10.1016/j.eswa.2024.125860_b16) 2018; 44
10.1016/j.eswa.2024.125860_b23
Askarzadeh (10.1016/j.eswa.2024.125860_b11) 2016; 169
Aburomman (10.1016/j.eswa.2024.125860_b2) 2016; 38
Tama (10.1016/j.eswa.2024.125860_b40) 2019; 7
Tang (10.1016/j.eswa.2024.125860_b41) 2019; 120
Trojovská (10.1016/j.eswa.2024.125860_b45) 2022; 10
Otair (10.1016/j.eswa.2024.125860_b33) 2022; 28
Alazab (10.1016/j.eswa.2024.125860_b6) 2022; 210
10.1016/j.eswa.2024.125860_b18
Wei (10.1016/j.eswa.2024.125860_b48) 2022
10.1016/j.eswa.2024.125860_b56
Abu Khurma (10.1016/j.eswa.2024.125860_b1) 2021; 13
Liao (10.1016/j.eswa.2024.125860_b28) 2013; 36
Al Shorman (10.1016/j.eswa.2024.125860_b4) 2018
Zhou (10.1016/j.eswa.2024.125860_b55) 2020; 174
Alkareem (10.1016/j.eswa.2024.125860_b9) 2022
Su (10.1016/j.eswa.2024.125860_b38) 2023; 532
Lopes (10.1016/j.eswa.2024.125860_b29) 2022; 194
Kumar (10.1016/j.eswa.2024.125860_b24) 2020; 23
Zong (10.1016/j.eswa.2024.125860_b57) 2018
Khammassi (10.1016/j.eswa.2024.125860_b22) 2017; 70
Solorio-Fernandez (10.1016/j.eswa.2024.125860_b37) 2020; 53
Xiao (10.1016/j.eswa.2024.125860_b49) 2022; 22
Ambusaidi (10.1016/j.eswa.2024.125860_b10) 2016
References_xml – volume: 38
  start-page: 360
  year: 2016
  end-page: 372
  ident: b2
  article-title: A novel SVM-KNN-PSO ensemble method for intrusion detection system
  publication-title: Applied Soft Computing
– start-page: 339
  year: 2020
  end-page: 353
  ident: b34
  article-title: Fake news detection using time series and user features classification
  publication-title: EvoApplications
– volume: 10
  start-page: 49445
  year: 2022
  end-page: 49473
  ident: b45
  article-title: Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm
  publication-title: IEEE Access
– year: 2020
  ident: b27
  article-title: Deep learning for eeg data analytics: a survey
– volume: 36
  start-page: 16
  year: 2013
  end-page: 24
  ident: b28
  article-title: Intrusion detection system: A comprehensive review
  publication-title: Journal of Network & Computer Applications
– start-page: 92
  year: 2015
  end-page: 96
  ident: b19
  article-title: Performance analysis of nsl-kdd dataset using ann
  publication-title: 2015 international conference on signal processing and communication engineering systems
– reference: Lee, G. J., Li, G., Camacho, D., & Jung, J. J. (2020). Discovering synergic association by feature clustering from soccer players. In
– volume: 6
  start-page: 20255
  year: 2018
  end-page: 20261
  ident: b8
  article-title: A new intrusion detection system based on fast learning network and particle swarm optimization
  publication-title: IEEE Access
– volume: 120
  start-page: 207
  year: 2019
  end-page: 216
  ident: b41
  article-title: Feature selection based on feature interactions with application to text categorization
  publication-title: Expert Systems with Applications
– volume: 22
  start-page: 7548
  year: 2022
  ident: b49
  article-title: Anomalous network traffic detection method based on an elevated harris hawks optimization method and gated recurrent unit classifier
  publication-title: Sensors
– volume: 532
  start-page: 183
  year: 2023
  end-page: 214
  ident: b38
  article-title: Rime: A physics-based optimization
  publication-title: Neurocomputing
– start-page: 329
  year: 2018
  end-page: 340
  ident: b57
  article-title: A two-stage classifier approach for network intrusion detection
  publication-title: Information security practice and experience: 14th international conference, ISPEC 2018, Tokyo, Japan, September 25-27, 2018, proceedings 14
– volume: 44
  start-page: 57
  year: 2018
  end-page: 64
  ident: b16
  article-title: Multiple classifiers in biometrics. Part 1: Fundamentals and review
  publication-title: Information Fusion
– volume: 54
  start-page: 100
  year: 2019
  end-page: 115
  ident: b36
  article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization
  publication-title: Cognitive Systems Research
– reference: Zong, W., Chow, Y. W., & Susilo, W. (2018a). A two-stage classifier approach for network intrusion detection. In
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b12
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– reference: Taher, K. A., Mohammed Yasin Jisan, B., & Rahman, M. M. (2019). Network intrusion detection using supervised machine learning technique with feature selection. In
– reference: Khurma, R. A., Castillo, P. A., Sharieh, A. A., & Aljarah, I. (2020). Feature selection using binary moth flame optimization with time varying flames strategies. In
– volume: 194
  start-page: 55
  year: 2022
  end-page: 65
  ident: b29
  article-title: Effective network intrusion detection via representation learning: A denoising autoencoder approach
  publication-title: Computer Communications
– reference: (pp. 92–96).
