StarPlat: A versatile DSL for graph analytics

Graphs model several real-world phenomena. With the growth of unstructured and semi-structured data, parallelization of graph algorithms is inevitable. Unfortunately, due to inherent irregularity of computation, memory access, and communication, graph algorithms are traditionally challenging to para...

Full description

Saved in:
Bibliographic Details
Published inJournal of parallel and distributed computing Vol. 194; p. 104967
Main Authors Behera, Nibedita, Kumar, Ashwina, Rajadurai T, Ebenezer, Nitish, Sai, M, Rajesh Pandian, Nasre, Rupesh
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN0743-7315
DOI10.1016/j.jpdc.2024.104967

Cover

Abstract Graphs model several real-world phenomena. With the growth of unstructured and semi-structured data, parallelization of graph algorithms is inevitable. Unfortunately, due to inherent irregularity of computation, memory access, and communication, graph algorithms are traditionally challenging to parallelize. To tame this challenge, several libraries, frameworks, and domain-specific languages (DSLs) have been proposed to reduce the parallel programming burden of the users, who are often domain experts. However, existing frameworks to model graph algorithms typically target a single architecture. In this paper, we present a graph DSL, named StarPlat, that allows programmers to specify graph algorithms in a high-level format, but generates code for three different backends from the same algorithmic specification. In particular, the DSL compiler generates OpenMP for multi-core systems, MPI for distributed systems, and CUDA for many-core GPUs. Since these three are completely different parallel programming paradigms, binding them together under the same language is challenging. We share our experience with the language design. Central to our compiler is an intermediate representation which allows a common representation of the high-level program, from which individual backend code generations begin. We demonstrate the expressiveness of StarPlat by specifying four graph algorithms: betweenness centrality computation, page rank computation, single-source shortest paths, and triangle counting. Using a suite of ten large graphs, we illustrate the effectiveness of our approach by comparing the performance of the generated codes with that obtained with hand-crafted library codes. We find that the generated code is competitive to library-based codes in many cases. More importantly, we show the feasibility to generate efficient codes for different target architectures from the same algorithmic specification of graph algorithms. •Domain-specific language for graph algorithms.•Targets multiple backends (CPU, GPU, distributed systems).•Performance close to hand-tuned codes.
AbstractList Graphs model several real-world phenomena. With the growth of unstructured and semi-structured data, parallelization of graph algorithms is inevitable. Unfortunately, due to inherent irregularity of computation, memory access, and communication, graph algorithms are traditionally challenging to parallelize. To tame this challenge, several libraries, frameworks, and domain-specific languages (DSLs) have been proposed to reduce the parallel programming burden of the users, who are often domain experts. However, existing frameworks to model graph algorithms typically target a single architecture. In this paper, we present a graph DSL, named StarPlat, that allows programmers to specify graph algorithms in a high-level format, but generates code for three different backends from the same algorithmic specification. In particular, the DSL compiler generates OpenMP for multi-core systems, MPI for distributed systems, and CUDA for many-core GPUs. Since these three are completely different parallel programming paradigms, binding them together under the same language is challenging. We share our experience with the language design. Central to our compiler is an intermediate representation which allows a common representation of the high-level program, from which individual backend code generations begin. We demonstrate the expressiveness of StarPlat by specifying four graph algorithms: betweenness centrality computation, page rank computation, single-source shortest paths, and triangle counting. Using a suite of ten large graphs, we illustrate the effectiveness of our approach by comparing the performance of the generated codes with that obtained with hand-crafted library codes. We find that the generated code is competitive to library-based codes in many cases. More importantly, we show the feasibility to generate efficient codes for different target architectures from the same algorithmic specification of graph algorithms. •Domain-specific language for graph algorithms.•Targets multiple backends (CPU, GPU, distributed systems).•Performance close to hand-tuned codes.
ArticleNumber 104967
Author Behera, Nibedita
M, Rajesh Pandian
Kumar, Ashwina
Nasre, Rupesh
Rajadurai T, Ebenezer
Nitish, Sai
Author_xml – sequence: 1
  givenname: Nibedita
  orcidid: 0000-0002-1563-8686
  surname: Behera
  fullname: Behera, Nibedita
  email: cs20s023@cse.iitm.ac.in
– sequence: 2
  givenname: Ashwina
  orcidid: 0000-0001-6425-7479
  surname: Kumar
  fullname: Kumar, Ashwina
  email: cs20d016@cse.iitm.ac.in
– sequence: 3
  givenname: Ebenezer
  orcidid: 0000-0001-7029-9712
  surname: Rajadurai T
  fullname: Rajadurai T, Ebenezer
  email: ebenezerrajadurai5@gmail.com
– sequence: 4
  givenname: Sai
  surname: Nitish
  fullname: Nitish, Sai
  email: bsainitishkumar@gmail.com
– sequence: 5
  givenname: Rajesh Pandian
  orcidid: 0000-0003-4702-4678
  surname: M
  fullname: M, Rajesh Pandian
  email: mrprajesh@cse.iitm.ac.in
– sequence: 6
  givenname: Rupesh
  surname: Nasre
  fullname: Nasre, Rupesh
  email: rupesh@cse.iitm.ac.in
BookMark eNp9j8tKxDAYhbMYwZnRF3DVF2jN36TNRNwM4xUKCqPrkMtfTaltScrAvL0tde3qwIHvcL4NWXV9h4TcAM2AQnnbZM3gbJbTnE8Fl6VYkTUVnKWCQXFJNjE2lAIUYrcm6XHU4b3V412yT04Yoh59i8nDsUrqPiRfQQ_fie50ex69jVfkotZtxOu_3JLPp8ePw0tavT2_HvZVavMCxlQbox0aV5tSAzJJ0VjDrOPCYAHMmqnjDEFKJ0GY3EhR7mzJgVtpwEm2Jfmya0MfY8BaDcH_6HBWQNUsqRo1S6pZUi2SE3S_QDg9O3kMKlqPnUXnA9pRud7_h_8Ct9Becg
Cites_doi 10.1145/3414469
10.1145/3473588
10.1109/TPDS.2021.3097283
10.1145/3276491
10.1109/TPDS.2013.111
10.1137/141000671
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2024.104967
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jpdc_2024_104967
S074373152400131X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c251t-abbadebdfb6a1e390ebcb3cd47be513cbe3943e199d917b2b9768c6414c9b1d93
IEDL.DBID .~1
ISSN 0743-7315
IngestDate Wed Oct 01 04:01:43 EDT 2025
Sat Sep 21 15:59:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords CUDA
Domain-specific language
Graph algorithms
OpenMP
MPI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-abbadebdfb6a1e390ebcb3cd47be513cbe3943e199d917b2b9768c6414c9b1d93
ORCID 0000-0002-1563-8686
0000-0003-4702-4678
0000-0001-6425-7479
0000-0001-7029-9712
ParticipantIDs crossref_primary_10_1016_j_jpdc_2024_104967
elsevier_sciencedirect_doi_10_1016_j_jpdc_2024_104967
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cheramangalath, Nasre, Srikant (br0220) 2017
Hong, Chafi, Sedlar, Olukotun (br0040) 2012
Low, Gonzalez, Kyrola, Bickson, Guestrin, Hellerstein (br0230) 2012
Osama, Porumbescu, Owens (br0370) 2022
Sakr, Orakzai, Abdelaziz, Khayyat (br0180) 2016
Zhong, He (br0250) 2014; 25
Houshmand, Lesani, Vora (br0080) aug 2021; 5
Hong, Salihoglu, Widom, Olukotun (br0200) 2014
Trott, Lebrun-Grandié, Arndt, Ciesko, Dang, Ellingwood, Gayatri, Harvey, Hollman, Ibanez, Liber, Madsen, Miles, Poliakoff, Powell, Rajamanickam, Simberg, Sunderland, Turcksin, Wilke (br0070) 2022; 33
Gupta, Stuart, Owens (br0130) 2012
Kyrola, Blelloch, Guestrin (br0240) 2012
Shun, Blelloch (br0060) 2013
Bezanson, Edelman, Karpinski, Shah (br0290) 2017; 59
Besta, Podstawski, Groner, Solomonik, Hoefler (br0120) 2017
Salihoglu, Widom (br0190) 2013
Rajendran, Nandivada (br0210) Sep. 2020; 17
Zhu, Chen, Zheng, Ma (br0110) 2016
Fu, Personick, Thompson (br0270) 2014
Nguyen, Lenharth, Pingali (br0020) 2013
Kulkarni, Burtscher, Inkulu, Pingali, Casçaval (br0010) 2009; vol. 44
Intel (br0350) 2021
Khorasani, Vora, Gupta, Bhuyan (br0260) 2014
Nvidia (br0360) 2022
Malewicz, Austern, Bik, Dehnert, Horn, Leiser, Czajkowski (br0170) 2010
Carruth (br0310) 2022
Gonzalez, Low, Gu, Bickson, Guestrin (br0090) 2012
Zhang, Yang, Baghdadi, Kamil, Shun, Amarasinghe (br0050) 2018; 2
Nguyen, Pingali (br0160) 2011
Bill (br0320) 2016
Dathathri, Gill, Hoang, Dang, Brooks, Dryden, Snir, Pingali (br0140) 2018
Wang, Davidson, Pan, Wu, Riffel, Owens (br0030) 2016
Zhu, Han, Chen (br0100) 2015
Burtscher, Nasre, Pingali (br0150) 2012
Baxter (br0300) 2021
Helbecque, Gmys, Carneiro, Melab, Bouvry (br0330) 2022
Nguyen (10.1016/j.jpdc.2024.104967_br0020) 2013
Bill (10.1016/j.jpdc.2024.104967_br0320)
Hong (10.1016/j.jpdc.2024.104967_br0040) 2012
Gupta (10.1016/j.jpdc.2024.104967_br0130) 2012
Zhang (10.1016/j.jpdc.2024.104967_br0050) 2018; 2
Fu (10.1016/j.jpdc.2024.104967_br0270) 2014
Dathathri (10.1016/j.jpdc.2024.104967_br0140) 2018
Kulkarni (10.1016/j.jpdc.2024.104967_br0010) 2009; vol. 44
Nguyen (10.1016/j.jpdc.2024.104967_br0160) 2011
Osama (10.1016/j.jpdc.2024.104967_br0370) 2022
Salihoglu (10.1016/j.jpdc.2024.104967_br0190) 2013
Carruth (10.1016/j.jpdc.2024.104967_br0310)
Intel (10.1016/j.jpdc.2024.104967_br0350)
Besta (10.1016/j.jpdc.2024.104967_br0120) 2017
Baxter (10.1016/j.jpdc.2024.104967_br0300)
Nvidia (10.1016/j.jpdc.2024.104967_br0360)
Zhong (10.1016/j.jpdc.2024.104967_br0250) 2014; 25
Gonzalez (10.1016/j.jpdc.2024.104967_br0090) 2012
Sakr (10.1016/j.jpdc.2024.104967_br0180) 2016
Zhu (10.1016/j.jpdc.2024.104967_br0100) 2015
Hong (10.1016/j.jpdc.2024.104967_br0200) 2014
Zhu (10.1016/j.jpdc.2024.104967_br0110) 2016
Houshmand (10.1016/j.jpdc.2024.104967_br0080) 2021; 5
Rajendran (10.1016/j.jpdc.2024.104967_br0210) 2020; 17
Kyrola (10.1016/j.jpdc.2024.104967_br0240) 2012
Helbecque (10.1016/j.jpdc.2024.104967_br0330) 2022
Shun (10.1016/j.jpdc.2024.104967_br0060) 2013
Malewicz (10.1016/j.jpdc.2024.104967_br0170) 2010
Khorasani (10.1016/j.jpdc.2024.104967_br0260) 2014
Low (10.1016/j.jpdc.2024.104967_br0230)
Wang (10.1016/j.jpdc.2024.104967_br0030) 2016
Cheramangalath (10.1016/j.jpdc.2024.104967_br0220) 2017
Bezanson (10.1016/j.jpdc.2024.104967_br0290) 2017; 59
Trott (10.1016/j.jpdc.2024.104967_br0070) 2022; 33
Burtscher (10.1016/j.jpdc.2024.104967_br0150) 2012
References_xml – volume: 2
  year: 2018
  ident: br0050
  article-title: Graphit: a high-performance graph DSL
  publication-title: Proc. ACM Program. Lang.
– volume: 33
  start-page: 805
  year: 2022
  end-page: 817
  ident: br0070
  article-title: Kokkos 3: programming model extensions for the exascale era
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 375
  year: 2015
  end-page: 386
  ident: br0100
  article-title: GridGraph: large-scale graph processing on a single machine using 2-level hierarchical partitioning
  publication-title: Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference
– volume: 5
  year: aug 2021
  ident: br0080
  article-title: Grafs: declarative graph analytics
  publication-title: Proc. ACM Program. Lang.
– start-page: 141
  year: 2012
  end-page: 151
  ident: br0150
  article-title: A quantitative study of irregular programs on GPUs
  publication-title: Proceedings of the 2012 IEEE International Symposium on Workload Characterization
– year: 2021
  ident: br0350
  article-title: Oneapi data parallel C++ (dpc++)
– year: 2016
  ident: br0030
  article-title: Gunrock: a high-performance graph processing library on the GPU
  publication-title: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
– start-page: 135
  year: 2013
  end-page: 146
  ident: br0060
  article-title: Ligra: a lightweight graph processing framework for shared memory
  publication-title: ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  ident: br0290
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev.
– start-page: 349
  year: 2012
  end-page: 362
  ident: br0040
  article-title: Green-marl: a DSL for easy and efficient graph analysis
  publication-title: Proceedings of the 17th International Conference on Architectural Support for Programming Languages and Operating Systems
– start-page: 301
  year: 2016
  end-page: 316
  ident: br0110
  article-title: Gemini: a computation-centric distributed graph processing system
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
– year: 2016
  ident: br0320
  article-title: Odin language
– start-page: 135
  year: 2010
  end-page: 146
  ident: br0170
  article-title: Pregel: a system for large-scale graph processing
  publication-title: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data
– start-page: 17
  year: 2012
  end-page: 30
  ident: br0090
  article-title: Powergraph: distributed graph-parallel computation on natural graphs
  publication-title: 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12)
– start-page: 21
  year: 2022
  end-page: 29
  ident: br0330
  article-title: A performance-oriented comparative study of the chapel high-productivity language to conventional programming environments
  publication-title: PMAM@PPoPP 2022: Proceedings of the Thirteenth International Workshop on Programming Models and Applications for Multicores and Manycores, Virtual Event
– volume: vol. 44
  start-page: 3
  year: 2009
  end-page: 14
  ident: br0010
  article-title: How much parallelism is there in irregular applications?
  publication-title: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
– year: 2016
  ident: br0180
  article-title: Large-Scale Graph Processing Using Apache Giraph
– year: 2012
  ident: br0230
  article-title: Distributed graphlab: a framework for machine learning in the cloud
– start-page: 333
  year: 2011
  end-page: 344
  ident: br0160
  article-title: Synthesizing concurrent schedulers for irregular algorithms
  publication-title: Proceedings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems
– year: 2021
  ident: br0300
  article-title: Circle C++ compiler
– start-page: 208
  year: 2014
  end-page: 218
  ident: br0200
  article-title: Simplifying scalable graph processing with a domain-specific language
  publication-title: Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization
– start-page: 239
  year: 2014
  end-page: 252
  ident: br0260
  article-title: Cusha: vertex-centric graph processing on gpus
  publication-title: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing
– year: 2022
  ident: br0360
  article-title: Nvidia hpc sdk version 22.7
– start-page: 31
  year: 2012
  end-page: 46
  ident: br0240
  article-title: Graphchi: large-scale graph computation on just a PC
  publication-title: 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12)
– volume: 25
  start-page: 1543
  year: 2014
  end-page: 1552
  ident: br0250
  article-title: Medusa: simplified graph processing on gpus
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 93
  year: 2017
  end-page: 104
  ident: br0120
  article-title: To push or to pull: on reducing communication and synchronization in graph computations
  publication-title: Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing
– start-page: 439
  year: 2017
  end-page: 450
  ident: br0220
  article-title: Dh-falcon: a language for large-scale graph processing on distributed heterogeneous systems
  publication-title: 2017 IEEE International Conference on Cluster Computing
– start-page: 314
  year: 2022
  end-page: 317
  ident: br0370
  article-title: Essentials of parallel graph analytics
  publication-title: Proceedings of the Workshop on Graphs, Architectures, Programming, and Learning
– volume: 17
  year: Sep. 2020
  ident: br0210
  article-title: Disgco: a compiler for distributed graph analytics
  publication-title: ACM Trans. Archit. Code Optim.
– start-page: 1
  year: 2014
  end-page: 6
  ident: br0270
  article-title: Mapgraph: a high level api for fast development of high performance graph analytics on gpus
  publication-title: Proceedings of Workshop on GRAph Data Management Experiences and Systems
– year: 2022
  ident: br0310
  article-title: Carbon language
– start-page: 752
  year: 2018
  end-page: 768
  ident: br0140
  article-title: Gluon: a communication-optimizing substrate for distributed heterogeneous graph analytics
  publication-title: Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation
– year: 2013
  ident: br0190
  article-title: Gps: a graph processing system
  publication-title: Proceedings of the 25th International Conference on Scientific and Statistical Database Management
– start-page: 1
  year: 2012
  end-page: 14
  ident: br0130
  article-title: A study of Persistent Threads style GPU programming for GPGPU workloads
  publication-title: 2012 Innovative Parallel Computing (InPar)
– start-page: 456
  year: 2013
  end-page: 471
  ident: br0020
  article-title: A lightweight infrastructure for graph analytics
  publication-title: ACM SIGOPS 24th Symposium on Operating Systems Principles
– start-page: 208
  year: 2014
  ident: 10.1016/j.jpdc.2024.104967_br0200
  article-title: Simplifying scalable graph processing with a domain-specific language
– volume: 17
  issue: 4
  year: 2020
  ident: 10.1016/j.jpdc.2024.104967_br0210
  article-title: Disgco: a compiler for distributed graph analytics
  publication-title: ACM Trans. Archit. Code Optim.
  doi: 10.1145/3414469
– start-page: 239
  year: 2014
  ident: 10.1016/j.jpdc.2024.104967_br0260
  article-title: Cusha: vertex-centric graph processing on gpus
– year: 2016
  ident: 10.1016/j.jpdc.2024.104967_br0030
  article-title: Gunrock: a high-performance graph processing library on the GPU
– start-page: 93
  year: 2017
  ident: 10.1016/j.jpdc.2024.104967_br0120
  article-title: To push or to pull: on reducing communication and synchronization in graph computations
– start-page: 17
  year: 2012
  ident: 10.1016/j.jpdc.2024.104967_br0090
  article-title: Powergraph: distributed graph-parallel computation on natural graphs
– start-page: 439
  year: 2017
  ident: 10.1016/j.jpdc.2024.104967_br0220
  article-title: Dh-falcon: a language for large-scale graph processing on distributed heterogeneous systems
– start-page: 31
  year: 2012
  ident: 10.1016/j.jpdc.2024.104967_br0240
  article-title: Graphchi: large-scale graph computation on just a PC
– start-page: 141
  year: 2012
  ident: 10.1016/j.jpdc.2024.104967_br0150
  article-title: A quantitative study of irregular programs on GPUs
– volume: 5
  issue: ICFP
  year: 2021
  ident: 10.1016/j.jpdc.2024.104967_br0080
  article-title: Grafs: declarative graph analytics
  publication-title: Proc. ACM Program. Lang.
  doi: 10.1145/3473588
– ident: 10.1016/j.jpdc.2024.104967_br0320
– volume: 33
  start-page: 805
  issue: 4
  year: 2022
  ident: 10.1016/j.jpdc.2024.104967_br0070
  article-title: Kokkos 3: programming model extensions for the exascale era
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2021.3097283
– ident: 10.1016/j.jpdc.2024.104967_br0300
– start-page: 1
  year: 2012
  ident: 10.1016/j.jpdc.2024.104967_br0130
  article-title: A study of Persistent Threads style GPU programming for GPGPU workloads
– volume: 2
  issue: OOPSLA
  year: 2018
  ident: 10.1016/j.jpdc.2024.104967_br0050
  article-title: Graphit: a high-performance graph DSL
  publication-title: Proc. ACM Program. Lang.
  doi: 10.1145/3276491
– volume: 25
  start-page: 1543
  issue: 6
  year: 2014
  ident: 10.1016/j.jpdc.2024.104967_br0250
  article-title: Medusa: simplified graph processing on gpus
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.111
– ident: 10.1016/j.jpdc.2024.104967_br0230
– start-page: 21
  year: 2022
  ident: 10.1016/j.jpdc.2024.104967_br0330
  article-title: A performance-oriented comparative study of the chapel high-productivity language to conventional programming environments
– start-page: 135
  year: 2010
  ident: 10.1016/j.jpdc.2024.104967_br0170
  article-title: Pregel: a system for large-scale graph processing
– start-page: 1
  year: 2014
  ident: 10.1016/j.jpdc.2024.104967_br0270
  article-title: Mapgraph: a high level api for fast development of high performance graph analytics on gpus
– year: 2016
  ident: 10.1016/j.jpdc.2024.104967_br0180
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.jpdc.2024.104967_br0290
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– ident: 10.1016/j.jpdc.2024.104967_br0350
– start-page: 375
  year: 2015
  ident: 10.1016/j.jpdc.2024.104967_br0100
  article-title: GridGraph: large-scale graph processing on a single machine using 2-level hierarchical partitioning
– start-page: 456
  year: 2013
  ident: 10.1016/j.jpdc.2024.104967_br0020
  article-title: A lightweight infrastructure for graph analytics
– year: 2013
  ident: 10.1016/j.jpdc.2024.104967_br0190
  article-title: Gps: a graph processing system
– ident: 10.1016/j.jpdc.2024.104967_br0310
– start-page: 349
  year: 2012
  ident: 10.1016/j.jpdc.2024.104967_br0040
  article-title: Green-marl: a DSL for easy and efficient graph analysis
– start-page: 135
  year: 2013
  ident: 10.1016/j.jpdc.2024.104967_br0060
  article-title: Ligra: a lightweight graph processing framework for shared memory
– start-page: 752
  year: 2018
  ident: 10.1016/j.jpdc.2024.104967_br0140
  article-title: Gluon: a communication-optimizing substrate for distributed heterogeneous graph analytics
– ident: 10.1016/j.jpdc.2024.104967_br0360
– volume: vol. 44
  start-page: 3
  year: 2009
  ident: 10.1016/j.jpdc.2024.104967_br0010
  article-title: How much parallelism is there in irregular applications?
– start-page: 314
  year: 2022
  ident: 10.1016/j.jpdc.2024.104967_br0370
  article-title: Essentials of parallel graph analytics
– start-page: 333
  year: 2011
  ident: 10.1016/j.jpdc.2024.104967_br0160
  article-title: Synthesizing concurrent schedulers for irregular algorithms
– start-page: 301
  year: 2016
  ident: 10.1016/j.jpdc.2024.104967_br0110
  article-title: Gemini: a computation-centric distributed graph processing system
SSID ssj0011578
Score 2.41461
Snippet Graphs model several real-world phenomena. With the growth of unstructured and semi-structured data, parallelization of graph algorithms is inevitable....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104967
SubjectTerms CUDA
Domain-specific language
Graph algorithms
MPI
OpenMP
Title StarPlat: A versatile DSL for graph analytics
URI https://dx.doi.org/10.1016/j.jpdc.2024.104967
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0743-7315
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011578
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0743-7315
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011578
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0743-7315
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011578
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0743-7315
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0011578
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0743-7315
  databaseCode: AKRWK
  dateStart: 19840801
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011578
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLdZHycGbrG022Ue8lWqpryLUQm_LTpKFllKXsl797Wb2IQriweOGDWy-sDNfyDffAFxmgusYDfeCzCJdMxoPQz92RC7OpLAi5CnVOz9PwvFMPsyDeQuGTS0MySrr2F_F9DJa1yO9Gs1evlj0ppT8IuHyjyxNY-ZUwS4j6mJw_fEl8yAvmbix4qS368KZSuO1zA3ZGPqSrjpV2Wv-l-T0LeGM9mCnZopsUH3MPrTs-gB2my4MrP4pD8FzfHHzskqLGzZgJLJwWK8su50-MUdIWelIzVLyHiFH5iOYje5eh2OvboLgaUc9Ci9FTI1Fk2GYcitU36JGoY2M0AZcaHRjDlSulHEnL_TR8YtYh5JLrZAbJY6hvX5b2xNgEerIsS10rEBLbXiMsq99RJFhP9XKduCqWX2SV14XSSMCWyaEVUJYJRVWHQgagJIfO5a4YPzHvNN_zjuDbXqqpCTn0C427_bCEYICu-WOd2FrcP84nnwCxHW0ow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPejFt1ifOXiTtc0m-_JW1FK1LUJb6C3sJFloKbWUevW3m9mHKIgHr9kN7H4hM1_IN98AXGeC6xgN94LMIl0zGg9DP3ZELs6ksCLkKdU79wdhdyyfJ8GkBvdVLQzJKsvYX8T0PFqXI80SzeZyOm0OKflFwuUfmZvGTDZgUwZ-RCew248vnQeZycSVFye9XlbOFCKv2dKQj6Ev6a4zyZvN_5KdvmWczh7slFSRtYuv2YeaXRzAbtWGgZW78hA8RxhXr_N0fcfajFQWDuy5ZQ_DHnOMlOWW1Cwl8xGyZD6CcedxdN_1yi4InnbcY-2liKmxaDIMU25F0rKoUWgjI7QBFxrdmEOVJ4lxRy_00RGMWIeSS50gN4k4hvribWFPgEWoI0e30NECLbXhMcqW9hFFhq1UJ7YBN9Xfq2VhdqEqFdhMEVaKsFIFVg0IKoDUjyVTLhr_Me_0n_OuYKs76vdU72nwcgbb9KTQlZxDfb16txeOHazxMl_9T0Qwtjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StarPlat%3A+A+versatile+DSL+for+graph+analytics&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Behera%2C+Nibedita&rft.au=Kumar%2C+Ashwina&rft.au=Rajadurai+T%2C+Ebenezer&rft.au=Nitish%2C+Sai&rft.date=2024-12-01&rft.pub=Elsevier+Inc&rft.issn=0743-7315&rft.volume=194&rft_id=info:doi/10.1016%2Fj.jpdc.2024.104967&rft.externalDocID=S074373152400131X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon