A Real-time skeleton-based fall detection algorithm based on temporal convolutional networks and transformer encoder

•Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm (TCNTE).•Weighted focal loss was implemented to address the severe class imbalance issue.•TCNTE demonstrated state-of-the-art accuracy on various visio...

Full description

Saved in:
Bibliographic Details
Published inPervasive and mobile computing Vol. 107; p. 102016
Main Authors Yu, Xiaoqun, Wang, Chenfeng, Wu, Wenyu, Xiong, Shuping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN1574-1192
DOI10.1016/j.pmcj.2025.102016

Cover

Abstract •Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm (TCNTE).•Weighted focal loss was implemented to address the severe class imbalance issue.•TCNTE demonstrated state-of-the-art accuracy on various vision-based fall datasets.•TCNTE achieved excellent real-time performance (19 fps) on edge devices. As the population of older individuals living independently rises, coupled with the heightened risk of falls among this demographic, the need for automatic fall detection systems becomes increasingly urgent to ensure timely medical intervention. Computer vision (CV)-based methodologies have emerged as a preferred approach among researchers due to their contactless and pervasive nature. However, existing CV-based solutions often suffer from either poor robustness or prohibitively high computational requirements, impeding their practical implementation in elderly living environments. To address these challenges, we introduce TCNTE, a real-time skeleton-based fall detection algorithm that combines Temporal Convolutional Network (TCN) with Transformer Encoder (TE). We also successfully mitigate the severe class imbalance issue by implementing weighted focal loss. Cross-validation on multiple publicly available vision-based fall datasets demonstrates TCNTE's superiority over individual models (TCN and TE) and existing state-of-the-art fall detection algorithms, achieving remarkable accuracies (front view of UP-Fall: 99.58 %; side view of UP-Fall: 98.75 %; Le2i: 97.01 %; GMDCSA-24: 92.99 %) alongside practical viability. Visualizations using t-distributed stochastic neighbor embedding (t-SNE) reveal TCNTE's superior separation margin and cohesive clustering between fall and non-fall classes compared to TCN and TE. Crucially, TCNTE is designed for pervasive deployment in mobile and resource-constrained environments. Integrated with YOLOv8 pose estimation and BoT-SORT human tracking, the algorithm operates on NVIDIA Jetson Orin NX edge device, achieving an average frame rate of 19 fps for single-person and 17 fps for two-person scenarios. With its validated accuracy and impressive real-time performance, TCNTE holds significant promise for practical fall detection applications in older adult care settings.
AbstractList •Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm (TCNTE).•Weighted focal loss was implemented to address the severe class imbalance issue.•TCNTE demonstrated state-of-the-art accuracy on various vision-based fall datasets.•TCNTE achieved excellent real-time performance (19 fps) on edge devices. As the population of older individuals living independently rises, coupled with the heightened risk of falls among this demographic, the need for automatic fall detection systems becomes increasingly urgent to ensure timely medical intervention. Computer vision (CV)-based methodologies have emerged as a preferred approach among researchers due to their contactless and pervasive nature. However, existing CV-based solutions often suffer from either poor robustness or prohibitively high computational requirements, impeding their practical implementation in elderly living environments. To address these challenges, we introduce TCNTE, a real-time skeleton-based fall detection algorithm that combines Temporal Convolutional Network (TCN) with Transformer Encoder (TE). We also successfully mitigate the severe class imbalance issue by implementing weighted focal loss. Cross-validation on multiple publicly available vision-based fall datasets demonstrates TCNTE's superiority over individual models (TCN and TE) and existing state-of-the-art fall detection algorithms, achieving remarkable accuracies (front view of UP-Fall: 99.58 %; side view of UP-Fall: 98.75 %; Le2i: 97.01 %; GMDCSA-24: 92.99 %) alongside practical viability. Visualizations using t-distributed stochastic neighbor embedding (t-SNE) reveal TCNTE's superior separation margin and cohesive clustering between fall and non-fall classes compared to TCN and TE. Crucially, TCNTE is designed for pervasive deployment in mobile and resource-constrained environments. Integrated with YOLOv8 pose estimation and BoT-SORT human tracking, the algorithm operates on NVIDIA Jetson Orin NX edge device, achieving an average frame rate of 19 fps for single-person and 17 fps for two-person scenarios. With its validated accuracy and impressive real-time performance, TCNTE holds significant promise for practical fall detection applications in older adult care settings.
ArticleNumber 102016
Author Wu, Wenyu
Xiong, Shuping
Wang, Chenfeng
Yu, Xiaoqun
Author_xml – sequence: 1
  givenname: Xiaoqun
  surname: Yu
  fullname: Yu, Xiaoqun
  email: xiaoqunyu@seu.edu.cn
  organization: Department of Mechanical and Industrial Design, School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China
– sequence: 2
  givenname: Chenfeng
  surname: Wang
  fullname: Wang, Chenfeng
  email: chenfengwang@seu.edu.cn
  organization: Department of Mechanical and Industrial Design, School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China
– sequence: 3
  givenname: Wenyu
  surname: Wu
  fullname: Wu, Wenyu
  email: wuwenyu.design@seu.edu.cn
  organization: Department of Mechanical and Industrial Design, School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China
– sequence: 4
  givenname: Shuping
  orcidid: 0000-0003-1549-515X
  surname: Xiong
  fullname: Xiong, Shuping
  email: shupingx@kaist.ac.kr
  organization: Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
BookMark eNp9kNtKAzEQhnNRwbb6Al7lBbbmsIcueFOKJygIotchm0w0292kJLHi25tlvRYGhvln_p_hW6GF8w4QuqFkQwmtb_vNaVT9hhFWZYFlaYGWtGrKgtKWXaJVjD0hJS0bskRph19BDkWyI-B4hAGSd0UnI2hs5DBgDQlUst5hOXz4YNPniOd1lhKMJx_kgJV3Zz98TXd5cpC-fThGLJ3GKUgXjQ8jBAxOeQ3hCl3k7AjXf32N3h_u3_ZPxeHl8Xm_OxSKVTQVXWsaaWTd1oprAnTb1VB3pWS0JdzUtAPeNIa03ZZRzY0BoEpXjDXNNhfnfI3YnKuCjzGAEadgRxl-BCViYiV6MbESEysxs8qmu9kE-bOzhSCisvlx0DZkEkJ7-5_9FxYeeTA
Cites_doi 10.1177/1550147717703257
10.1016/j.pmcj.2016.06.004
10.1016/j.dib.2024.110892
10.3934/mbe.2023498
10.1145/3603618
10.1007/978-981-16-9709-8_19
10.1016/j.bspc.2023.105325
10.1109/ACCESS.2023.3307138
10.1109/TPAMI.2022.3148324
10.1109/JBHI.2018.2808281
10.1109/ACCESS.2020.2999503
10.3390/jimaging7030042
10.1016/j.imavis.2024.105164
10.1016/j.eswa.2020.114031
10.1109/ACCESS.2021.3113824
10.1007/s00371-022-02416-2
10.1111/coin.12428
10.1016/j.compbiomed.2022.105626
10.3390/s19091988
10.1016/j.cmpb.2014.09.005
10.1016/j.measurement.2022.111785
10.1109/ACCESS.2021.3061626
10.1007/s13369-022-06684-x
10.1016/j.inffus.2023.101890
10.1016/j.jvcir.2021.103407
10.3389/fnagi.2021.692865
10.1016/j.compbiomed.2019.103520
10.1016/j.pmcj.2019.05.007
10.1109/JBHI.2022.3228598
10.1145/3179995
10.1117/1.JEI.22.4.041106
10.1007/s13042-022-01730-4
10.1016/j.ienj.2022.101148
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.pmcj.2025.102016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_pmcj_2025_102016
S1574119225000057
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c251t-b9f7afa696c3d0e18b6e6b4a21903f61be377f09b821d3ffee1cd522778778333
IEDL.DBID .~1
ISSN 1574-1192
IngestDate Wed Oct 01 06:30:10 EDT 2025
Sat May 24 17:06:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Aging
Transformer
Temporal convolutional network
Pose estimation
Fall detection
Edge computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-b9f7afa696c3d0e18b6e6b4a21903f61be377f09b821d3ffee1cd522778778333
ORCID 0000-0003-1549-515X
ParticipantIDs crossref_primary_10_1016_j_pmcj_2025_102016
elsevier_sciencedirect_doi_10_1016_j_pmcj_2025_102016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Pervasive and mobile computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kwolek, Kepski (bib0041) 2014; 117
(bib0001) 2021
Lea, Flynn, Vidal, Reiter, Hager (bib0054) 2017
Wickramasinghe, Shinmoto Torres, Ranasinghe (bib0009) 2017; 34
Lu, Wu, Feng, Song (bib0014) 2019; 23
Plizzari, Cannici, Matteucci (bib0055) 2021
Van der Maaten, Hinton (bib0032) 2008; 9
Auvinet, Rougier, Meunier, St-Arnaud, Rousseau (bib0042) 2010; 1350
Amsaprabhaa, Nancy Jane, Nehemiah (bib0022) 2023; 212
Qi, Chiaro, Piccialli (bib0057) 2023; 99
Lin, Goyal, Girshick, He, Dollár (bib0033) 2017
Blackburn, Ousey, Stephenson, Lui (bib0003) 2022; 62
Aharon, Orfaig, Bobrovsky (bib0029) 2022
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0031) 2017
Knowles, Hanson (bib0006) 2018; 61
Wang, Yu, Wang, Bao, Mao (bib0063) 2020; 8
Suarez, Orillaza, Naval (bib0061) 2022
Fang, Xie, Tai, Lu (bib0017) 2017
Zheng, Wu, Chen, Yang, Zhu, Shen, Kehtarnavaz, Shah (bib0015) 2023; 56
Tao, Yun (bib0043) 2017; 13
Genzel, Macdonald, März (bib0051) 2022; 45
Yu, Park, Kim, Kim, Kim, Kim, An, Xiong (bib0005) 2023; 86
Liu, Wan, Zeng, Wang, Song, Qiu (bib0058) 2017; 55
Krupitzer, Sztyler, Edinger, Breitbach, Stuckenschmidt, Becker (bib0004) 2019; 58
Yu, Koo, Jang, Kim, Xiong (bib0052) 2022; 201
Wojke, Bewley, Paulus (bib0036) 2017
Bewley, Ge, Ott, Ramos, Upcroft (bib0035) 2016
Wang, Zheng, Liu, Li, Wang (bib0037) 2020
Cao, Simon, Wei, Sheikh (bib0019) 2017
Chen, Wang, Yang (bib0046) 2022
Fei, Wang, Zhang, Liu, Xie, Tu (bib0008) 2022; 39
Núñez-Marcos, Azkune, Arganda-Carreras (bib0012) 2017
Lea, Vidal, Reiter, Hager (bib0030) 2016
Chang, Hsu, Chen (bib0025) 2021; 9
Ramirez, Velastin, Meza, Fabregas, Makris, Farias (bib0016) 2021; 9
Chhetri, Alsadoon, Al-Dala'in, Prasad, Rashid, Maag (bib0013) 2021; 37
Martínez-Villaseñor, Ponce, Brieva, Moya-Albor, Núñez-Martínez, Peñafort-Asturiano (bib0021) 2019; 19
Yadav, Luthra, Tiwari, Pandey, Akbar (bib0018) 2022; 239
Yu, Ma, Jang, Xiong (bib0007) 2023; 27
Zahan, Hassan, Mian (bib0023) 2022
Vazan, Masoumi, Ou, Rawassizadeh (bib0027) 2023
Hoang, Lee, Piran, Park (bib0040) 2023; 11
Özdemir (bib0047) 2016
Lin, Lin, Sun, Yuan, Sun, Wang, Chen, Li, Zhou, Wu, Huang, Liang, Liu (bib0002) 2023
Juraev, Ghimire, Alikhanov, Kakani, Kim (bib0024) 2022
Noor, Park (bib0034) 2023
Zheng, Li, Li, Chang, Sun, Li, Zhang (bib0010) 2023; 20
Espinosa, Ponce, Gutiérrez, Martínez-Villaseñor, Brieva, Moya-Albor (bib0044) 2019; 115
Tao, Yun (bib0048) 2017; 13
Inturi, Manikandan, Garrapally (bib0020) 2022; 48
Iazzi, Rziza, Haj Thami (bib0011) 2021; 7
Patel, Murugan, Maddikunta, Yenduri, Jhaveri, Zhu, Gadekallu (bib0056) 2024
Beddiar, Oussalah, Nini (bib0064) 2022; 82
Alam, Sufian, Dutta, Leo (bib0060) 2024
Charfi, Miteran, Dubois, Atri, Tourki (bib0038) 2013; 22
Sadiq, Yu, Yuan (bib0050) 2021; 164
Sucerquia, López, Vargas-Bonilla (bib0053) 2017
Raza, Yousaf, Velastin, Viriri (bib0062) 2023
Osokin (bib0026) 2019
Kim, Choi, Heo, Kim, Lee, Mun (bib0045) 2019
Alam, Sufian, Dutta, Leo (bib0028) 2022; 146
Alam, Sufian, Dutta, Leo, Hameed (bib0039) 2024; 57
Yu, Jang, Xiong (bib0049) 2021; 13
Li, Gao, Li, Zhou, Zhi, Zhang (bib0059) 2023; 14
Qi (10.1016/j.pmcj.2025.102016_bib0057) 2023; 99
Núñez-Marcos (10.1016/j.pmcj.2025.102016_bib0012) 2017
Osokin (10.1016/j.pmcj.2025.102016_bib0026) 2019
Wickramasinghe (10.1016/j.pmcj.2025.102016_bib0009) 2017; 34
Martínez-Villaseñor (10.1016/j.pmcj.2025.102016_bib0021) 2019; 19
Wang (10.1016/j.pmcj.2025.102016_bib0063) 2020; 8
Wojke (10.1016/j.pmcj.2025.102016_bib0036) 2017
Blackburn (10.1016/j.pmcj.2025.102016_bib0003) 2022; 62
Fei (10.1016/j.pmcj.2025.102016_bib0008) 2022; 39
Amsaprabhaa (10.1016/j.pmcj.2025.102016_bib0022) 2023; 212
Raza (10.1016/j.pmcj.2025.102016_bib0062) 2023
Zheng (10.1016/j.pmcj.2025.102016_bib0015) 2023; 56
Juraev (10.1016/j.pmcj.2025.102016_bib0024) 2022
Lin (10.1016/j.pmcj.2025.102016_bib0033) 2017
Genzel (10.1016/j.pmcj.2025.102016_bib0051) 2022; 45
Lu (10.1016/j.pmcj.2025.102016_bib0014) 2019; 23
Alam (10.1016/j.pmcj.2025.102016_bib0060) 2024
Zahan (10.1016/j.pmcj.2025.102016_bib0023) 2022
Auvinet (10.1016/j.pmcj.2025.102016_bib0042) 2010; 1350
Bewley (10.1016/j.pmcj.2025.102016_bib0035) 2016
Vaswani (10.1016/j.pmcj.2025.102016_bib0031) 2017
Liu (10.1016/j.pmcj.2025.102016_bib0058) 2017; 55
Alam (10.1016/j.pmcj.2025.102016_bib0039) 2024; 57
Lea (10.1016/j.pmcj.2025.102016_bib0054) 2017
Kim (10.1016/j.pmcj.2025.102016_bib0045) 2019
Sadiq (10.1016/j.pmcj.2025.102016_bib0050) 2021; 164
Tao (10.1016/j.pmcj.2025.102016_bib0043) 2017; 13
Kwolek (10.1016/j.pmcj.2025.102016_bib0041) 2014; 117
Yu (10.1016/j.pmcj.2025.102016_bib0049) 2021; 13
Özdemir (10.1016/j.pmcj.2025.102016_bib0047) 2016
Krupitzer (10.1016/j.pmcj.2025.102016_bib0004) 2019; 58
Fang (10.1016/j.pmcj.2025.102016_bib0017) 2017
Knowles (10.1016/j.pmcj.2025.102016_bib0006) 2018; 61
Cao (10.1016/j.pmcj.2025.102016_bib0019) 2017
Chhetri (10.1016/j.pmcj.2025.102016_bib0013) 2021; 37
Yadav (10.1016/j.pmcj.2025.102016_bib0018) 2022; 239
Sucerquia (10.1016/j.pmcj.2025.102016_bib0053) 2017
Chang (10.1016/j.pmcj.2025.102016_bib0025) 2021; 9
Plizzari (10.1016/j.pmcj.2025.102016_bib0055) 2021
Inturi (10.1016/j.pmcj.2025.102016_bib0020) 2022; 48
Chen (10.1016/j.pmcj.2025.102016_bib0046) 2022
Lea (10.1016/j.pmcj.2025.102016_bib0030) 2016
Yu (10.1016/j.pmcj.2025.102016_bib0005) 2023; 86
Alam (10.1016/j.pmcj.2025.102016_bib0028) 2022; 146
Espinosa (10.1016/j.pmcj.2025.102016_bib0044) 2019; 115
Yu (10.1016/j.pmcj.2025.102016_bib0007) 2023; 27
Iazzi (10.1016/j.pmcj.2025.102016_bib0011) 2021; 7
Beddiar (10.1016/j.pmcj.2025.102016_bib0064) 2022; 82
(10.1016/j.pmcj.2025.102016_bib0001) 2021
Noor (10.1016/j.pmcj.2025.102016_bib0034) 2023
Zheng (10.1016/j.pmcj.2025.102016_bib0010) 2023; 20
Van der Maaten (10.1016/j.pmcj.2025.102016_bib0032) 2008; 9
Wang (10.1016/j.pmcj.2025.102016_bib0037) 2020
Aharon (10.1016/j.pmcj.2025.102016_bib0029) 2022
Hoang (10.1016/j.pmcj.2025.102016_bib0040) 2023; 11
Suarez (10.1016/j.pmcj.2025.102016_bib0061) 2022
Lin (10.1016/j.pmcj.2025.102016_bib0002) 2023
Charfi (10.1016/j.pmcj.2025.102016_bib0038) 2013; 22
Yu (10.1016/j.pmcj.2025.102016_bib0052) 2022; 201
Vazan (10.1016/j.pmcj.2025.102016_bib0027) 2023
Tao (10.1016/j.pmcj.2025.102016_bib0048) 2017; 13
Ramirez (10.1016/j.pmcj.2025.102016_bib0016) 2021; 9
Patel (10.1016/j.pmcj.2025.102016_bib0056) 2024
Li (10.1016/j.pmcj.2025.102016_bib0059) 2023; 14
References_xml – volume: 19
  start-page: 1988
  year: 2019
  ident: bib0021
  article-title: UP-fall detection dataset: a multimodal approach
  publication-title: Sensors
– start-page: 30
  year: 2024
  end-page: 40
  ident: bib0060
  article-title: Real-time Human fall detection using a lightweight pose estimation technique
  publication-title: Computational Intelligence in Communications and Business Analytics
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib0033
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 57
  year: 2024
  ident: bib0039
  article-title: GMDCSA-24: a dataset for human fall detection in videos
  publication-title: Data Brief.
– volume: 212
  year: 2023
  ident: bib0022
  article-title: Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection
  publication-title: Expert. Syst. Appl.
– volume: 22
  year: 2013
  ident: bib0038
  article-title: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification
  publication-title: J. Electron. ImAging
– start-page: 2017
  year: 2017
  ident: bib0012
  article-title: Vision-based fall detection with convolutional neural networks
  publication-title: Wireless Commun. Mobile Computing
– volume: 37
  start-page: 578
  year: 2021
  end-page: 595
  ident: bib0013
  article-title: Deep learning for vision-based fall detection system: enhanced optical dynamic flow
  publication-title: Comput. Intell.
– start-page: 1
  year: 2022
  end-page: 9
  ident: bib0023
  article-title: SDFA: structure Aware discriminative feature aggregation for efficient Human fall detection in video
  publication-title: IEEe Trans. Industr. Inform.
– start-page: 1
  year: 2022
  ident: bib0024
  article-title: Exploring Human pose estimation and the usage of synthetic data for elderly fall detection in real-world surveillance
  publication-title: IEEe Access.
– volume: 56
  start-page: 1
  year: 2023
  end-page: 37
  ident: bib0015
  article-title: Deep learning-based Human pose estimation: a survey
  publication-title: ACM. Comput. Surv.
– volume: 13
  year: 2017
  ident: bib0043
  article-title: Fall prediction based on biomechanics equilibrium using Kinect
  publication-title: Int. J. Distrib. Sens. Netw.
– year: 2021
  ident: bib0001
  article-title: Major Figures on 2020 Population Census of China
– volume: 9
  start-page: 33532
  year: 2021
  end-page: 33542
  ident: bib0016
  article-title: Fall detection and activity recognition using Human skeleton features
  publication-title: IEEe Access.
– start-page: 11
  year: 2023
  ident: bib0002
  article-title: Prevalence of falls, injury from falls and associations with chronic diseases among community-dwelling older adults in Guangzhou, China: a cross-sectional study
  publication-title: Front. Public Health
– start-page: 555
  year: 2022
  end-page: 559
  ident: bib0061
  article-title: AFAR: a real-time vision-based activity monitoring and fall detection framework using 1D convolutional neural networks
  publication-title: 2022 14th International Conference on Machine Learning and Computing (ICMLC)
– volume: 115
  year: 2019
  ident: bib0044
  article-title: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the UP-Fall detection dataset
  publication-title: Comput. Biol. Med.
– volume: 48
  start-page: 1143
  year: 2022
  end-page: 1155
  ident: bib0020
  article-title: A novel vision-based fall detection scheme using keypoints of Human skeleton with long short-term memory network
  publication-title: Arab. J. Sci. Eng.
– volume: 20
  start-page: 11238
  year: 2023
  end-page: 11259
  ident: bib0010
  article-title: Fall detection based on dynamic key points incorporating preposed attention
  publication-title: Mathemat. Biosci. Eng.
– start-page: 47
  year: 2016
  end-page: 54
  ident: bib0030
  article-title: Temporal convolutional networks: a unified approach to action segmentation
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 13
  year: 2021
  ident: bib0049
  article-title: A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the elderly using wearable inertial sensors
  publication-title: Front. Aging Neurosci.
– volume: 9
  year: 2008
  ident: bib0032
  article-title: Visualizing data using t-SNE
  publication-title: J. machine learn. res.
– start-page: 141
  year: 2019
  ident: bib0045
  article-title: Machine learning-based pre-impact fall detection model to discriminate various types of fall
  publication-title: J. Biomech. Eng.
– start-page: 2334
  year: 2017
  end-page: 2343
  ident: bib0017
  article-title: Rmpe: regional multi-person pose estimation
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 7291
  year: 2017
  end-page: 7299
  ident: bib0019
  article-title: Realtime multi-person 2d pose estimation using part affinity fields
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 14
  start-page: 1831
  year: 2023
  end-page: 1844
  ident: bib0059
  article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 23
  start-page: 314
  year: 2019
  end-page: 323
  ident: bib0014
  article-title: Deep learning for fall detection: three-dimensional CNN combined with LSTM on video kinematic data
  publication-title: IEEe J. Biomed. Health Inform.
– start-page: 283
  year: 2022
  end-page: 296
  ident: bib0046
  article-title: Video based fall detection using Human poses
  publication-title: Commun. Comput. Inform. Sci.
– start-page: 156
  year: 2017
  end-page: 165
  ident: bib0054
  article-title: Temporal convolutional networks for action segmentation and detection
  publication-title: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 61
  start-page: 72
  year: 2018
  end-page: 77
  ident: bib0006
  article-title: The wisdom of older technology (non) users
  publication-title: Commun ACM
– start-page: 30
  year: 2017
  ident: bib0031
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 99
  year: 2023
  ident: bib0057
  article-title: FL-FD: federated learning-based fall detection with multimodal data fusion
  publication-title: Information Fusion
– start-page: 17
  year: 2017
  ident: bib0053
  article-title: SisFall: a fall and movement dataset
  publication-title: Sensors (Switzerland)
– start-page: 744
  year: 2019
  end-page: 748
  ident: bib0026
  article-title: Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose
  publication-title: ICPRAM 2019 - Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods
– volume: 201
  year: 2022
  ident: bib0052
  article-title: A comprehensive comparison of accuracy and practicality of different types of algorithms for pre-impact fall detection using both young and old adults
  publication-title: Measurement: J. Int. Measure. Conf.
– start-page: 3645
  year: 2017
  end-page: 3649
  ident: bib0036
  article-title: Simple online and realtime tracking with a deep association metric
  publication-title: 2017 IEEE international conference on image processing (ICIP)
– volume: 62
  year: 2022
  ident: bib0003
  article-title: Exploring the impact of experiencing a long lie fall on physical and clinical outcomes in older people requiring an ambulance: a systematic review
  publication-title: Int. Emerg. Nurs.
– volume: 39
  start-page: 2305
  year: 2022
  end-page: 2320
  ident: bib0008
  article-title: Flow-pose net: an effective two-stream network for fall detection
  publication-title: Visual Computer
– volume: 164
  year: 2021
  ident: bib0050
  article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces
  publication-title: Expert. Syst. Appl.
– start-page: 2179
  year: 2023
  end-page: 2188
  ident: bib0034
  article-title: A lightweight skeleton-based 3D-CNN for real-time fall detection and action recognition
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 591
  year: 2023
  end-page: 598
  ident: bib0062
  article-title: Human fall detection from sequences of skeleton features using vision Transformer
  publication-title: VISIGRAPP (5: VISAPP)
– start-page: 107
  year: 2020
  end-page: 122
  ident: bib0037
  article-title: Towards real-time multi-object tracking
  publication-title: European Conference on Computer Vision
– volume: 82
  year: 2022
  ident: bib0064
  article-title: Fall detection using body geometry and human pose estimation in video sequences
  publication-title: J. Vis. Commun. Image Represent.
– volume: 117
  start-page: 489
  year: 2014
  end-page: 501
  ident: bib0041
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput. Methods Prog. Biomed.
– volume: 86
  year: 2023
  ident: bib0005
  article-title: A practical wearable fall detection system based on tiny convolutional neural networks
  publication-title: Biomed. Signal. Process. Control
– year: 2024
  ident: bib0056
  article-title: AI-powered trustable and explainable fall detection system using transfer learning
  publication-title: Image Vis. Comput.
– volume: 1350
  start-page: 24
  year: 2010
  ident: bib0042
  article-title: Multiple cameras fall dataset, DIRO-Université de Montréal
  publication-title: Tech. Rep
– volume: 239
  year: 2022
  ident: bib0018
  publication-title: ARFDNet: An efficient Activity Recognition & Fall Detection System Using Latent Feature Pooling
– start-page: 3464
  year: 2016
  end-page: 3468
  ident: bib0035
  article-title: Simple online and realtime tracking
  publication-title: 2016 IEEE international conference on image processing (ICIP)
– start-page: 16
  year: 2016
  ident: bib0047
  article-title: An analysis on sensor locations of the human body for wearable fall detection devices: principles and practice
  publication-title: Sensors (Switzerland)
– volume: 13
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib0048
  article-title: Fall prediction based on biomechanics equilibrium using kinect
  publication-title: Int. J. Distrib. Sens. Netw.
– volume: 9
  start-page: 129965
  year: 2021
  end-page: 129976
  ident: bib0025
  article-title: A pose estimation-based fall detection methodology using artificial intelligence edge computing
  publication-title: IEEe Access.
– volume: 11
  start-page: 92322
  year: 2023
  end-page: 92352
  ident: bib0040
  article-title: Advances in skeleton-based fall detection in RGB videos: from handcrafted to deep learning approaches
  publication-title: IEEe Access.
– start-page: 06068
  year: 2023
  ident: bib0027
  article-title: Augmenting vision-based Human pose estimation with rotation matrix
  publication-title: arXiv preprint arXiv
– volume: 58
  year: 2019
  ident: bib0004
  article-title: Beyond position-awareness—Extending a self-adaptive fall detection system
  publication-title: Pervasive Mob. Comput.
– volume: 27
  start-page: 2197
  year: 2023
  end-page: 2207
  ident: bib0007
  article-title: Data augmentation to address various rotation errors of wearable sensors for robust pre-impact fall detection
  publication-title: IEEe J. Biomed. Health Inform.
– volume: 55
  start-page: 94
  year: 2017
  end-page: 100
  ident: bib0058
  article-title: A scalable and quick-response software defined vehicular network assisted by mobile edge computing
  publication-title: IEEE Commun. Maga.
– volume: 8
  start-page: 103443
  year: 2020
  end-page: 103453
  ident: bib0063
  article-title: Fall detection based on dual-channel feature integration
  publication-title: IEEe Access.
– volume: 45
  start-page: 1119
  year: 2022
  end-page: 1134
  ident: bib0051
  article-title: Solving inverse problems with deep neural networks–robustness included?
  publication-title: IEEE trans.n pattern analysis
– volume: 7
  start-page: 42
  year: 2021
  ident: bib0011
  article-title: Fall detection system-based posture-recognition for indoor environments
  publication-title: J. ImAging
– volume: 146
  year: 2022
  ident: bib0028
  article-title: Vision-based human fall detection systems using deep learning: a review
  publication-title: Comput. Biol. Med.
– volume: 34
  start-page: 14
  year: 2017
  end-page: 24
  ident: bib0009
  article-title: Recognition of falls using dense sensing in an ambient assisted living environment
  publication-title: Pervasive Mob. Comput.
– start-page: 14651
  year: 2022
  ident: bib0029
  article-title: BoT-SORT: robust associations multi-pedestrian tracking
  publication-title: arXiv preprint arXiv
– start-page: 694
  year: 2021
  end-page: 701
  ident: bib0055
  article-title: Spatial temporal transformer network for skeleton-based action recognition
  publication-title: Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event
– volume: 13
  start-page: 1
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0048
  article-title: Fall prediction based on biomechanics equilibrium using kinect
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147717703257
– volume: 239
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0018
– volume: 34
  start-page: 14
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0009
  article-title: Recognition of falls using dense sensing in an ambient assisted living environment
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2016.06.004
– start-page: 107
  year: 2020
  ident: 10.1016/j.pmcj.2025.102016_bib0037
  article-title: Towards real-time multi-object tracking
– volume: 57
  year: 2024
  ident: 10.1016/j.pmcj.2025.102016_bib0039
  article-title: GMDCSA-24: a dataset for human fall detection in videos
  publication-title: Data Brief.
  doi: 10.1016/j.dib.2024.110892
– start-page: 555
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0061
  article-title: AFAR: a real-time vision-based activity monitoring and fall detection framework using 1D convolutional neural networks
– start-page: 17
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0053
  article-title: SisFall: a fall and movement dataset
  publication-title: Sensors (Switzerland)
– start-page: 2179
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0034
  article-title: A lightweight skeleton-based 3D-CNN for real-time fall detection and action recognition
– start-page: 7291
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0019
  article-title: Realtime multi-person 2d pose estimation using part affinity fields
– start-page: 744
  year: 2019
  ident: 10.1016/j.pmcj.2025.102016_bib0026
  article-title: Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose
– start-page: 694
  year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0055
  article-title: Spatial temporal transformer network for skeleton-based action recognition
– volume: 20
  start-page: 11238
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0010
  article-title: Fall detection based on dynamic key points incorporating preposed attention
  publication-title: Mathemat. Biosci. Eng.
  doi: 10.3934/mbe.2023498
– volume: 56
  start-page: 1
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0015
  article-title: Deep learning-based Human pose estimation: a survey
  publication-title: ACM. Comput. Surv.
  doi: 10.1145/3603618
– volume: 13
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0043
  article-title: Fall prediction based on biomechanics equilibrium using Kinect
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147717703257
– start-page: 30
  year: 2024
  ident: 10.1016/j.pmcj.2025.102016_bib0060
  article-title: Real-time Human fall detection using a lightweight pose estimation technique
– start-page: 283
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0046
  article-title: Video based fall detection using Human poses
  publication-title: Commun. Comput. Inform. Sci.
  doi: 10.1007/978-981-16-9709-8_19
– start-page: 2334
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0017
  article-title: Rmpe: regional multi-person pose estimation
– start-page: 2017
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0012
  article-title: Vision-based fall detection with convolutional neural networks
  publication-title: Wireless Commun. Mobile Computing
– volume: 86
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0005
  article-title: A practical wearable fall detection system based on tiny convolutional neural networks
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2023.105325
– volume: 11
  start-page: 92322
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0040
  article-title: Advances in skeleton-based fall detection in RGB videos: from handcrafted to deep learning approaches
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2023.3307138
– year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0001
– start-page: 156
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0054
  article-title: Temporal convolutional networks for action segmentation and detection
– volume: 45
  start-page: 1119
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0051
  article-title: Solving inverse problems with deep neural networks–robustness included?
  publication-title: IEEE trans.n pattern analysis
  doi: 10.1109/TPAMI.2022.3148324
– volume: 23
  start-page: 314
  year: 2019
  ident: 10.1016/j.pmcj.2025.102016_bib0014
  article-title: Deep learning for fall detection: three-dimensional CNN combined with LSTM on video kinematic data
  publication-title: IEEe J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2808281
– start-page: 1
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0023
  article-title: SDFA: structure Aware discriminative feature aggregation for efficient Human fall detection in video
  publication-title: IEEe Trans. Industr. Inform.
– start-page: 47
  year: 2016
  ident: 10.1016/j.pmcj.2025.102016_bib0030
  article-title: Temporal convolutional networks: a unified approach to action segmentation
– start-page: 3645
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0036
  article-title: Simple online and realtime tracking with a deep association metric
– start-page: 11
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0002
  article-title: Prevalence of falls, injury from falls and associations with chronic diseases among community-dwelling older adults in Guangzhou, China: a cross-sectional study
  publication-title: Front. Public Health
– volume: 8
  start-page: 103443
  year: 2020
  ident: 10.1016/j.pmcj.2025.102016_bib0063
  article-title: Fall detection based on dual-channel feature integration
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2020.2999503
– start-page: 3464
  year: 2016
  ident: 10.1016/j.pmcj.2025.102016_bib0035
  article-title: Simple online and realtime tracking
– volume: 7
  start-page: 42
  year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0011
  article-title: Fall detection system-based posture-recognition for indoor environments
  publication-title: J. ImAging
  doi: 10.3390/jimaging7030042
– year: 2024
  ident: 10.1016/j.pmcj.2025.102016_bib0056
  article-title: AI-powered trustable and explainable fall detection system using transfer learning
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2024.105164
– volume: 164
  year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0050
  article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2020.114031
– start-page: 14651
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0029
  article-title: BoT-SORT: robust associations multi-pedestrian tracking
  publication-title: arXiv preprint arXiv
– volume: 9
  start-page: 129965
  year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0025
  article-title: A pose estimation-based fall detection methodology using artificial intelligence edge computing
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3113824
– start-page: 16
  year: 2016
  ident: 10.1016/j.pmcj.2025.102016_bib0047
  article-title: An analysis on sensor locations of the human body for wearable fall detection devices: principles and practice
  publication-title: Sensors (Switzerland)
– volume: 39
  start-page: 2305
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0008
  article-title: Flow-pose net: an effective two-stream network for fall detection
  publication-title: Visual Computer
  doi: 10.1007/s00371-022-02416-2
– volume: 37
  start-page: 578
  year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0013
  article-title: Deep learning for vision-based fall detection system: enhanced optical dynamic flow
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12428
– volume: 146
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0028
  article-title: Vision-based human fall detection systems using deep learning: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105626
– volume: 19
  start-page: 1988
  year: 2019
  ident: 10.1016/j.pmcj.2025.102016_bib0021
  article-title: UP-fall detection dataset: a multimodal approach
  publication-title: Sensors
  doi: 10.3390/s19091988
– volume: 117
  start-page: 489
  year: 2014
  ident: 10.1016/j.pmcj.2025.102016_bib0041
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– volume: 201
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0052
  article-title: A comprehensive comparison of accuracy and practicality of different types of algorithms for pre-impact fall detection using both young and old adults
  publication-title: Measurement: J. Int. Measure. Conf.
  doi: 10.1016/j.measurement.2022.111785
– start-page: 591
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0062
  article-title: Human fall detection from sequences of skeleton features using vision Transformer
  publication-title: VISIGRAPP (5: VISAPP)
– volume: 9
  start-page: 33532
  year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0016
  article-title: Fall detection and activity recognition using Human skeleton features
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2021.3061626
– volume: 48
  start-page: 1143
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0020
  article-title: A novel vision-based fall detection scheme using keypoints of Human skeleton with long short-term memory network
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06684-x
– start-page: 2980
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0033
  article-title: Focal loss for dense object detection
– volume: 99
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0057
  article-title: FL-FD: federated learning-based fall detection with multimodal data fusion
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.101890
– volume: 82
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0064
  article-title: Fall detection using body geometry and human pose estimation in video sequences
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2021.103407
– volume: 13
  year: 2021
  ident: 10.1016/j.pmcj.2025.102016_bib0049
  article-title: A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the elderly using wearable inertial sensors
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2021.692865
– volume: 115
  year: 2019
  ident: 10.1016/j.pmcj.2025.102016_bib0044
  article-title: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the UP-Fall detection dataset
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103520
– volume: 212
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0022
  article-title: Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection
  publication-title: Expert. Syst. Appl.
– start-page: 30
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0031
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 58
  year: 2019
  ident: 10.1016/j.pmcj.2025.102016_bib0004
  article-title: Beyond position-awareness—Extending a self-adaptive fall detection system
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2019.05.007
– volume: 27
  start-page: 2197
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0007
  article-title: Data augmentation to address various rotation errors of wearable sensors for robust pre-impact fall detection
  publication-title: IEEe J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3228598
– volume: 1350
  start-page: 24
  year: 2010
  ident: 10.1016/j.pmcj.2025.102016_bib0042
  article-title: Multiple cameras fall dataset, DIRO-Université de Montréal
  publication-title: Tech. Rep
– volume: 9
  year: 2008
  ident: 10.1016/j.pmcj.2025.102016_bib0032
  article-title: Visualizing data using t-SNE
  publication-title: J. machine learn. res.
– start-page: 141
  year: 2019
  ident: 10.1016/j.pmcj.2025.102016_bib0045
  article-title: Machine learning-based pre-impact fall detection model to discriminate various types of fall
  publication-title: J. Biomech. Eng.
– volume: 55
  start-page: 94
  year: 2017
  ident: 10.1016/j.pmcj.2025.102016_bib0058
  article-title: A scalable and quick-response software defined vehicular network assisted by mobile edge computing
  publication-title: IEEE Commun. Maga.
– volume: 61
  start-page: 72
  year: 2018
  ident: 10.1016/j.pmcj.2025.102016_bib0006
  article-title: The wisdom of older technology (non) users
  publication-title: Commun ACM
  doi: 10.1145/3179995
– start-page: 06068
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0027
  article-title: Augmenting vision-based Human pose estimation with rotation matrix
  publication-title: arXiv preprint arXiv
– start-page: 1
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0024
  article-title: Exploring Human pose estimation and the usage of synthetic data for elderly fall detection in real-world surveillance
  publication-title: IEEe Access.
– volume: 22
  year: 2013
  ident: 10.1016/j.pmcj.2025.102016_bib0038
  article-title: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification
  publication-title: J. Electron. ImAging
  doi: 10.1117/1.JEI.22.4.041106
– volume: 14
  start-page: 1831
  year: 2023
  ident: 10.1016/j.pmcj.2025.102016_bib0059
  article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-022-01730-4
– volume: 62
  year: 2022
  ident: 10.1016/j.pmcj.2025.102016_bib0003
  article-title: Exploring the impact of experiencing a long lie fall on physical and clinical outcomes in older people requiring an ambulance: a systematic review
  publication-title: Int. Emerg. Nurs.
  doi: 10.1016/j.ienj.2022.101148
SSID ssj0041470
Score 2.4030142
Snippet •Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102016
SubjectTerms Aging
Edge computing
Fall detection
Pose estimation
Temporal convolutional network
Transformer
Title A Real-time skeleton-based fall detection algorithm based on temporal convolutional networks and transformer encoder
URI https://dx.doi.org/10.1016/j.pmcj.2025.102016
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1574-1192
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0041470
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1574-1192
  databaseCode: ACRLP
  dateStart: 20050301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0041470
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1574-1192
  databaseCode: AIKHN
  dateStart: 20050301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0041470
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1574-1192
  databaseCode: .~1
  dateStart: 20050301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0041470
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1574-1192
  databaseCode: AKRWK
  dateStart: 20050301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0041470
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNDt4kbtOkTXtcFmV9sIgP8FbSPHR1t7vs1qu_3Zk-REE8eCpJkxCm6cwX-GY-Qk5UrqVQLmJwRQ6YjE3KdBhplnrphYWQwk3FthjGg0d59RQ9dUi_zYVBWmXj-2ufXnnrpqfbWLM7G4269zyCaAgAJcSa_gA7MINdKlQxOPv4onlILivBOBzMcHSTOFNzvGYT8wp3xDDCCgYBap7_Fpy-BZyLdbLWIEXaqzezQTqu2CSr3-oHbpGyR-8A6DEUiKeLN4ggKAiMgclSr8djal1ZUa0KqsfP0_mofJnQ-jV0NVWpxhSZ580JhFZRE8MXVBeWli2udXOKJS-tm2-Tx4vzh_6ANTIKzAB4KVmeeqW9jtPYCBs4nuSxi3OpwVcFwsc8d0IpH6R5EnIrvHeOGwuwTMG_rBIhxA5ZKqaF2yUUlkosF4lJQy5NAitZ6YzUkVeoMCH3yGlrv2xWV8vIWhrZa4bWztDaWW3tPRK1Js5-fPMM3Pkf8_b_Oe-ArGCr5lwfkqVy_u6OAFKU-XF1Zo7Jcq9_d3OLz8vrwfAThI7Nyw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUKDMCAeIry9MCGTOPYiZMRIaoCpQO0UrfI8QNa2rQqYeXbuc4DFQkxMMYvRTfOPcfS8bkIXYhUciZMQOCI7BEeqphIP5AkttwyDZBCVaG26IWdAb8fBsMGuqnvwjhZZZX7y5xeZOuqpVVFszUfjVrPNAA0BILiO09_oB0raI0HvnAnsKvPb50Hp7yoGOdGEze8ujlTirzmUzWGQ6IfOAsDzxU9_w2dlhCnvY22KqqIr8u32UENk-2izSUDwT2UX-MnYHrEVYjH728AIa4isEMmja2cTLA2eaG1yrCcvMwWo_x1istuaKpsqSbYSc-rLQhPWakMf8cy0zivia1ZYOd5qc1iHw3at_2bDqnqKBAF7CUnaWyFtDKMQ8W0Z2iUhiZMuYRk5TEb0tQwIawXp5FPNbPWGKo08DIBP7OIGGMHaDWbZeYQYVgq0pRFKvYpVxGspLlRXAZWuBITvIku6_gl89IuI6l1ZOPERTtx0U7KaDdRUIc4-fHRE8jnf8w7-ue8c7Te6T92k-5d7-EYbbieUoB9glbzxYc5BX6Rp2fF_vkCCQzNyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-time+skeleton-based+fall+detection+algorithm+based+on+temporal+convolutional+networks+and+transformer+encoder&rft.jtitle=Pervasive+and+mobile+computing&rft.au=Yu%2C+Xiaoqun&rft.au=Wang%2C+Chenfeng&rft.au=Wu%2C+Wenyu&rft.au=Xiong%2C+Shuping&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=1574-1192&rft.volume=107&rft_id=info:doi/10.1016%2Fj.pmcj.2025.102016&rft.externalDocID=S1574119225000057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1192&client=summon