– volume: 12
  start-page: 15370
  year: 2022
  ident: b35
  article-title: Id-rdrl: a deep reinforcement learning-based feature selection intrusion detection model
  publication-title: Scientific Reports
– volume: 44
  start-page: 103
  year: 2018
  end-page: 112
  ident: b17
  article-title: Multiple classifiers in biometrics. Part 2: Trends and challenges
  publication-title: Information Fusion
– volume: 70
  start-page: 255
  year: 2017
  end-page: 277
  ident: b22
  article-title: A ga-lr wrapper approach for feature selection in network intrusion detection
  publication-title: Computers & Security
– year: 2020
  ident: b7
  article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer
  publication-title: Expert Systems with Applications
– volume: 210
  year: 2022
  ident: b6
  article-title: A new intrusion detection system based on moth–flame optimizer algorithm
  publication-title: Expert Systems with Applications
– volume: 53
  year: 2020
  ident: b37
  article-title: A review of unsupervised feature selection methods
  publication-title: Artificial Intelligence Review: An International Science and Engineering Journal
– volume: 9
  year: 2021
  ident: b14
  article-title: An enhanced evolutionary software defect prediction method using island moth flame optimization
  publication-title: Mathematics
– start-page: 86
  year: 2014
  end-page: 94
  ident: b31
  article-title: A new bio-inspired algorithm: chicken swarm optimization
  publication-title: Advances in swarm intelligence: 5th international conference, ICSI 2014, Hefei, China, October 17-20, 2014, proceedings, part I 5
– year: 2017
  ident: b32
  article-title: A hybrid feature selection for network intrusion detection systems: Central points
– reference: Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the kdd cup 99 data set. In
– year: 2021
  ident: b47
  article-title: Supervised data transformation and dimensionality reduction with a 3-layer multi-layer perceptron for classification problems
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 251
  year: 2022
  ident: b54
  article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm
  publication-title: Knowledge-Based Systems
– year: 2023
  ident: b21
  article-title: Function optimization using swarm intelligence algorithms
– reference: Thakkar, A., Rane, N., Meher, A., & Pawar, S. (2021). Application for counterfeit detection in supply chain using blockchain technology. In
– reference: (pp. 1–6).
– volume: 13
  start-page: 1377
  year: 2021
  ident: b1
  article-title: Iot Botnet detection using salp swarm and ant lion hybrid optimization model
  publication-title: Symmetry
– volume: 8
  year: 2017
  ident: b13
  article-title: A two-stage classifier approach using reptree algorithm for network intrusion detection
  publication-title: International Journal of Advanced Computer Science and Applications
– start-page: 10
  year: 2018
  end-page: 15
  ident: b50
  article-title: An improved binary whale optimization algorithm for feature selection of network intrusion detection
  publication-title: 2018 IEEE 4th international symposium on wireless systems within the international conferences on intelligent data acquisition and advanced computing systems
– reference: (pp. 643–646).
– volume: 90
  start-page: 353
  year: 2023
  end-page: 363
  ident: b43
  article-title: Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system
  publication-title: Information Fusion
– reference: (pp. 107–112).
– volume: 60
  start-page: 19
  year: 2016
  end-page: 31
  ident: b3
  article-title: A survey of network anomaly detection techniques
  publication-title: Journal of Network and Computer Applications
– volume: 7
  start-page: 31711
  year: 2019
  end-page: 31722
  ident: b52
  article-title: Intrusion detection for iot based on improved genetic algorithm and deep belief network
  publication-title: IEEE Access
– volume: 174
  year: 2020
  ident: b55
  article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier
  publication-title: Computer Networks
– start-page: 2069
  year: 2013
  end-page: 2077
  ident: b53
  article-title: Enhanced fireworks algorithm
  publication-title: 2013 IEEE congress on evolutionary computation
– year: 2019
  ident: b30
  article-title: Android malware detection through hybrid features fusion and ensemble classifiers: the andropytool framework and the omnidroid dataset
– volume: 38
  start-page: 581
  year: 2021
  end-page: 598
  ident: b46
  article-title: Sustainable industrial and operation engineering trends and challenges toward industry 4.0: a data driven analysis
  publication-title: Journal of Industrial and Production Engineering
– year: 2020
  ident: b15
  article-title: Optimized deep learning with binary pso for intrusion detection on cse-cic-ids2018 dataset
  publication-title: Journal of Al-Qadisiyah for Computer Science and Mathematics
– start-page: 285
  year: 2022
  end-page: 289
  ident: b48
  article-title: Research on internet text sentiment classification based on bert and cnn-bigru
  publication-title: 2022 11th international conference on communications, circuits and systems
– reference: Ingre, B., & Yadav, A. (2015a). Performance analysis of nsl-kdd dataset using ann. In
– year: 2016
  ident: b10
  article-title: Building an intrusion detection system using a filter-based feature selection algorithm
  publication-title: IEEE Transactions Onuters
– start-page: 1
  year: 2022
  end-page: 20
  ident: b9
  article-title: Multi-objective flower pollination algorithm: a new technique for eeg signal denoising
  publication-title: Neural Computing and Applications
– volume: 183
  year: 2021
  ident: b20
  article-title: Automatic method for classifying covid-19 patients based on chest x-ray images, using deep features and pso-optimized xgboost
  publication-title: Expert Systems with Applications
– volume: 28
  year: 2022
  ident: b33
  article-title: An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks
  publication-title: Wireless Networks
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b11
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Computers & Structures
– volume: 23
  year: 2020
  ident: b24
  article-title: An integrated rule based intrusion detection system: analysis on unsw-nb15 data set and the real time online dataset
  publication-title: Cluster Computing
– reference: .
– start-page: 79
  year: 2018
  end-page: 85
  ident: b4
  article-title: The influence of input data standardization methods on the prediction accuracy of genetic programming generated classifiers
– reference: Alazab, A., Hobbs, M., Abawajy, J., & Alazab, M. (2012). Using feature selection for intrusion detection system. In
– volume: 7
  start-page: 94497
  year: 2019
  end-page: 94507
  ident: b40
  article-title: Tse-ids: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system
  publication-title: IEEE Access
– volume: 7
  year: 2020
  ident: b26
  article-title: A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data
  publication-title: Journal of Big Data
– volume: 10
  start-page: 1
  year: 2023
  end-page: 26
  ident: b51
  article-title: Igrf-rfe: A hybrid feature selection method for mlp-based network intrusion detection on unsw-nb15 dataset
  publication-title: Journal of Big Data
– ident: 10.1016/j.eswa.2024.125860_b39
  doi: 10.1109/ICREST.2019.8644161
– volume: 70
  start-page: 255
  year: 2017
  ident: 10.1016/j.eswa.2024.125860_b22
  article-title: A ga-lr wrapper approach for feature selection in network intrusion detection
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2017.06.005
– volume: 6
  start-page: 20255
  year: 2018
  ident: 10.1016/j.eswa.2024.125860_b8
  article-title: A new intrusion detection system based on fast learning network and particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820092
– start-page: 10
  year: 2018
  ident: 10.1016/j.eswa.2024.125860_b50
  article-title: An improved binary whale optimization algorithm for feature selection of network intrusion detection
– volume: 44
  start-page: 57
  year: 2018
  ident: 10.1016/j.eswa.2024.125860_b16
  article-title: Multiple classifiers in biometrics. Part 1: Fundamentals and review
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.003
– volume: 174
  year: 2020
  ident: 10.1016/j.eswa.2024.125860_b55
  article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107247
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2024.125860_b11
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 23
  year: 2020
  ident: 10.1016/j.eswa.2024.125860_b24
  article-title: An integrated rule based intrusion detection system: analysis on unsw-nb15 data set and the real time online dataset
  publication-title: Cluster Computing
  doi: 10.1007/s10586-019-03008-x
– year: 2016
  ident: 10.1016/j.eswa.2024.125860_b10
  article-title: Building an intrusion detection system using a filter-based feature selection algorithm
  publication-title: IEEE Transactions Onuters
– ident: 10.1016/j.eswa.2024.125860_b23
  doi: 10.5220/0010021700170027
– start-page: 329
  year: 2018
  ident: 10.1016/j.eswa.2024.125860_b57
  article-title: A two-stage classifier approach for network intrusion detection
– volume: 22
  start-page: 7548
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b49
  article-title: Anomalous network traffic detection method based on an elevated harris hawks optimization method and gated recurrent unit classifier
  publication-title: Sensors
  doi: 10.3390/s22197548
– start-page: 79
  year: 2018
  ident: 10.1016/j.eswa.2024.125860_b4
– year: 2020
  ident: 10.1016/j.eswa.2024.125860_b27
– year: 2021
  ident: 10.1016/j.eswa.2024.125860_b47
  article-title: Supervised data transformation and dimensionality reduction with a 3-layer multi-layer perceptron for classification problems
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-02841-y
– start-page: 86
  year: 2014
  ident: 10.1016/j.eswa.2024.125860_b31
  article-title: A new bio-inspired algorithm: chicken swarm optimization
– volume: 38
  start-page: 360
  year: 2016
  ident: 10.1016/j.eswa.2024.125860_b2
  article-title: A novel SVM-KNN-PSO ensemble method for intrusion detection system
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.011
– volume: 210
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b6
  article-title: A new intrusion detection system based on moth–flame optimizer algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118439
– start-page: 285
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b48
  article-title: Research on internet text sentiment classification based on bert and cnn-bigru
– volume: 90
  start-page: 353
  year: 2023
  ident: 10.1016/j.eswa.2024.125860_b43
  article-title: Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2022.09.026
– year: 2017
  ident: 10.1016/j.eswa.2024.125860_b32
– volume: 7
  start-page: 94497
  year: 2019
  ident: 10.1016/j.eswa.2024.125860_b40
  article-title: Tse-ids: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928048
– volume: 28
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b33
  article-title: An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks
  publication-title: Wireless Networks
  doi: 10.1007/s11276-021-02866-x
– volume: 120
  start-page: 207
  year: 2019
  ident: 10.1016/j.eswa.2024.125860_b41
  article-title: Feature selection based on feature interactions with application to text categorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.11.018
– volume: 44
  start-page: 103
  year: 2018
  ident: 10.1016/j.eswa.2024.125860_b17
  article-title: Multiple classifiers in biometrics. Part 2: Trends and challenges
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.005
– start-page: 339
  year: 2020
  ident: 10.1016/j.eswa.2024.125860_b34
  article-title: Fake news detection using time series and user features classification
  publication-title: EvoApplications
– year: 2020
  ident: 10.1016/j.eswa.2024.125860_b7
  article-title: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer
  publication-title: Expert Systems with Applications
– year: 2019
  ident: 10.1016/j.eswa.2024.125860_b30
– ident: 10.1016/j.eswa.2024.125860_b18
  doi: 10.1109/SPACES.2015.7058223
– ident: 10.1016/j.eswa.2024.125860_b25
  doi: 10.1145/3400286.3418255
– volume: 183
  year: 2021
  ident: 10.1016/j.eswa.2024.125860_b20
  article-title: Automatic method for classifying covid-19 patients based on chest x-ray images, using deep features and pso-optimized xgboost
  publication-title: Expert Systems with Applications
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2024.125860_b12
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 8
  year: 2017
  ident: 10.1016/j.eswa.2024.125860_b13
  article-title: A two-stage classifier approach using reptree algorithm for network intrusion detection
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2017.080651
– volume: 532
  start-page: 183
  year: 2023
  ident: 10.1016/j.eswa.2024.125860_b38
  article-title: Rime: A physics-based optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.010
– volume: 38
  start-page: 581
  year: 2021
  ident: 10.1016/j.eswa.2024.125860_b46
  article-title: Sustainable industrial and operation engineering trends and challenges toward industry 4.0: a data driven analysis
  publication-title: Journal of Industrial and Production Engineering
  doi: 10.1080/21681015.2021.1950227
– start-page: 2069
  year: 2013
  ident: 10.1016/j.eswa.2024.125860_b53
  article-title: Enhanced fireworks algorithm
– ident: 10.1016/j.eswa.2024.125860_b5
  doi: 10.1109/ISCIT.2012.6380910
– volume: 194
  start-page: 55
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b29
  article-title: Effective network intrusion detection via representation learning: A denoising autoencoder approach
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2022.07.027
– volume: 7
  start-page: 31711
  year: 2019
  ident: 10.1016/j.eswa.2024.125860_b52
  article-title: Intrusion detection for iot based on improved genetic algorithm and deep belief network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903723
– volume: 13
  start-page: 1377
  year: 2021
  ident: 10.1016/j.eswa.2024.125860_b1
  article-title: Iot Botnet detection using salp swarm and ant lion hybrid optimization model
  publication-title: Symmetry
  doi: 10.3390/sym13081377
– volume: 12
  start-page: 15370
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b35
  article-title: Id-rdrl: a deep reinforcement learning-based feature selection intrusion detection model
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-19366-3
– volume: 36
  start-page: 16
  year: 2013
  ident: 10.1016/j.eswa.2024.125860_b28
  article-title: Intrusion detection system: A comprehensive review
  publication-title: Journal of Network & Computer Applications
  doi: 10.1016/j.jnca.2012.09.004
– ident: 10.1016/j.eswa.2024.125860_b56
  doi: 10.1007/978-3-319-99807-7_20
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b9
  article-title: Multi-objective flower pollination algorithm: a new technique for eeg signal denoising
  publication-title: Neural Computing and Applications
– volume: 9
  year: 2021
  ident: 10.1016/j.eswa.2024.125860_b14
  article-title: An enhanced evolutionary software defect prediction method using island moth flame optimization
  publication-title: Mathematics
– volume: 60
  start-page: 19
  year: 2016
  ident: 10.1016/j.eswa.2024.125860_b3
  article-title: A survey of network anomaly detection techniques
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2015.11.016
– year: 2023
  ident: 10.1016/j.eswa.2024.125860_b21
– volume: 7
  year: 2020
  ident: 10.1016/j.eswa.2024.125860_b26
  article-title: A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-020-00382-x
– volume: 10
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.125860_b51
  article-title: Igrf-rfe: A hybrid feature selection method for mlp-based network intrusion detection on unsw-nb15 dataset
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-023-00694-8
– volume: 10
  start-page: 49445
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b45
  article-title: Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172789
– volume: 53
  year: 2020
  ident: 10.1016/j.eswa.2024.125860_b37
  article-title: A review of unsupervised feature selection methods
  publication-title: Artificial Intelligence Review: An International Science and Engineering Journal
  doi: 10.1007/s10462-019-09682-y
– volume: 251
  year: 2022
  ident: 10.1016/j.eswa.2024.125860_b54
  article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109215
– ident: 10.1016/j.eswa.2024.125860_b42
  doi: 10.1109/CISDA.2009.5356528
– ident: 10.1016/j.eswa.2024.125860_b44
  doi: 10.1109/ICAC353642.2021.9697187
– year: 2020
  ident: 10.1016/j.eswa.2024.125860_b15
  article-title: Optimized deep learning with binary pso for intrusion detection on cse-cic-ids2018 dataset
  publication-title: Journal of Al-Qadisiyah for Computer Science and Mathematics
  doi: 10.29304/jqcm.2020.12.3.706
– start-page: 92
  year: 2015
  ident: 10.1016/j.eswa.2024.125860_b19
  article-title: Performance analysis of nsl-kdd dataset using ann
– volume: 54
  start-page: 100
  year: 2019
  ident: 10.1016/j.eswa.2024.125860_b36
  article-title: Diagnosis of Parkinson’s disease using modified grey wolf optimization
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.12.002
SSID ssj0017007
Score 2.4765682
SecondaryResourceType review_article
Snippet With the rapid development of network technology, the dramatic growth of network traffic has also led to a large number of irrelevant features and noise, which...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 125860
SubjectTerms Crow search algorithm
Feature selection
Intrusion detection system
Network attacks
Title A feature selection algorithm for intrusion detection system based on the enhanced heuristic optimizer
URI https://dx.doi.org/10.1016/j.eswa.2024.125860
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lB2-yfWyym-RYiqUq9qKF3pZNMrErdltsRfDgb3eyD1EQD14WdtlA-DaZ7ws78w0hF6kzXaZ7NpAKRMBRsgdSAl5wwaiupwXh653vxvFowm-m0bRBBnUtjE-rrGJ_GdOLaF096VRodpZZ1rlHcYB0iEc7PAIhCxcV7Fz4Lgbtj680D28_J0q_PT8VwavCmTLHC1Zv3nso5G3keVnYVP5CTt8IZ7hDtiqlSPvlZHZJA_I9sl13YaDVptwnrk8dFPacdFU0tUGkafr8uMBj_2xOUZTSLPelFf65hXX1RmnhTD2LWYr3KAQp5LMiIYDO4LV0cKYLDCnz7B1eDshkePUwGAVV94TAoGZZB1YyFktldGxYqISLi5-GnHOHGjG1PFIauUk6zbpgwhB01BNOKg7WKGZljx2SZr7I4YhQaQyeQgCEBMmVFsppaXD3gkmZsyI9Jpc1bMmyNMlI6uyxp8SDnHiQkxLkYxLVyCY_PnWCUfyPcSf_HHdKNkPftNcn4UVnpImIwzkqibVuFUulRTb617ej8SeuvskQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvTib3H-zMGbdD_atEmOYzimbru4wW6lSV_cxHXDTQQP_u2-tKkoiAcvhZYGwtfkfd-j730h5CoxuhmoVuoJCdxjKNk9IQAvuGBk09ICt_3Og2HUG7O7STipkE7ZC2PLKl3sL2J6Hq3dk4ZDs7GczRoPKA6QDjG1wxQIWRhToA0W-txmYPWPrzoP6z_HC8M9OxfOXOdMUeQFqzdrPuSzOhK9yH0qf2Gnb4zT3SXbTirSdjGbPVKBbJ_slMcwULcrD4hpUwO5Pydd5afaINQ0eX5cYN4_nVNUpXSW2d4K-zyFtXuj8HCmlsZSiveoBClk07wigE7htbBwpguMKfPZO7wcknH3ZtTpee74BE-jaFl7qQiCSEitIh34kpso_2vIGDMoEpOUhVIhOQmjgiZo3wcVtrgRkkGqZZCKVnBEqtkig2NChdaYhgBwAYJJxaVRQuP2BZ0EJuVJjVyXsMXLwiUjLsvHnmILcmxBjguQayQskY1_fOsYw_gf407-Oe6SbPZGg37cvx3en5It357gayvywjNSRfThHGXFWl3ky-YTi7XKpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature+selection+algorithm+for+intrusion+detection+system+based+on+the+enhanced+heuristic+optimizer&rft.jtitle=Expert+systems+with+applications&rft.au=Yu%2C+Hongchen&rft.au=Zhang%2C+Wei&rft.au=Kang%2C+Chunying&rft.au=Xue%2C+Yankun&rft.date=2025-03-15&rft.issn=0957-4174&rft.volume=265&rft.spage=125860&rft_id=info:doi/10.1016%2Fj.eswa.2024.125860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_125860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon