A Real-time skeleton-based fall detection algorithm based on temporal convolutional networks and transformer encoder
•Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm (TCNTE).•Weighted focal loss was implemented to address the severe class imbalance issue.•TCNTE demonstrated state-of-the-art accuracy on various visio...
        Saved in:
      
    
          | Published in | Pervasive and mobile computing Vol. 107; p. 102016 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.02.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1574-1192 | 
| DOI | 10.1016/j.pmcj.2025.102016 | 
Cover
| Abstract | •Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm (TCNTE).•Weighted focal loss was implemented to address the severe class imbalance issue.•TCNTE demonstrated state-of-the-art accuracy on various vision-based fall datasets.•TCNTE achieved excellent real-time performance (19 fps) on edge devices.
As the population of older individuals living independently rises, coupled with the heightened risk of falls among this demographic, the need for automatic fall detection systems becomes increasingly urgent to ensure timely medical intervention. Computer vision (CV)-based methodologies have emerged as a preferred approach among researchers due to their contactless and pervasive nature. However, existing CV-based solutions often suffer from either poor robustness or prohibitively high computational requirements, impeding their practical implementation in elderly living environments. To address these challenges, we introduce TCNTE, a real-time skeleton-based fall detection algorithm that combines Temporal Convolutional Network (TCN) with Transformer Encoder (TE). We also successfully mitigate the severe class imbalance issue by implementing weighted focal loss. Cross-validation on multiple publicly available vision-based fall datasets demonstrates TCNTE's superiority over individual models (TCN and TE) and existing state-of-the-art fall detection algorithms, achieving remarkable accuracies (front view of UP-Fall: 99.58 %; side view of UP-Fall: 98.75 %; Le2i: 97.01 %; GMDCSA-24: 92.99 %) alongside practical viability. Visualizations using t-distributed stochastic neighbor embedding (t-SNE) reveal TCNTE's superior separation margin and cohesive clustering between fall and non-fall classes compared to TCN and TE. Crucially, TCNTE is designed for pervasive deployment in mobile and resource-constrained environments. Integrated with YOLOv8 pose estimation and BoT-SORT human tracking, the algorithm operates on NVIDIA Jetson Orin NX edge device, achieving an average frame rate of 19 fps for single-person and 17 fps for two-person scenarios. With its validated accuracy and impressive real-time performance, TCNTE holds significant promise for practical fall detection applications in older adult care settings. | 
    
|---|---|
| AbstractList | •Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm (TCNTE).•Weighted focal loss was implemented to address the severe class imbalance issue.•TCNTE demonstrated state-of-the-art accuracy on various vision-based fall datasets.•TCNTE achieved excellent real-time performance (19 fps) on edge devices.
As the population of older individuals living independently rises, coupled with the heightened risk of falls among this demographic, the need for automatic fall detection systems becomes increasingly urgent to ensure timely medical intervention. Computer vision (CV)-based methodologies have emerged as a preferred approach among researchers due to their contactless and pervasive nature. However, existing CV-based solutions often suffer from either poor robustness or prohibitively high computational requirements, impeding their practical implementation in elderly living environments. To address these challenges, we introduce TCNTE, a real-time skeleton-based fall detection algorithm that combines Temporal Convolutional Network (TCN) with Transformer Encoder (TE). We also successfully mitigate the severe class imbalance issue by implementing weighted focal loss. Cross-validation on multiple publicly available vision-based fall datasets demonstrates TCNTE's superiority over individual models (TCN and TE) and existing state-of-the-art fall detection algorithms, achieving remarkable accuracies (front view of UP-Fall: 99.58 %; side view of UP-Fall: 98.75 %; Le2i: 97.01 %; GMDCSA-24: 92.99 %) alongside practical viability. Visualizations using t-distributed stochastic neighbor embedding (t-SNE) reveal TCNTE's superior separation margin and cohesive clustering between fall and non-fall classes compared to TCN and TE. Crucially, TCNTE is designed for pervasive deployment in mobile and resource-constrained environments. Integrated with YOLOv8 pose estimation and BoT-SORT human tracking, the algorithm operates on NVIDIA Jetson Orin NX edge device, achieving an average frame rate of 19 fps for single-person and 17 fps for two-person scenarios. With its validated accuracy and impressive real-time performance, TCNTE holds significant promise for practical fall detection applications in older adult care settings. | 
    
| ArticleNumber | 102016 | 
    
| Author | Wu, Wenyu Xiong, Shuping Wang, Chenfeng Yu, Xiaoqun  | 
    
| Author_xml | – sequence: 1 givenname: Xiaoqun surname: Yu fullname: Yu, Xiaoqun email: xiaoqunyu@seu.edu.cn organization: Department of Mechanical and Industrial Design, School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China – sequence: 2 givenname: Chenfeng surname: Wang fullname: Wang, Chenfeng email: chenfengwang@seu.edu.cn organization: Department of Mechanical and Industrial Design, School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China – sequence: 3 givenname: Wenyu surname: Wu fullname: Wu, Wenyu email: wuwenyu.design@seu.edu.cn organization: Department of Mechanical and Industrial Design, School of Mechanical Engineering, Southeast University, Nanjing 211189, PR China – sequence: 4 givenname: Shuping orcidid: 0000-0003-1549-515X surname: Xiong fullname: Xiong, Shuping email: shupingx@kaist.ac.kr organization: Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea  | 
    
| BookMark | eNp9kNtKAzEQhnNRwbb6Al7lBbbmsIcueFOKJygIotchm0w0292kJLHi25tlvRYGhvln_p_hW6GF8w4QuqFkQwmtb_vNaVT9hhFWZYFlaYGWtGrKgtKWXaJVjD0hJS0bskRph19BDkWyI-B4hAGSd0UnI2hs5DBgDQlUst5hOXz4YNPniOd1lhKMJx_kgJV3Zz98TXd5cpC-fThGLJ3GKUgXjQ8jBAxOeQ3hCl3k7AjXf32N3h_u3_ZPxeHl8Xm_OxSKVTQVXWsaaWTd1oprAnTb1VB3pWS0JdzUtAPeNIa03ZZRzY0BoEpXjDXNNhfnfI3YnKuCjzGAEadgRxl-BCViYiV6MbESEysxs8qmu9kE-bOzhSCisvlx0DZkEkJ7-5_9FxYeeTA | 
    
| Cites_doi | 10.1177/1550147717703257 10.1016/j.pmcj.2016.06.004 10.1016/j.dib.2024.110892 10.3934/mbe.2023498 10.1145/3603618 10.1007/978-981-16-9709-8_19 10.1016/j.bspc.2023.105325 10.1109/ACCESS.2023.3307138 10.1109/TPAMI.2022.3148324 10.1109/JBHI.2018.2808281 10.1109/ACCESS.2020.2999503 10.3390/jimaging7030042 10.1016/j.imavis.2024.105164 10.1016/j.eswa.2020.114031 10.1109/ACCESS.2021.3113824 10.1007/s00371-022-02416-2 10.1111/coin.12428 10.1016/j.compbiomed.2022.105626 10.3390/s19091988 10.1016/j.cmpb.2014.09.005 10.1016/j.measurement.2022.111785 10.1109/ACCESS.2021.3061626 10.1007/s13369-022-06684-x 10.1016/j.inffus.2023.101890 10.1016/j.jvcir.2021.103407 10.3389/fnagi.2021.692865 10.1016/j.compbiomed.2019.103520 10.1016/j.pmcj.2019.05.007 10.1109/JBHI.2022.3228598 10.1145/3179995 10.1117/1.JEI.22.4.041106 10.1007/s13042-022-01730-4 10.1016/j.ienj.2022.101148  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2025 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.pmcj.2025.102016 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10_1016_j_pmcj_2025_102016 S1574119225000057  | 
    
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SES SPC SPCBC SSH SST SSV SSZ T5K UNMZH ~G- AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c251t-b9f7afa696c3d0e18b6e6b4a21903f61be377f09b821d3ffee1cd522778778333 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1574-1192 | 
    
| IngestDate | Wed Oct 01 06:30:10 EDT 2025 Sat May 24 17:06:38 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Aging Transformer Temporal convolutional network Pose estimation Fall detection Edge computing  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c251t-b9f7afa696c3d0e18b6e6b4a21903f61be377f09b821d3ffee1cd522778778333 | 
    
| ORCID | 0000-0003-1549-515X | 
    
| ParticipantIDs | crossref_primary_10_1016_j_pmcj_2025_102016 elsevier_sciencedirect_doi_10_1016_j_pmcj_2025_102016  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2025 2025-02-00  | 
    
| PublicationDateYYYYMMDD | 2025-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Pervasive and mobile computing | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Kwolek, Kepski (bib0041) 2014; 117 (bib0001) 2021 Lea, Flynn, Vidal, Reiter, Hager (bib0054) 2017 Wickramasinghe, Shinmoto Torres, Ranasinghe (bib0009) 2017; 34 Lu, Wu, Feng, Song (bib0014) 2019; 23 Plizzari, Cannici, Matteucci (bib0055) 2021 Van der Maaten, Hinton (bib0032) 2008; 9 Auvinet, Rougier, Meunier, St-Arnaud, Rousseau (bib0042) 2010; 1350 Amsaprabhaa, Nancy Jane, Nehemiah (bib0022) 2023; 212 Qi, Chiaro, Piccialli (bib0057) 2023; 99 Lin, Goyal, Girshick, He, Dollár (bib0033) 2017 Blackburn, Ousey, Stephenson, Lui (bib0003) 2022; 62 Aharon, Orfaig, Bobrovsky (bib0029) 2022 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0031) 2017 Knowles, Hanson (bib0006) 2018; 61 Wang, Yu, Wang, Bao, Mao (bib0063) 2020; 8 Suarez, Orillaza, Naval (bib0061) 2022 Fang, Xie, Tai, Lu (bib0017) 2017 Zheng, Wu, Chen, Yang, Zhu, Shen, Kehtarnavaz, Shah (bib0015) 2023; 56 Tao, Yun (bib0043) 2017; 13 Genzel, Macdonald, März (bib0051) 2022; 45 Yu, Park, Kim, Kim, Kim, Kim, An, Xiong (bib0005) 2023; 86 Liu, Wan, Zeng, Wang, Song, Qiu (bib0058) 2017; 55 Krupitzer, Sztyler, Edinger, Breitbach, Stuckenschmidt, Becker (bib0004) 2019; 58 Yu, Koo, Jang, Kim, Xiong (bib0052) 2022; 201 Wojke, Bewley, Paulus (bib0036) 2017 Bewley, Ge, Ott, Ramos, Upcroft (bib0035) 2016 Wang, Zheng, Liu, Li, Wang (bib0037) 2020 Cao, Simon, Wei, Sheikh (bib0019) 2017 Chen, Wang, Yang (bib0046) 2022 Fei, Wang, Zhang, Liu, Xie, Tu (bib0008) 2022; 39 Núñez-Marcos, Azkune, Arganda-Carreras (bib0012) 2017 Lea, Vidal, Reiter, Hager (bib0030) 2016 Chang, Hsu, Chen (bib0025) 2021; 9 Ramirez, Velastin, Meza, Fabregas, Makris, Farias (bib0016) 2021; 9 Chhetri, Alsadoon, Al-Dala'in, Prasad, Rashid, Maag (bib0013) 2021; 37 Martínez-Villaseñor, Ponce, Brieva, Moya-Albor, Núñez-Martínez, Peñafort-Asturiano (bib0021) 2019; 19 Yadav, Luthra, Tiwari, Pandey, Akbar (bib0018) 2022; 239 Yu, Ma, Jang, Xiong (bib0007) 2023; 27 Zahan, Hassan, Mian (bib0023) 2022 Vazan, Masoumi, Ou, Rawassizadeh (bib0027) 2023 Hoang, Lee, Piran, Park (bib0040) 2023; 11 Özdemir (bib0047) 2016 Lin, Lin, Sun, Yuan, Sun, Wang, Chen, Li, Zhou, Wu, Huang, Liang, Liu (bib0002) 2023 Juraev, Ghimire, Alikhanov, Kakani, Kim (bib0024) 2022 Noor, Park (bib0034) 2023 Zheng, Li, Li, Chang, Sun, Li, Zhang (bib0010) 2023; 20 Espinosa, Ponce, Gutiérrez, Martínez-Villaseñor, Brieva, Moya-Albor (bib0044) 2019; 115 Tao, Yun (bib0048) 2017; 13 Inturi, Manikandan, Garrapally (bib0020) 2022; 48 Iazzi, Rziza, Haj Thami (bib0011) 2021; 7 Patel, Murugan, Maddikunta, Yenduri, Jhaveri, Zhu, Gadekallu (bib0056) 2024 Beddiar, Oussalah, Nini (bib0064) 2022; 82 Alam, Sufian, Dutta, Leo (bib0060) 2024 Charfi, Miteran, Dubois, Atri, Tourki (bib0038) 2013; 22 Sadiq, Yu, Yuan (bib0050) 2021; 164 Sucerquia, López, Vargas-Bonilla (bib0053) 2017 Raza, Yousaf, Velastin, Viriri (bib0062) 2023 Osokin (bib0026) 2019 Kim, Choi, Heo, Kim, Lee, Mun (bib0045) 2019 Alam, Sufian, Dutta, Leo (bib0028) 2022; 146 Alam, Sufian, Dutta, Leo, Hameed (bib0039) 2024; 57 Yu, Jang, Xiong (bib0049) 2021; 13 Li, Gao, Li, Zhou, Zhi, Zhang (bib0059) 2023; 14 Qi (10.1016/j.pmcj.2025.102016_bib0057) 2023; 99 Núñez-Marcos (10.1016/j.pmcj.2025.102016_bib0012) 2017 Osokin (10.1016/j.pmcj.2025.102016_bib0026) 2019 Wickramasinghe (10.1016/j.pmcj.2025.102016_bib0009) 2017; 34 Martínez-Villaseñor (10.1016/j.pmcj.2025.102016_bib0021) 2019; 19 Wang (10.1016/j.pmcj.2025.102016_bib0063) 2020; 8 Wojke (10.1016/j.pmcj.2025.102016_bib0036) 2017 Blackburn (10.1016/j.pmcj.2025.102016_bib0003) 2022; 62 Fei (10.1016/j.pmcj.2025.102016_bib0008) 2022; 39 Amsaprabhaa (10.1016/j.pmcj.2025.102016_bib0022) 2023; 212 Raza (10.1016/j.pmcj.2025.102016_bib0062) 2023 Zheng (10.1016/j.pmcj.2025.102016_bib0015) 2023; 56 Juraev (10.1016/j.pmcj.2025.102016_bib0024) 2022 Lin (10.1016/j.pmcj.2025.102016_bib0033) 2017 Genzel (10.1016/j.pmcj.2025.102016_bib0051) 2022; 45 Lu (10.1016/j.pmcj.2025.102016_bib0014) 2019; 23 Alam (10.1016/j.pmcj.2025.102016_bib0060) 2024 Zahan (10.1016/j.pmcj.2025.102016_bib0023) 2022 Auvinet (10.1016/j.pmcj.2025.102016_bib0042) 2010; 1350 Bewley (10.1016/j.pmcj.2025.102016_bib0035) 2016 Vaswani (10.1016/j.pmcj.2025.102016_bib0031) 2017 Liu (10.1016/j.pmcj.2025.102016_bib0058) 2017; 55 Alam (10.1016/j.pmcj.2025.102016_bib0039) 2024; 57 Lea (10.1016/j.pmcj.2025.102016_bib0054) 2017 Kim (10.1016/j.pmcj.2025.102016_bib0045) 2019 Sadiq (10.1016/j.pmcj.2025.102016_bib0050) 2021; 164 Tao (10.1016/j.pmcj.2025.102016_bib0043) 2017; 13 Kwolek (10.1016/j.pmcj.2025.102016_bib0041) 2014; 117 Yu (10.1016/j.pmcj.2025.102016_bib0049) 2021; 13 Özdemir (10.1016/j.pmcj.2025.102016_bib0047) 2016 Krupitzer (10.1016/j.pmcj.2025.102016_bib0004) 2019; 58 Fang (10.1016/j.pmcj.2025.102016_bib0017) 2017 Knowles (10.1016/j.pmcj.2025.102016_bib0006) 2018; 61 Cao (10.1016/j.pmcj.2025.102016_bib0019) 2017 Chhetri (10.1016/j.pmcj.2025.102016_bib0013) 2021; 37 Yadav (10.1016/j.pmcj.2025.102016_bib0018) 2022; 239 Sucerquia (10.1016/j.pmcj.2025.102016_bib0053) 2017 Chang (10.1016/j.pmcj.2025.102016_bib0025) 2021; 9 Plizzari (10.1016/j.pmcj.2025.102016_bib0055) 2021 Inturi (10.1016/j.pmcj.2025.102016_bib0020) 2022; 48 Chen (10.1016/j.pmcj.2025.102016_bib0046) 2022 Lea (10.1016/j.pmcj.2025.102016_bib0030) 2016 Yu (10.1016/j.pmcj.2025.102016_bib0005) 2023; 86 Alam (10.1016/j.pmcj.2025.102016_bib0028) 2022; 146 Espinosa (10.1016/j.pmcj.2025.102016_bib0044) 2019; 115 Yu (10.1016/j.pmcj.2025.102016_bib0007) 2023; 27 Iazzi (10.1016/j.pmcj.2025.102016_bib0011) 2021; 7 Beddiar (10.1016/j.pmcj.2025.102016_bib0064) 2022; 82 (10.1016/j.pmcj.2025.102016_bib0001) 2021 Noor (10.1016/j.pmcj.2025.102016_bib0034) 2023 Zheng (10.1016/j.pmcj.2025.102016_bib0010) 2023; 20 Van der Maaten (10.1016/j.pmcj.2025.102016_bib0032) 2008; 9 Wang (10.1016/j.pmcj.2025.102016_bib0037) 2020 Aharon (10.1016/j.pmcj.2025.102016_bib0029) 2022 Hoang (10.1016/j.pmcj.2025.102016_bib0040) 2023; 11 Suarez (10.1016/j.pmcj.2025.102016_bib0061) 2022 Lin (10.1016/j.pmcj.2025.102016_bib0002) 2023 Charfi (10.1016/j.pmcj.2025.102016_bib0038) 2013; 22 Yu (10.1016/j.pmcj.2025.102016_bib0052) 2022; 201 Vazan (10.1016/j.pmcj.2025.102016_bib0027) 2023 Tao (10.1016/j.pmcj.2025.102016_bib0048) 2017; 13 Ramirez (10.1016/j.pmcj.2025.102016_bib0016) 2021; 9 Patel (10.1016/j.pmcj.2025.102016_bib0056) 2024 Li (10.1016/j.pmcj.2025.102016_bib0059) 2023; 14  | 
    
| References_xml | – volume: 19 start-page: 1988 year: 2019 ident: bib0021 article-title: UP-fall detection dataset: a multimodal approach publication-title: Sensors – start-page: 30 year: 2024 end-page: 40 ident: bib0060 article-title: Real-time Human fall detection using a lightweight pose estimation technique publication-title: Computational Intelligence in Communications and Business Analytics – start-page: 2980 year: 2017 end-page: 2988 ident: bib0033 article-title: Focal loss for dense object detection publication-title: Proceedings of the IEEE international conference on computer vision – volume: 57 year: 2024 ident: bib0039 article-title: GMDCSA-24: a dataset for human fall detection in videos publication-title: Data Brief. – volume: 212 year: 2023 ident: bib0022 article-title: Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection publication-title: Expert. Syst. Appl. – volume: 22 year: 2013 ident: bib0038 article-title: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification publication-title: J. Electron. ImAging – start-page: 2017 year: 2017 ident: bib0012 article-title: Vision-based fall detection with convolutional neural networks publication-title: Wireless Commun. Mobile Computing – volume: 37 start-page: 578 year: 2021 end-page: 595 ident: bib0013 article-title: Deep learning for vision-based fall detection system: enhanced optical dynamic flow publication-title: Comput. Intell. – start-page: 1 year: 2022 end-page: 9 ident: bib0023 article-title: SDFA: structure Aware discriminative feature aggregation for efficient Human fall detection in video publication-title: IEEe Trans. Industr. Inform. – start-page: 1 year: 2022 ident: bib0024 article-title: Exploring Human pose estimation and the usage of synthetic data for elderly fall detection in real-world surveillance publication-title: IEEe Access. – volume: 56 start-page: 1 year: 2023 end-page: 37 ident: bib0015 article-title: Deep learning-based Human pose estimation: a survey publication-title: ACM. Comput. Surv. – volume: 13 year: 2017 ident: bib0043 article-title: Fall prediction based on biomechanics equilibrium using Kinect publication-title: Int. J. Distrib. Sens. Netw. – year: 2021 ident: bib0001 article-title: Major Figures on 2020 Population Census of China – volume: 9 start-page: 33532 year: 2021 end-page: 33542 ident: bib0016 article-title: Fall detection and activity recognition using Human skeleton features publication-title: IEEe Access. – start-page: 11 year: 2023 ident: bib0002 article-title: Prevalence of falls, injury from falls and associations with chronic diseases among community-dwelling older adults in Guangzhou, China: a cross-sectional study publication-title: Front. Public Health – start-page: 555 year: 2022 end-page: 559 ident: bib0061 article-title: AFAR: a real-time vision-based activity monitoring and fall detection framework using 1D convolutional neural networks publication-title: 2022 14th International Conference on Machine Learning and Computing (ICMLC) – volume: 115 year: 2019 ident: bib0044 article-title: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the UP-Fall detection dataset publication-title: Comput. Biol. Med. – volume: 48 start-page: 1143 year: 2022 end-page: 1155 ident: bib0020 article-title: A novel vision-based fall detection scheme using keypoints of Human skeleton with long short-term memory network publication-title: Arab. J. Sci. Eng. – volume: 20 start-page: 11238 year: 2023 end-page: 11259 ident: bib0010 article-title: Fall detection based on dynamic key points incorporating preposed attention publication-title: Mathemat. Biosci. Eng. – start-page: 47 year: 2016 end-page: 54 ident: bib0030 article-title: Temporal convolutional networks: a unified approach to action segmentation publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 13 year: 2021 ident: bib0049 article-title: A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the elderly using wearable inertial sensors publication-title: Front. Aging Neurosci. – volume: 9 year: 2008 ident: bib0032 article-title: Visualizing data using t-SNE publication-title: J. machine learn. res. – start-page: 141 year: 2019 ident: bib0045 article-title: Machine learning-based pre-impact fall detection model to discriminate various types of fall publication-title: J. Biomech. Eng. – start-page: 2334 year: 2017 end-page: 2343 ident: bib0017 article-title: Rmpe: regional multi-person pose estimation publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 7291 year: 2017 end-page: 7299 ident: bib0019 article-title: Realtime multi-person 2d pose estimation using part affinity fields publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 14 start-page: 1831 year: 2023 end-page: 1844 ident: bib0059 article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction publication-title: Int. J. Mach. Learn. Cybern. – volume: 23 start-page: 314 year: 2019 end-page: 323 ident: bib0014 article-title: Deep learning for fall detection: three-dimensional CNN combined with LSTM on video kinematic data publication-title: IEEe J. Biomed. Health Inform. – start-page: 283 year: 2022 end-page: 296 ident: bib0046 article-title: Video based fall detection using Human poses publication-title: Commun. Comput. Inform. Sci. – start-page: 156 year: 2017 end-page: 165 ident: bib0054 article-title: Temporal convolutional networks for action segmentation and detection publication-title: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 61 start-page: 72 year: 2018 end-page: 77 ident: bib0006 article-title: The wisdom of older technology (non) users publication-title: Commun ACM – start-page: 30 year: 2017 ident: bib0031 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 99 year: 2023 ident: bib0057 article-title: FL-FD: federated learning-based fall detection with multimodal data fusion publication-title: Information Fusion – start-page: 17 year: 2017 ident: bib0053 article-title: SisFall: a fall and movement dataset publication-title: Sensors (Switzerland) – start-page: 744 year: 2019 end-page: 748 ident: bib0026 article-title: Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose publication-title: ICPRAM 2019 - Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods – volume: 201 year: 2022 ident: bib0052 article-title: A comprehensive comparison of accuracy and practicality of different types of algorithms for pre-impact fall detection using both young and old adults publication-title: Measurement: J. Int. Measure. Conf. – start-page: 3645 year: 2017 end-page: 3649 ident: bib0036 article-title: Simple online and realtime tracking with a deep association metric publication-title: 2017 IEEE international conference on image processing (ICIP) – volume: 62 year: 2022 ident: bib0003 article-title: Exploring the impact of experiencing a long lie fall on physical and clinical outcomes in older people requiring an ambulance: a systematic review publication-title: Int. Emerg. Nurs. – volume: 39 start-page: 2305 year: 2022 end-page: 2320 ident: bib0008 article-title: Flow-pose net: an effective two-stream network for fall detection publication-title: Visual Computer – volume: 164 year: 2021 ident: bib0050 article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces publication-title: Expert. Syst. Appl. – start-page: 2179 year: 2023 end-page: 2188 ident: bib0034 article-title: A lightweight skeleton-based 3D-CNN for real-time fall detection and action recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 591 year: 2023 end-page: 598 ident: bib0062 article-title: Human fall detection from sequences of skeleton features using vision Transformer publication-title: VISIGRAPP (5: VISAPP) – start-page: 107 year: 2020 end-page: 122 ident: bib0037 article-title: Towards real-time multi-object tracking publication-title: European Conference on Computer Vision – volume: 82 year: 2022 ident: bib0064 article-title: Fall detection using body geometry and human pose estimation in video sequences publication-title: J. Vis. Commun. Image Represent. – volume: 117 start-page: 489 year: 2014 end-page: 501 ident: bib0041 article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer publication-title: Comput. Methods Prog. Biomed. – volume: 86 year: 2023 ident: bib0005 article-title: A practical wearable fall detection system based on tiny convolutional neural networks publication-title: Biomed. Signal. Process. Control – year: 2024 ident: bib0056 article-title: AI-powered trustable and explainable fall detection system using transfer learning publication-title: Image Vis. Comput. – volume: 1350 start-page: 24 year: 2010 ident: bib0042 article-title: Multiple cameras fall dataset, DIRO-Université de Montréal publication-title: Tech. Rep – volume: 239 year: 2022 ident: bib0018 publication-title: ARFDNet: An efficient Activity Recognition & Fall Detection System Using Latent Feature Pooling – start-page: 3464 year: 2016 end-page: 3468 ident: bib0035 article-title: Simple online and realtime tracking publication-title: 2016 IEEE international conference on image processing (ICIP) – start-page: 16 year: 2016 ident: bib0047 article-title: An analysis on sensor locations of the human body for wearable fall detection devices: principles and practice publication-title: Sensors (Switzerland) – volume: 13 start-page: 1 year: 2017 end-page: 9 ident: bib0048 article-title: Fall prediction based on biomechanics equilibrium using kinect publication-title: Int. J. Distrib. Sens. Netw. – volume: 9 start-page: 129965 year: 2021 end-page: 129976 ident: bib0025 article-title: A pose estimation-based fall detection methodology using artificial intelligence edge computing publication-title: IEEe Access. – volume: 11 start-page: 92322 year: 2023 end-page: 92352 ident: bib0040 article-title: Advances in skeleton-based fall detection in RGB videos: from handcrafted to deep learning approaches publication-title: IEEe Access. – start-page: 06068 year: 2023 ident: bib0027 article-title: Augmenting vision-based Human pose estimation with rotation matrix publication-title: arXiv preprint arXiv – volume: 58 year: 2019 ident: bib0004 article-title: Beyond position-awareness—Extending a self-adaptive fall detection system publication-title: Pervasive Mob. Comput. – volume: 27 start-page: 2197 year: 2023 end-page: 2207 ident: bib0007 article-title: Data augmentation to address various rotation errors of wearable sensors for robust pre-impact fall detection publication-title: IEEe J. Biomed. Health Inform. – volume: 55 start-page: 94 year: 2017 end-page: 100 ident: bib0058 article-title: A scalable and quick-response software defined vehicular network assisted by mobile edge computing publication-title: IEEE Commun. Maga. – volume: 8 start-page: 103443 year: 2020 end-page: 103453 ident: bib0063 article-title: Fall detection based on dual-channel feature integration publication-title: IEEe Access. – volume: 45 start-page: 1119 year: 2022 end-page: 1134 ident: bib0051 article-title: Solving inverse problems with deep neural networks–robustness included? publication-title: IEEE trans.n pattern analysis – volume: 7 start-page: 42 year: 2021 ident: bib0011 article-title: Fall detection system-based posture-recognition for indoor environments publication-title: J. ImAging – volume: 146 year: 2022 ident: bib0028 article-title: Vision-based human fall detection systems using deep learning: a review publication-title: Comput. Biol. Med. – volume: 34 start-page: 14 year: 2017 end-page: 24 ident: bib0009 article-title: Recognition of falls using dense sensing in an ambient assisted living environment publication-title: Pervasive Mob. Comput. – start-page: 14651 year: 2022 ident: bib0029 article-title: BoT-SORT: robust associations multi-pedestrian tracking publication-title: arXiv preprint arXiv – start-page: 694 year: 2021 end-page: 701 ident: bib0055 article-title: Spatial temporal transformer network for skeleton-based action recognition publication-title: Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event – volume: 13 start-page: 1 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0048 article-title: Fall prediction based on biomechanics equilibrium using kinect publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147717703257 – volume: 239 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0018 – volume: 34 start-page: 14 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0009 article-title: Recognition of falls using dense sensing in an ambient assisted living environment publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2016.06.004 – start-page: 107 year: 2020 ident: 10.1016/j.pmcj.2025.102016_bib0037 article-title: Towards real-time multi-object tracking – volume: 57 year: 2024 ident: 10.1016/j.pmcj.2025.102016_bib0039 article-title: GMDCSA-24: a dataset for human fall detection in videos publication-title: Data Brief. doi: 10.1016/j.dib.2024.110892 – start-page: 555 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0061 article-title: AFAR: a real-time vision-based activity monitoring and fall detection framework using 1D convolutional neural networks – start-page: 17 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0053 article-title: SisFall: a fall and movement dataset publication-title: Sensors (Switzerland) – start-page: 2179 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0034 article-title: A lightweight skeleton-based 3D-CNN for real-time fall detection and action recognition – start-page: 7291 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0019 article-title: Realtime multi-person 2d pose estimation using part affinity fields – start-page: 744 year: 2019 ident: 10.1016/j.pmcj.2025.102016_bib0026 article-title: Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose – start-page: 694 year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0055 article-title: Spatial temporal transformer network for skeleton-based action recognition – volume: 20 start-page: 11238 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0010 article-title: Fall detection based on dynamic key points incorporating preposed attention publication-title: Mathemat. Biosci. Eng. doi: 10.3934/mbe.2023498 – volume: 56 start-page: 1 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0015 article-title: Deep learning-based Human pose estimation: a survey publication-title: ACM. Comput. Surv. doi: 10.1145/3603618 – volume: 13 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0043 article-title: Fall prediction based on biomechanics equilibrium using Kinect publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147717703257 – start-page: 30 year: 2024 ident: 10.1016/j.pmcj.2025.102016_bib0060 article-title: Real-time Human fall detection using a lightweight pose estimation technique – start-page: 283 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0046 article-title: Video based fall detection using Human poses publication-title: Commun. Comput. Inform. Sci. doi: 10.1007/978-981-16-9709-8_19 – start-page: 2334 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0017 article-title: Rmpe: regional multi-person pose estimation – start-page: 2017 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0012 article-title: Vision-based fall detection with convolutional neural networks publication-title: Wireless Commun. Mobile Computing – volume: 86 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0005 article-title: A practical wearable fall detection system based on tiny convolutional neural networks publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2023.105325 – volume: 11 start-page: 92322 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0040 article-title: Advances in skeleton-based fall detection in RGB videos: from handcrafted to deep learning approaches publication-title: IEEe Access. doi: 10.1109/ACCESS.2023.3307138 – year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0001 – start-page: 156 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0054 article-title: Temporal convolutional networks for action segmentation and detection – volume: 45 start-page: 1119 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0051 article-title: Solving inverse problems with deep neural networks–robustness included? publication-title: IEEE trans.n pattern analysis doi: 10.1109/TPAMI.2022.3148324 – volume: 23 start-page: 314 year: 2019 ident: 10.1016/j.pmcj.2025.102016_bib0014 article-title: Deep learning for fall detection: three-dimensional CNN combined with LSTM on video kinematic data publication-title: IEEe J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2808281 – start-page: 1 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0023 article-title: SDFA: structure Aware discriminative feature aggregation for efficient Human fall detection in video publication-title: IEEe Trans. Industr. Inform. – start-page: 47 year: 2016 ident: 10.1016/j.pmcj.2025.102016_bib0030 article-title: Temporal convolutional networks: a unified approach to action segmentation – start-page: 3645 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0036 article-title: Simple online and realtime tracking with a deep association metric – start-page: 11 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0002 article-title: Prevalence of falls, injury from falls and associations with chronic diseases among community-dwelling older adults in Guangzhou, China: a cross-sectional study publication-title: Front. Public Health – volume: 8 start-page: 103443 year: 2020 ident: 10.1016/j.pmcj.2025.102016_bib0063 article-title: Fall detection based on dual-channel feature integration publication-title: IEEe Access. doi: 10.1109/ACCESS.2020.2999503 – start-page: 3464 year: 2016 ident: 10.1016/j.pmcj.2025.102016_bib0035 article-title: Simple online and realtime tracking – volume: 7 start-page: 42 year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0011 article-title: Fall detection system-based posture-recognition for indoor environments publication-title: J. ImAging doi: 10.3390/jimaging7030042 – year: 2024 ident: 10.1016/j.pmcj.2025.102016_bib0056 article-title: AI-powered trustable and explainable fall detection system using transfer learning publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2024.105164 – volume: 164 year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0050 article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2020.114031 – start-page: 14651 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0029 article-title: BoT-SORT: robust associations multi-pedestrian tracking publication-title: arXiv preprint arXiv – volume: 9 start-page: 129965 year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0025 article-title: A pose estimation-based fall detection methodology using artificial intelligence edge computing publication-title: IEEe Access. doi: 10.1109/ACCESS.2021.3113824 – start-page: 16 year: 2016 ident: 10.1016/j.pmcj.2025.102016_bib0047 article-title: An analysis on sensor locations of the human body for wearable fall detection devices: principles and practice publication-title: Sensors (Switzerland) – volume: 39 start-page: 2305 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0008 article-title: Flow-pose net: an effective two-stream network for fall detection publication-title: Visual Computer doi: 10.1007/s00371-022-02416-2 – volume: 37 start-page: 578 year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0013 article-title: Deep learning for vision-based fall detection system: enhanced optical dynamic flow publication-title: Comput. Intell. doi: 10.1111/coin.12428 – volume: 146 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0028 article-title: Vision-based human fall detection systems using deep learning: a review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105626 – volume: 19 start-page: 1988 year: 2019 ident: 10.1016/j.pmcj.2025.102016_bib0021 article-title: UP-fall detection dataset: a multimodal approach publication-title: Sensors doi: 10.3390/s19091988 – volume: 117 start-page: 489 year: 2014 ident: 10.1016/j.pmcj.2025.102016_bib0041 article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2014.09.005 – volume: 201 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0052 article-title: A comprehensive comparison of accuracy and practicality of different types of algorithms for pre-impact fall detection using both young and old adults publication-title: Measurement: J. Int. Measure. Conf. doi: 10.1016/j.measurement.2022.111785 – start-page: 591 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0062 article-title: Human fall detection from sequences of skeleton features using vision Transformer publication-title: VISIGRAPP (5: VISAPP) – volume: 9 start-page: 33532 year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0016 article-title: Fall detection and activity recognition using Human skeleton features publication-title: IEEe Access. doi: 10.1109/ACCESS.2021.3061626 – volume: 48 start-page: 1143 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0020 article-title: A novel vision-based fall detection scheme using keypoints of Human skeleton with long short-term memory network publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06684-x – start-page: 2980 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0033 article-title: Focal loss for dense object detection – volume: 99 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0057 article-title: FL-FD: federated learning-based fall detection with multimodal data fusion publication-title: Information Fusion doi: 10.1016/j.inffus.2023.101890 – volume: 82 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0064 article-title: Fall detection using body geometry and human pose estimation in video sequences publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2021.103407 – volume: 13 year: 2021 ident: 10.1016/j.pmcj.2025.102016_bib0049 article-title: A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the elderly using wearable inertial sensors publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2021.692865 – volume: 115 year: 2019 ident: 10.1016/j.pmcj.2025.102016_bib0044 article-title: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the UP-Fall detection dataset publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103520 – volume: 212 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0022 article-title: Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection publication-title: Expert. Syst. Appl. – start-page: 30 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0031 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 58 year: 2019 ident: 10.1016/j.pmcj.2025.102016_bib0004 article-title: Beyond position-awareness—Extending a self-adaptive fall detection system publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2019.05.007 – volume: 27 start-page: 2197 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0007 article-title: Data augmentation to address various rotation errors of wearable sensors for robust pre-impact fall detection publication-title: IEEe J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3228598 – volume: 1350 start-page: 24 year: 2010 ident: 10.1016/j.pmcj.2025.102016_bib0042 article-title: Multiple cameras fall dataset, DIRO-Université de Montréal publication-title: Tech. Rep – volume: 9 year: 2008 ident: 10.1016/j.pmcj.2025.102016_bib0032 article-title: Visualizing data using t-SNE publication-title: J. machine learn. res. – start-page: 141 year: 2019 ident: 10.1016/j.pmcj.2025.102016_bib0045 article-title: Machine learning-based pre-impact fall detection model to discriminate various types of fall publication-title: J. Biomech. Eng. – volume: 55 start-page: 94 year: 2017 ident: 10.1016/j.pmcj.2025.102016_bib0058 article-title: A scalable and quick-response software defined vehicular network assisted by mobile edge computing publication-title: IEEE Commun. Maga. – volume: 61 start-page: 72 year: 2018 ident: 10.1016/j.pmcj.2025.102016_bib0006 article-title: The wisdom of older technology (non) users publication-title: Commun ACM doi: 10.1145/3179995 – start-page: 06068 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0027 article-title: Augmenting vision-based Human pose estimation with rotation matrix publication-title: arXiv preprint arXiv – start-page: 1 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0024 article-title: Exploring Human pose estimation and the usage of synthetic data for elderly fall detection in real-world surveillance publication-title: IEEe Access. – volume: 22 year: 2013 ident: 10.1016/j.pmcj.2025.102016_bib0038 article-title: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification publication-title: J. Electron. ImAging doi: 10.1117/1.JEI.22.4.041106 – volume: 14 start-page: 1831 year: 2023 ident: 10.1016/j.pmcj.2025.102016_bib0059 article-title: KAMTFENet: a fall detection algorithm based on keypoint attention module and temporal feature extraction publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-022-01730-4 – volume: 62 year: 2022 ident: 10.1016/j.pmcj.2025.102016_bib0003 article-title: Exploring the impact of experiencing a long lie fall on physical and clinical outcomes in older people requiring an ambulance: a systematic review publication-title: Int. Emerg. Nurs. doi: 10.1016/j.ienj.2022.101148  | 
    
| SSID | ssj0041470 | 
    
| Score | 2.4030142 | 
    
| Snippet | •Fall detection is critical for prompt medical assistance in older adults.•We proposed a novel and real-time skeleton-based fall detection algorithm... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 102016 | 
    
| SubjectTerms | Aging Edge computing Fall detection Pose estimation Temporal convolutional network Transformer  | 
    
| Title | A Real-time skeleton-based fall detection algorithm based on temporal convolutional networks and transformer encoder | 
    
| URI | https://dx.doi.org/10.1016/j.pmcj.2025.102016 | 
    
| Volume | 107 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1574-1192 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0041470 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1574-1192 databaseCode: ACRLP dateStart: 20050301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0041470 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1574-1192 databaseCode: AIKHN dateStart: 20050301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0041470 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1574-1192 databaseCode: .~1 dateStart: 20050301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0041470 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1574-1192 databaseCode: AKRWK dateStart: 20050301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041470 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNDt4kbtOkTXtcFmV9sIgP8FbSPHR1t7vs1qu_3Zk-REE8eCpJkxCm6cwX-GY-Qk5UrqVQLmJwRQ6YjE3KdBhplnrphYWQwk3FthjGg0d59RQ9dUi_zYVBWmXj-2ufXnnrpqfbWLM7G4269zyCaAgAJcSa_gA7MINdKlQxOPv4onlILivBOBzMcHSTOFNzvGYT8wp3xDDCCgYBap7_Fpy-BZyLdbLWIEXaqzezQTqu2CSr3-oHbpGyR-8A6DEUiKeLN4ggKAiMgclSr8djal1ZUa0KqsfP0_mofJnQ-jV0NVWpxhSZ580JhFZRE8MXVBeWli2udXOKJS-tm2-Tx4vzh_6ANTIKzAB4KVmeeqW9jtPYCBs4nuSxi3OpwVcFwsc8d0IpH6R5EnIrvHeOGwuwTMG_rBIhxA5ZKqaF2yUUlkosF4lJQy5NAitZ6YzUkVeoMCH3yGlrv2xWV8vIWhrZa4bWztDaWW3tPRK1Js5-fPMM3Pkf8_b_Oe-ArGCr5lwfkqVy_u6OAFKU-XF1Zo7Jcq9_d3OLz8vrwfAThI7Nyw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUKDMCAeIry9MCGTOPYiZMRIaoCpQO0UrfI8QNa2rQqYeXbuc4DFQkxMMYvRTfOPcfS8bkIXYhUciZMQOCI7BEeqphIP5AkttwyDZBCVaG26IWdAb8fBsMGuqnvwjhZZZX7y5xeZOuqpVVFszUfjVrPNAA0BILiO09_oB0raI0HvnAnsKvPb50Hp7yoGOdGEze8ujlTirzmUzWGQ6IfOAsDzxU9_w2dlhCnvY22KqqIr8u32UENk-2izSUDwT2UX-MnYHrEVYjH728AIa4isEMmja2cTLA2eaG1yrCcvMwWo_x1istuaKpsqSbYSc-rLQhPWakMf8cy0zivia1ZYOd5qc1iHw3at_2bDqnqKBAF7CUnaWyFtDKMQ8W0Z2iUhiZMuYRk5TEb0tQwIawXp5FPNbPWGKo08DIBP7OIGGMHaDWbZeYQYVgq0pRFKvYpVxGspLlRXAZWuBITvIku6_gl89IuI6l1ZOPERTtx0U7KaDdRUIc4-fHRE8jnf8w7-ue8c7Te6T92k-5d7-EYbbieUoB9glbzxYc5BX6Rp2fF_vkCCQzNyw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-time+skeleton-based+fall+detection+algorithm+based+on+temporal+convolutional+networks+and+transformer+encoder&rft.jtitle=Pervasive+and+mobile+computing&rft.au=Yu%2C+Xiaoqun&rft.au=Wang%2C+Chenfeng&rft.au=Wu%2C+Wenyu&rft.au=Xiong%2C+Shuping&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=1574-1192&rft.volume=107&rft_id=info:doi/10.1016%2Fj.pmcj.2025.102016&rft.externalDocID=S1574119225000057 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1192&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1192&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1192&client=summon |