Selective detection of individual gases and CO/H2 mixture at low concentrations in air by single semiconductor metal oxide sensors working in dynamic temperature mode
•Selective gas detection with single metal oxide semiconductor gas sensor is shown.•Selectivity is achieved through adaptive signal processing model application.•Sustainability of adaptive model is demonstrated by independent data samples. Highly selective detection of various individual gases (CO,...
Saved in:
| Published in | Sensors and actuators. B, Chemical Vol. 254; pp. 502 - 513 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-4005 1873-3077 |
| DOI | 10.1016/j.snb.2017.07.100 |
Cover
| Abstract | •Selective gas detection with single metal oxide semiconductor gas sensor is shown.•Selectivity is achieved through adaptive signal processing model application.•Sustainability of adaptive model is demonstrated by independent data samples.
Highly selective detection of various individual gases (CO, H2, CH4, C3H8, NO, NO2, H2S, SO2) at low concentrations (0.01–667ppm) in air by a single SnO2-based metal oxide sensor (MOX-sensor) is presented. The sensor operates in dynamic temperature mode combined with a number of adaptive signal processing algorithms. Artificial neural networks were proven to be more effective among the other adaptive algorithms implemented in this study. Identification of individual gases by a single sensor, averaged over all the gases and concentrations, resulted in only 13.2% false recognitions. Most of the failures were attributed to NO2 detection in 0.01–0.1ppm concentrations range.
The ability of a single sensor to identify gas mixtures in a complex background was tested on the example of CO+H2 mixture in air, which simulates smoldering in the early stages of fire. The algorithm showed the ability to identify and quantify CO+H2 mixture with less than 10% error rate, even in constant presence of background gas (NO2 1.4ppm). Chemical modification of SnO2, increasing sensor response and sensitivity to individual components of the mixture, was proven to be beneficial for improvement of identification and quantification of gas mixture. Significant improvement in quantification accuracy (decrease in relative error from 7 to 2.5%) was achieved by utilizing a 3 sensor array in combination with an adaptive data processing algorithm, compared to the use of a single sensor alone. The prominent negative effect of humidity (Rh 30%, 25°C) on the performance of adaptive algorithms, sensor signal processing, system selectivity, and gas mixture identification is demonstrated. |
|---|---|
| AbstractList | •Selective gas detection with single metal oxide semiconductor gas sensor is shown.•Selectivity is achieved through adaptive signal processing model application.•Sustainability of adaptive model is demonstrated by independent data samples.
Highly selective detection of various individual gases (CO, H2, CH4, C3H8, NO, NO2, H2S, SO2) at low concentrations (0.01–667ppm) in air by a single SnO2-based metal oxide sensor (MOX-sensor) is presented. The sensor operates in dynamic temperature mode combined with a number of adaptive signal processing algorithms. Artificial neural networks were proven to be more effective among the other adaptive algorithms implemented in this study. Identification of individual gases by a single sensor, averaged over all the gases and concentrations, resulted in only 13.2% false recognitions. Most of the failures were attributed to NO2 detection in 0.01–0.1ppm concentrations range.
The ability of a single sensor to identify gas mixtures in a complex background was tested on the example of CO+H2 mixture in air, which simulates smoldering in the early stages of fire. The algorithm showed the ability to identify and quantify CO+H2 mixture with less than 10% error rate, even in constant presence of background gas (NO2 1.4ppm). Chemical modification of SnO2, increasing sensor response and sensitivity to individual components of the mixture, was proven to be beneficial for improvement of identification and quantification of gas mixture. Significant improvement in quantification accuracy (decrease in relative error from 7 to 2.5%) was achieved by utilizing a 3 sensor array in combination with an adaptive data processing algorithm, compared to the use of a single sensor alone. The prominent negative effect of humidity (Rh 30%, 25°C) on the performance of adaptive algorithms, sensor signal processing, system selectivity, and gas mixture identification is demonstrated. |
| Author | Gaskov, A. Krivetskiy, V. Vladimirova, S. Rumyantseva, M. Dolenko, S. Arkhipenko, A. Efitorov, A. |
| Author_xml | – sequence: 1 givenname: V. surname: Krivetskiy fullname: Krivetskiy, V. email: vkrivetsky@inorg.chem.msu.ru organization: Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 2 givenname: A. surname: Efitorov fullname: Efitorov, A. organization: Department of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 3 givenname: A. surname: Arkhipenko fullname: Arkhipenko, A. organization: Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 4 givenname: S. surname: Vladimirova fullname: Vladimirova, S. organization: Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 5 givenname: M. surname: Rumyantseva fullname: Rumyantseva, M. organization: Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 6 givenname: S. surname: Dolenko fullname: Dolenko, S. organization: Department of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia – sequence: 7 givenname: A. surname: Gaskov fullname: Gaskov, A. organization: Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia |
| BookMark | eNp9kUFuHCEQRZHlSB47OYB3dYEeF9300CiraJTEkSx5kWSNaKixGHeDBczYc6Gc03ScVRZegYr_ful_Ltl5iIEYu-a45sg3N_t1DuO6RS7XKOsIz9iKD7JrOpTynK1QtX0jEPsLdpnzHhFFt8EV-_OTJrLFHwkcleUWA8Qd-OD80buDmeDBZMpggoPt_c1tC7N_KYdEYApM8RlsDJZCSWZBcwXB-ATjCbIPDxNBptlXjTvYEhPMVKplfPFueQk5pgzPMT1W7YK6UzBVDoXmJ6qWy545OvrIPuzMlOnTv_OK_f729df2trm7__5j--WusW3PSzN0QomRRqGGbhCt4v1mY5GPRqre2taKkSvZ9p0y1gkUfMc5R9crVGisGUx3xeSbr00x50Q7bX35m6wG9JPmqJe69V7XuvVSt0ZZR1hJ_h_5lPxs0uld5vMbQzXS0VPS2XqqdTqf6ldoF_079CtUD53W |
| CitedBy_id | crossref_primary_10_3390_s18020453 crossref_primary_10_7232_JKIIE_2021_47_2_144 crossref_primary_10_1109_ACCESS_2023_3253968 crossref_primary_10_1109_JSEN_2023_3252726 crossref_primary_10_3390_ma12213618 crossref_primary_10_1016_j_snb_2017_09_206 crossref_primary_10_3390_ma15248916 crossref_primary_10_1021_acsami_9b11311 crossref_primary_10_3390_s24020326 crossref_primary_10_1039_C9RA09195E crossref_primary_10_1016_j_snb_2018_02_188 crossref_primary_10_1016_j_snb_2022_132375 crossref_primary_10_26896_1028_6861_2022_88_8_5_9 crossref_primary_10_1109_JSEN_2020_2978931 crossref_primary_10_2139_ssrn_4016287 crossref_primary_10_3390_s19143182 crossref_primary_10_3390_chemosensors12030042 crossref_primary_10_1016_j_apsusc_2023_158821 crossref_primary_10_1016_j_snb_2019_127538 crossref_primary_10_3390_s23187907 crossref_primary_10_1016_j_snb_2020_128514 crossref_primary_10_1021_acs_analchem_3c04753 crossref_primary_10_1016_j_snb_2022_132969 crossref_primary_10_1109_ACCESS_2022_3203390 crossref_primary_10_1109_JSEN_2024_3454646 crossref_primary_10_1134_S1070427218030175 crossref_primary_10_1134_S1061934823080087 crossref_primary_10_3390_s20247333 crossref_primary_10_1134_S1054661823040132 crossref_primary_10_3390_s23073730 crossref_primary_10_1016_j_snb_2023_133874 crossref_primary_10_1016_j_snb_2024_136521 crossref_primary_10_1038_s41377_023_01120_7 crossref_primary_10_3389_fchem_2021_629329 crossref_primary_10_3390_s19091960 crossref_primary_10_2139_ssrn_4120061 crossref_primary_10_1007_s11356_021_16184_4 crossref_primary_10_2139_ssrn_4198972 crossref_primary_10_1016_j_snb_2020_129376 crossref_primary_10_1016_j_ijhydene_2024_07_379 crossref_primary_10_1016_j_ijhydene_2019_08_052 crossref_primary_10_1109_JSEN_2023_3243149 crossref_primary_10_1016_j_talanta_2018_11_016 crossref_primary_10_3390_s22155888 crossref_primary_10_1016_j_snb_2024_136502 crossref_primary_10_3390_nano9050728 crossref_primary_10_1016_j_ijhydene_2024_07_253 crossref_primary_10_1109_JSEN_2020_2993055 crossref_primary_10_1016_j_jallcom_2022_168599 crossref_primary_10_1016_j_mssp_2022_107291 crossref_primary_10_3390_s22093351 crossref_primary_10_3390_s19051135 crossref_primary_10_1039_D0MA00880J crossref_primary_10_3390_s21248472 crossref_primary_10_1016_j_jpcs_2020_109864 crossref_primary_10_1016_j_snb_2021_130864 crossref_primary_10_1016_j_snb_2022_131733 crossref_primary_10_1016_j_snb_2020_129187 crossref_primary_10_1134_S0020168523140066 crossref_primary_10_1016_j_snb_2024_136583 crossref_primary_10_1021_acssensors_1c00834 crossref_primary_10_1109_JSEN_2023_3262877 |
| Cites_doi | 10.1070/RC2013v082n10ABEH004366 10.1016/j.jssc.2011.11.028 10.1016/j.snb.2009.01.023 10.1016/j.snb.2005.08.007 10.1016/S0009-2509(54)80005-4 10.1016/j.snb.2006.09.050 10.1021/cm0490470 10.1016/0925-4005(91)80213-4 10.1021/ac301687j 10.1016/j.snb.2013.05.027 10.1016/S0925-4005(99)00220-8 10.1016/S0925-4005(01)01042-5 10.1016/j.snb.2015.02.014 10.1016/j.jssc.2010.07.017 10.1016/S0925-4005(97)00096-8 10.1088/0268-1242/4/5/004 10.1021/jp5071902 10.1002/elan.201000277 10.1023/A:1010933404324 10.1016/j.snb.2007.07.036 10.1016/S0925-4005(97)80283-3 10.1016/0925-4005(90)80173-W 10.1021/jp408646k 10.1016/S0925-4005(00)00514-1 10.1007/s11172-008-0139-z 10.1016/j.snb.2005.03.017 10.1016/0250-6874(82)80027-9 10.1016/0250-6874(87)80061-6 10.1016/0925-4005(92)80179-2 10.3905/joi.2007.681820 10.1023/A:1014405811371 10.1016/S0925-4005(99)00016-7 10.1016/j.snb.2011.10.072 10.1039/FT9918701929 10.1016/j.snb.2006.10.013 10.1021/acsami.5b12062 10.1016/j.snb.2015.01.038 10.1093/biomet/81.3.425 10.1016/j.jallcom.2016.08.275 10.1016/0250-6874(83)85034-3 10.1016/j.tsf.2011.04.176 10.1016/j.snb.2010.06.016 10.1016/j.snb.2013.07.101 10.1080/03602457908065099 10.1016/S0925-4005(99)00241-5 10.1016/0040-6090(94)90454-5 10.1002/adfm.200500652 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.snb.2017.07.100 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3077 |
| EndPage | 513 |
| ExternalDocumentID | 10_1016_j_snb_2017_07_100 S0925400517313096 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SST SSZ T5K TN5 WUQ XFK YK3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c251t-83494beb498384291566c01ba795cc2c4b1972539acd4041f1110d59090aca8a3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-4005 |
| IngestDate | Thu Apr 24 23:11:53 EDT 2025 Thu Oct 16 04:46:58 EDT 2025 Fri Feb 23 02:45:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Semiconductor metal oxide Signal processing SnO2 Neural networks Gas sensors Adaptive algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c251t-83494beb498384291566c01ba795cc2c4b1972539acd4041f1110d59090aca8a3 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_snb_2017_07_100 crossref_primary_10_1016_j_snb_2017_07_100 elsevier_sciencedirect_doi_10_1016_j_snb_2017_07_100 |
| PublicationCentury | 2000 |
| PublicationDate | January 2018 2018-01-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Sensors and actuators. B, Chemical |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Harrison, Guest (bib0095) 1991; 87 Haykin (bib0290) 2008 Rogers, Benkstein, Semancik (bib0205) 2012; 84 Fedorov, Chlenov, Lukyanchenko, Butyrskaya, Demyokhin (bib0265) 2009 Yamazoe, Kurokawa, Seiyama (bib0165) 1983; 4 Marikutsa, Rumyantseva, Yashina, Gaskov (bib0235) 2010; 183 Wu, Lin, Weng (bib0285) 2004; 5 Sears, Colbow, Consadori (bib0065) 1989; 4 Barsan, Weimar (bib0320) 2003; 15 Yamazoe, Shimanoe (bib0005) 2009; 138 Esbensen, Guyot, Westad, Houmøller (bib0210) 2010 Yamazoe, Shimanoe (bib0110) 2008; 128 Marikutsa, Rumyantseva, Konstantinova, Shatalova, Gaskov (bib0255) 2014; 118 Fierro (bib0080) 2006 Rumyantseva, Kovalenko, Gaskov, Pagnier, Machon, Arbiol, Morante (bib0220) 2005; 109 Knoblauch, Illyaskutty, Kohler (bib0160) 2015; 217 Marikutsa, Rumyantseva, Gaskov, Konstantinova, Grishina, Deygen (bib0240) 2010; 520 Barsan, Weimar (bib0075) 2001; 7 Martinelli, Polese, Catini, D’Amico, Di Natale (bib0200) 2012; 161 Pavelko, Yuasa, Kida, Shimanoe, Yamazoe (bib0315) 2015; 210 Hyodo, Nishida, Shimizu, Egashira (bib0310) 2002; 83 Nakata, Nakamura, Yoshikawa (bib0130) 1992; 8 Donoho, Johnstone (bib0270) 1994; 81 Sergent, Epifani, Comini, Faglia, Pagnier (bib0105) 2007; 126 Drobek, Kim, Bechelany, Vallicari, Julbe, Kim (bib0030) 2016; 8 Clifford, Tuma (bib0115) 1982-1983; 3 Sears, Colbow, Slamka, Consadori (bib0070) 1990; 1 Vergara, Fonollosa, Mahiques, Trincavelli, Rulkov, Huerta (bib0170) 2013; 185 Jolliffe (bib0180) 1986 https://CRAN.R-project.org/package=wavethresh. Cerdà Belmonte, Manzano, Arbiol, Cirera, Puigcorbé, Vilà, Sabaté, Gràcia, Cané, Morante (bib0040) 2006; 114 Renganathan (bib0185) 2016; 38 Breiman, Forests (bib0280) 2001; 45 Ruder (bib0190) 2016 Krivetskiy, Rumyantseva, Gaskov (bib0035) 2013; 82 Pearce, Schiffman, Nagle, Gardner (bib0145) 2003 Frolov, Kotovshchikov, Morozov, Boltalin, Fedorova, Marikutsa, Rumyantseva, Gaskov, Sadovskaya, Abakumov (bib0250) 2012; 186 Mars, van Krevelen (bib0090) 1954; 3 Althainz, Dahlke, Goschnick, Ache (bib0025) 1994; 241 Marikutsa, Rumyantseva, Frolov, Morozov, Boltalin, Fedorova, Petukhov, Yashina, Konstantinova, Sadovskaya (bib0245) 2013; 117 Yamazoe (bib0015) 1991; 5 Morrison (bib0120) 1987; 12 Ratton, Kunt, McAvoy, Fuja, Cavicchi, Semancik (bib0135) 1997; 41 Maziarz, Pisarkiewicz (bib0150) 2008; 19 Rumyantseva, Gaskov (bib0230) 2008; 57 Rumyantseva, Gaskov, Rosman, Pagnier, Morante (bib0225) 2005; 17 Bielański, Haber (bib0085) 1979; 19 Prasad, Gurlo, Riedel, Hübner, Barsan, Weimar (bib0305) 2010; 149 Hastie, Tibshirani, Friedman (bib0175) 2008 Krivetskiy, Malkov, Garshev, Mordvinova, Lebedev, Dolenko, Efitorov, Grigoriev, Rumyantseva, Gaskov (bib0060) 2017; 691 Krivetskiy, Panteleev, Logvin, Smirnov, Rumyantseva, Gaskov (bib0050) 2013 Lee, Reedy (bib0055) 1999; 60 Pijolat, Pupier, Sauvan, Tournier, Lalauze (bib0300) 1999; 59 Meier, Evju, Boger, Raman, Benkstein, Martinez, Montgomery, Semancik (bib0155) 2007; 121 Heaton (bib0195) 2013; Vol 1 Korotchenkov, Brynzari, Dmitriev (bib0325) 1999; 54 Heilig, Barsan, Weimar, Schweizer-Berberich, Gardner, Gopel (bib0140) 1997; 43 Leinweber (bib0215) 2007; 16 Hugon, Sauvan, Benech, Pijolat, Lefebvre (bib0045) 2000; 67 Epifani, D́ıaz, Arbiol, Comini, Sergent, Pagnier, Siciliano, Faglia, Morante (bib0260) 2006; 16 Prechelt, Geneviève (bib0295) 2012 Korotcenkov, Cho (bib0020) 2013; 188 Spannhake, Helwig, Schulz, Muller (bib0010) 2009 Krivetsky, Petukhov, Eliseev, Smirnov, Rumyantseva, Gaskov (bib0100) 2011 Krivetskiy, Ponzoni, Comini, Badalyan, Rumyantseva, Gaskov (bib0125) 2010; 22 Rumyantseva (10.1016/j.snb.2017.07.100_bib0225) 2005; 17 Ruder (10.1016/j.snb.2017.07.100_bib0190) 2016 Pavelko (10.1016/j.snb.2017.07.100_bib0315) 2015; 210 Sears (10.1016/j.snb.2017.07.100_bib0070) 1990; 1 Prechelt (10.1016/j.snb.2017.07.100_bib0295) 2012 Jolliffe (10.1016/j.snb.2017.07.100_bib0180) 1986 Krivetskiy (10.1016/j.snb.2017.07.100_bib0060) 2017; 691 Wu (10.1016/j.snb.2017.07.100_bib0285) 2004; 5 Lee (10.1016/j.snb.2017.07.100_bib0055) 1999; 60 Maziarz (10.1016/j.snb.2017.07.100_bib0150) 2008; 19 Prasad (10.1016/j.snb.2017.07.100_bib0305) 2010; 149 Barsan (10.1016/j.snb.2017.07.100_bib0075) 2001; 7 Harrison (10.1016/j.snb.2017.07.100_bib0095) 1991; 87 Yamazoe (10.1016/j.snb.2017.07.100_bib0005) 2009; 138 Korotcenkov (10.1016/j.snb.2017.07.100_bib0020) 2013; 188 Fedorov (10.1016/j.snb.2017.07.100_bib0265) 2009 Pijolat (10.1016/j.snb.2017.07.100_bib0300) 1999; 59 Hastie (10.1016/j.snb.2017.07.100_bib0175) 2008 Ratton (10.1016/j.snb.2017.07.100_bib0135) 1997; 41 Marikutsa (10.1016/j.snb.2017.07.100_bib0255) 2014; 118 Cerdà Belmonte (10.1016/j.snb.2017.07.100_bib0040) 2006; 114 Knoblauch (10.1016/j.snb.2017.07.100_bib0160) 2015; 217 Esbensen (10.1016/j.snb.2017.07.100_bib0210) 2010 Renganathan (10.1016/j.snb.2017.07.100_bib0185) 2016; 38 Heaton (10.1016/j.snb.2017.07.100_bib0195) 2013; Vol 1 Rogers (10.1016/j.snb.2017.07.100_bib0205) 2012; 84 Krivetskiy (10.1016/j.snb.2017.07.100_bib0035) 2013; 82 Epifani (10.1016/j.snb.2017.07.100_bib0260) 2006; 16 Breiman (10.1016/j.snb.2017.07.100_bib0280) 2001; 45 Martinelli (10.1016/j.snb.2017.07.100_bib0200) 2012; 161 Heilig (10.1016/j.snb.2017.07.100_bib0140) 1997; 43 Clifford (10.1016/j.snb.2017.07.100_bib0115) 1982; 3 Sergent (10.1016/j.snb.2017.07.100_bib0105) 2007; 126 Rumyantseva (10.1016/j.snb.2017.07.100_bib0220) 2005; 109 Vergara (10.1016/j.snb.2017.07.100_bib0170) 2013; 185 Hugon (10.1016/j.snb.2017.07.100_bib0045) 2000; 67 Marikutsa (10.1016/j.snb.2017.07.100_bib0245) 2013; 117 Marikutsa (10.1016/j.snb.2017.07.100_bib0235) 2010; 183 Rumyantseva (10.1016/j.snb.2017.07.100_bib0230) 2008; 57 Krivetskiy (10.1016/j.snb.2017.07.100_bib0125) 2010; 22 Donoho (10.1016/j.snb.2017.07.100_bib0270) 1994; 81 Yamazoe (10.1016/j.snb.2017.07.100_bib0110) 2008; 128 Althainz (10.1016/j.snb.2017.07.100_bib0025) 1994; 241 Meier (10.1016/j.snb.2017.07.100_bib0155) 2007; 121 Marikutsa (10.1016/j.snb.2017.07.100_bib0240) 2010; 520 Barsan (10.1016/j.snb.2017.07.100_bib0320) 2003; 15 10.1016/j.snb.2017.07.100_bib0275 Yamazoe (10.1016/j.snb.2017.07.100_bib0015) 1991; 5 Fierro (10.1016/j.snb.2017.07.100_bib0080) 2006 Morrison (10.1016/j.snb.2017.07.100_bib0120) 1987; 12 Krivetskiy (10.1016/j.snb.2017.07.100_bib0050) 2013 Hyodo (10.1016/j.snb.2017.07.100_bib0310) 2002; 83 Haykin (10.1016/j.snb.2017.07.100_bib0290) 2008 Pearce (10.1016/j.snb.2017.07.100_bib0145) 2003 Yamazoe (10.1016/j.snb.2017.07.100_bib0165) 1983; 4 Nakata (10.1016/j.snb.2017.07.100_bib0130) 1992; 8 Mars (10.1016/j.snb.2017.07.100_bib0090) 1954; 3 Spannhake (10.1016/j.snb.2017.07.100_bib0010) 2009 Bielański (10.1016/j.snb.2017.07.100_bib0085) 1979; 19 Leinweber (10.1016/j.snb.2017.07.100_bib0215) 2007; 16 Drobek (10.1016/j.snb.2017.07.100_bib0030) 2016; 8 Sears (10.1016/j.snb.2017.07.100_bib0065) 1989; 4 Krivetsky (10.1016/j.snb.2017.07.100_bib0100) 2011 Frolov (10.1016/j.snb.2017.07.100_bib0250) 2012; 186 Korotchenkov (10.1016/j.snb.2017.07.100_bib0325) 1999; 54 |
| References_xml | – volume: 12 start-page: 425 year: 1987 end-page: 440 ident: bib0120 article-title: Selectivity in semiconductor gas sensors publication-title: Sens. Actuators – volume: 7 start-page: 143 year: 2001 ident: bib0075 article-title: Conduction model of metal oxide gas sensors publication-title: J. Electroceram. – volume: 1 start-page: 62 year: 1990 end-page: 67 ident: bib0070 article-title: A restricted flow thermally cycled gas sensor publication-title: Sens. Actuators B – volume: 185 start-page: 462 year: 2013 end-page: 477 ident: bib0170 article-title: On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines publication-title: Sens. Actuators B – start-page: 106 year: 2008 end-page: 119 ident: bib0175 article-title: The Elements of Statistical Learning – volume: 17 start-page: 893 year: 2005 end-page: 901 ident: bib0225 article-title: Raman surface vibration modes in nanocrystalline SnO publication-title: Chem. Mater. – volume: 87 start-page: 1929 year: 1991 end-page: 1934 ident: bib0095 article-title: Tin oxide surfaces. Part 21.—Infrared study of the chemisorption of 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoropropan-2-ol, 1,1,1-trifluoropropan-2-one, 1,1,1,3,3,3-hexafluoropropan-2-one and trifluoroacetic acid on tin(IV) oxide gel publication-title: J. Chem. Soc., Faraday Trans. – volume: 67 start-page: 235 year: 2000 end-page: 243 ident: bib0045 article-title: Gas separation with a zeolite filter, application to the selectivity enhancement of chemical sensors publication-title: Sens. Actuators B – volume: 16 start-page: 1488 year: 2006 end-page: 1498 ident: bib0260 publication-title: Adv. Funct. Mater. – volume: 161 start-page: 534 year: 2012 end-page: 541 ident: bib0200 article-title: Self-adapted temperature modulation in metal-oxide semiconductor gas sensors publication-title: Sens. Actuators B – volume: 128 start-page: 566 year: 2008 end-page: 573 ident: bib0110 article-title: Theory of power laws for semiconductor gas sensors publication-title: Sens. Actuators, B – volume: 5 start-page: 975 year: 2004 end-page: 1005 ident: bib0285 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 197 year: 1999 end-page: 201 ident: bib0325 article-title: Electrical behavior of SnO2 thin films in humid atmosphere publication-title: Sens. Actuators B – volume: 121 start-page: 282 year: 2007 end-page: 294 ident: bib0155 article-title: The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors publication-title: Sens. Actuators B – volume: 3 start-page: 41 year: 1954 end-page: 59 ident: bib0090 article-title: Oxidations carried out by means of vanadium oxide catalysts publication-title: Special Supplement Chem. Eng. Sci. – year: 1986 ident: bib0180 article-title: Principal Component Analysis – volume: 520 start-page: 904 year: 2010 end-page: 908 ident: bib0240 article-title: CO and NH publication-title: Thin Solid Films – volume: 3 start-page: 255 year: 1982-1983 end-page: 281 ident: bib0115 article-title: Characteristics of semiconductor gas sensors II. transient response to temperature change publication-title: Sens. Actuators – volume: 19 year: 2008 ident: bib0150 article-title: Gas sensors in a dynamic operation mode publication-title: Meas. Sci. Technol. – volume: 183 start-page: 2389 year: 2010 end-page: 2399 ident: bib0235 article-title: Role of surface hydroxyl groups in promoting room temperature CO sensing by Pd-modified nanocrystalline SnO publication-title: J. Solid State Chem. – volume: 210 start-page: 719 year: 2015 end-page: 725 ident: bib0315 article-title: Impurity level in SnO publication-title: Sens. Actuators B – volume: 15 start-page: R813 year: 2003 end-page: R839 ident: bib0320 article-title: Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO publication-title: J. Phys.: Condens. Matter – volume: 8 start-page: 187 year: 1992 end-page: 189 ident: bib0130 article-title: New strategy for the development of a gas sensor based on the dynamic characteristics: principle and preliminary experiment publication-title: Sens. Actuators B – start-page: 53 year: 2012 end-page: 67 ident: bib0295 article-title: Early Stopping — But When?. Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science – volume: 114 start-page: 881 year: 2006 end-page: 892 ident: bib0040 article-title: Micromachined twin gas sensor for CO and O publication-title: Sens. Actuators B – start-page: 808 year: 2006 ident: bib0080 article-title: Metal Oxides: Chemistry and Applications – volume: 19 start-page: 1 year: 1979 end-page: 41 ident: bib0085 article-title: Oxygen in catalysis on transition metal oxides publication-title: Catal. Rev. – volume: 5 start-page: 7 year: 1991 end-page: 19 ident: bib0015 article-title: New approaches for improving semiconductor gas sensors publication-title: Sens. Actuators B – volume: 109 start-page: 64 year: 2005 end-page: 74 ident: bib0220 article-title: Nanocomposites SnO publication-title: Sens. Actuators B – start-page: 158 year: 2009 ident: bib0265 article-title: Systems and Technical Equipment for Early Detection of Fire – volume: 217 start-page: 36 year: 2015 end-page: 40 ident: bib0160 article-title: Early detection of fires in electrical installations by thermallymodulated SnO publication-title: Sens. Actuators B – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0280 publication-title: Mach. Learn. – volume: Vol 1 year: 2013 ident: bib0195 publication-title: Artificial Intelligence for Humans – volume: 188 start-page: 709 year: 2013 end-page: 728 ident: bib0020 article-title: Engineering approaches for the improvement of conductometric gas sensor parameters: part 1. Improvement of sensor sensitivity and selectivity (short survey) publication-title: Sens. Actuators B – volume: 60 start-page: 35 year: 1999 end-page: 42 ident: bib0055 article-title: Temperature modulation in semiconductor gas sensing publication-title: Sens. Actuators B – year: 2010 ident: bib0210 article-title: Multivariate Data Analysis − in Practice 5th Edition – volume: 83 start-page: 209 year: 2002 end-page: 215 ident: bib0310 article-title: Preparation and gas-sensing properties of thermally stable mesoporous SnO publication-title: Sens. Actuators B – volume: 41 start-page: 105 year: 1997 end-page: 120 ident: bib0135 article-title: A comparative study of signal processing techniques for clustering microsensor data (a first step towards an artificial nose) publication-title: Sens. Actuators B – volume: 4 start-page: 283 year: 1983 end-page: 289 ident: bib0165 article-title: Effects of additives on semiconductor gas sensors publication-title: Sens. Actuators – volume: 149 start-page: 105 year: 2010 end-page: 109 ident: bib0305 article-title: Microporous ceramic coated SnO publication-title: Sens. Actuators B – volume: 43 start-page: 45 year: 1997 end-page: 51 ident: bib0140 article-title: Gas identification by modulating temperatures of SnO publication-title: Sens. Actuators B – volume: 691 start-page: 514 year: 2017 end-page: 523 ident: bib0060 article-title: Chemically modified nanocrystalline SnO publication-title: J. Alloys Compd. – volume: 59 start-page: 195 year: 1999 end-page: 202 ident: bib0300 article-title: Gas detection for automotive pollution control publication-title: Sens. Actuators B – volume: 22 start-page: 2809 year: 2010 end-page: 2816 ident: bib0125 article-title: Selectivity modification of snO2-based materials for gas sensor arrays publication-title: Electroanal – volume: 186 start-page: 1 year: 2012 end-page: 8 ident: bib0250 article-title: Oxygen exchange on nanocrystalline tin dioxide modified by palladium publication-title: Solid State Chem. – year: 2013 ident: bib0050 article-title: Semiconductor gas sensing coupled with pre-sampling system for toxic compounds and chemical threat agents detection publication-title: Proceedings of the 7th International Conference on Sensing Technology (ICST) – volume: 57 start-page: 1106 year: 2008 end-page: 1125 ident: bib0230 article-title: Chemical modification of nanocrystalline metal oxides: effect of the real structure and surface chemistry on the sensor properties publication-title: Russ. Chem. Bull. – volume: 82 start-page: 917 year: 2013 end-page: 941 ident: bib0035 article-title: Chemical modification of nanocrystalline tin dioxide for selective gas sensors publication-title: Russ. Chem. Rev. – volume: 126 start-page: 1 year: 2007 end-page: 5 ident: bib0105 article-title: Interactions of nanocrystalline tin oxide powder with NO publication-title: Sens. Actuators B Chem. – volume: 118 start-page: 21541 year: 2014 end-page: 21549 ident: bib0255 article-title: Active sites on nanocrystalline tin dioxide surface: effect of palladium and ruthenium oxides clusters publication-title: J. Phys. Chem. C – volume: 84 start-page: 9774 year: 2012 end-page: 9781 ident: bib0205 article-title: Machine learning applied to chemical analysis: sensing multiple biomarkers in simulated Breath using a temperature-pulsed electronic-Nose publication-title: Anal. Chem. – volume: 16 start-page: 15 year: 2007 end-page: 22 ident: bib0215 article-title: Stupid data miner tricks publication-title: The Journal of Investing – volume: 138 start-page: 100 year: 2009 end-page: 107 ident: bib0005 article-title: New perspectives of gas sensor technology publication-title: Sens. Actuators B – start-page: 1 year: 2009 end-page: 41 ident: bib0010 publication-title: Micro-Fabrication of Gas Sensors, in Solid State Gas Sensing» – volume: 117 start-page: 23858 year: 2013 end-page: 23867 ident: bib0245 article-title: Role of PdO publication-title: J. Phys. Chem. C – volume: 81 start-page: 425 year: 1994 end-page: 455 ident: bib0270 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika – start-page: 645 year: 2003 ident: bib0145 article-title: Handbook of Machine Olfaction: Electronic Nose Technology – start-page: 936 year: 2008 ident: bib0290 article-title: Neural Networks and Learning Machines – start-page: 409 year: 2011 end-page: 421 ident: bib0100 article-title: Acetone sensing by modified SnO publication-title: Nanotechnol. Basis For Adv. Sens. NATO Sci. Peace Security Series B: Phys. Biophys. – year: 2016 ident: bib0190 article-title: An Overview of Gradient Descent Optimization Algorithms – volume: 38 start-page: 25 year: 2016 end-page: 38 ident: bib0185 article-title: Overview of frequentist and bayesian approach to survival publication-title: Analysis Applied Medical Informatics – volume: 241 start-page: 344 year: 1994 end-page: 347 ident: bib0025 article-title: Low temperature deposition of glass membranes for gas sensors publication-title: Thin Solid Films – volume: 8 start-page: 8323 year: 2016 end-page: 8328 ident: bib0030 article-title: MOF-Based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 351 year: 1989 end-page: 359 ident: bib0065 article-title: General characteristics of thermally cycled tin oxide gas sensors publication-title: Semicond. Sci. Technol. – reference: https://CRAN.R-project.org/package=wavethresh. – start-page: 409 year: 2011 ident: 10.1016/j.snb.2017.07.100_bib0100 article-title: Acetone sensing by modified SnO2 nanocrystalline sensor materials publication-title: Nanotechnol. Basis For Adv. Sens. NATO Sci. Peace Security Series B: Phys. Biophys. – start-page: 158 year: 2009 ident: 10.1016/j.snb.2017.07.100_bib0265 – volume: 82 start-page: 917 year: 2013 ident: 10.1016/j.snb.2017.07.100_bib0035 article-title: Chemical modification of nanocrystalline tin dioxide for selective gas sensors publication-title: Russ. Chem. Rev. doi: 10.1070/RC2013v082n10ABEH004366 – volume: 186 start-page: 1 year: 2012 ident: 10.1016/j.snb.2017.07.100_bib0250 article-title: Oxygen exchange on nanocrystalline tin dioxide modified by palladium publication-title: Solid State Chem. doi: 10.1016/j.jssc.2011.11.028 – volume: 138 start-page: 100 year: 2009 ident: 10.1016/j.snb.2017.07.100_bib0005 article-title: New perspectives of gas sensor technology publication-title: Sens. Actuators B doi: 10.1016/j.snb.2009.01.023 – volume: 114 start-page: 881 year: 2006 ident: 10.1016/j.snb.2017.07.100_bib0040 article-title: Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2005.08.007 – volume: 3 start-page: 41 year: 1954 ident: 10.1016/j.snb.2017.07.100_bib0090 article-title: Oxidations carried out by means of vanadium oxide catalysts publication-title: Special Supplement Chem. Eng. Sci. doi: 10.1016/S0009-2509(54)80005-4 – start-page: 808 year: 2006 ident: 10.1016/j.snb.2017.07.100_bib0080 – volume: 121 start-page: 282 year: 2007 ident: 10.1016/j.snb.2017.07.100_bib0155 article-title: The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2006.09.050 – start-page: 936 year: 2008 ident: 10.1016/j.snb.2017.07.100_bib0290 – year: 2010 ident: 10.1016/j.snb.2017.07.100_bib0210 – volume: 17 start-page: 893 year: 2005 ident: 10.1016/j.snb.2017.07.100_bib0225 article-title: Raman surface vibration modes in nanocrystalline SnO2: Correlation with gas sensor performances publication-title: Chem. Mater. doi: 10.1021/cm0490470 – volume: 5 start-page: 7 year: 1991 ident: 10.1016/j.snb.2017.07.100_bib0015 article-title: New approaches for improving semiconductor gas sensors publication-title: Sens. Actuators B doi: 10.1016/0925-4005(91)80213-4 – volume: 84 start-page: 9774 year: 2012 ident: 10.1016/j.snb.2017.07.100_bib0205 article-title: Machine learning applied to chemical analysis: sensing multiple biomarkers in simulated Breath using a temperature-pulsed electronic-Nose publication-title: Anal. Chem. doi: 10.1021/ac301687j – volume: 185 start-page: 462 year: 2013 ident: 10.1016/j.snb.2017.07.100_bib0170 article-title: On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.05.027 – volume: 59 start-page: 195 year: 1999 ident: 10.1016/j.snb.2017.07.100_bib0300 article-title: Gas detection for automotive pollution control publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(99)00220-8 – volume: 83 start-page: 209 year: 2002 ident: 10.1016/j.snb.2017.07.100_bib0310 article-title: Preparation and gas-sensing properties of thermally stable mesoporous SnO2 publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)01042-5 – start-page: 645 year: 2003 ident: 10.1016/j.snb.2017.07.100_bib0145 – volume: 217 start-page: 36 year: 2015 ident: 10.1016/j.snb.2017.07.100_bib0160 article-title: Early detection of fires in electrical installations by thermallymodulated SnO2/additive-multi sensor arrays publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.02.014 – volume: 183 start-page: 2389 year: 2010 ident: 10.1016/j.snb.2017.07.100_bib0235 article-title: Role of surface hydroxyl groups in promoting room temperature CO sensing by Pd-modified nanocrystalline SnO2 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2010.07.017 – volume: 43 start-page: 45 year: 1997 ident: 10.1016/j.snb.2017.07.100_bib0140 article-title: Gas identification by modulating temperatures of SnO2-based thick film sensors publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(97)00096-8 – volume: 4 start-page: 351 year: 1989 ident: 10.1016/j.snb.2017.07.100_bib0065 article-title: General characteristics of thermally cycled tin oxide gas sensors publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/4/5/004 – volume: 5 start-page: 975 year: 2004 ident: 10.1016/j.snb.2017.07.100_bib0285 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J. Mach. Learn. Res. – volume: 118 start-page: 21541 year: 2014 ident: 10.1016/j.snb.2017.07.100_bib0255 article-title: Active sites on nanocrystalline tin dioxide surface: effect of palladium and ruthenium oxides clusters publication-title: J. Phys. Chem. C doi: 10.1021/jp5071902 – volume: 22 start-page: 2809 year: 2010 ident: 10.1016/j.snb.2017.07.100_bib0125 article-title: Selectivity modification of snO2-based materials for gas sensor arrays publication-title: Electroanal doi: 10.1002/elan.201000277 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.snb.2017.07.100_bib0280 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 128 start-page: 566 year: 2008 ident: 10.1016/j.snb.2017.07.100_bib0110 article-title: Theory of power laws for semiconductor gas sensors publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2007.07.036 – volume: 41 start-page: 105 year: 1997 ident: 10.1016/j.snb.2017.07.100_bib0135 article-title: A comparative study of signal processing techniques for clustering microsensor data (a first step towards an artificial nose) publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(97)80283-3 – volume: 1 start-page: 62 year: 1990 ident: 10.1016/j.snb.2017.07.100_bib0070 article-title: A restricted flow thermally cycled gas sensor publication-title: Sens. Actuators B doi: 10.1016/0925-4005(90)80173-W – volume: 117 start-page: 23858 year: 2013 ident: 10.1016/j.snb.2017.07.100_bib0245 article-title: Role of PdOx and RuOy clusters in oxygen exchange between nanocrystalline tin dioxide and the gas phase publication-title: J. Phys. Chem. C doi: 10.1021/jp408646k – volume: 67 start-page: 235 year: 2000 ident: 10.1016/j.snb.2017.07.100_bib0045 article-title: Gas separation with a zeolite filter, application to the selectivity enhancement of chemical sensors publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00514-1 – volume: 57 start-page: 1106 year: 2008 ident: 10.1016/j.snb.2017.07.100_bib0230 article-title: Chemical modification of nanocrystalline metal oxides: effect of the real structure and surface chemistry on the sensor properties publication-title: Russ. Chem. Bull. doi: 10.1007/s11172-008-0139-z – volume: 109 start-page: 64 year: 2005 ident: 10.1016/j.snb.2017.07.100_bib0220 article-title: Nanocomposites SnO2/Fe2O3: wet chemical synthesis and nanostructure characterization publication-title: Sens. Actuators B doi: 10.1016/j.snb.2005.03.017 – volume: 3 start-page: 255 year: 1982 ident: 10.1016/j.snb.2017.07.100_bib0115 article-title: Characteristics of semiconductor gas sensors II. transient response to temperature change publication-title: Sens. Actuators doi: 10.1016/0250-6874(82)80027-9 – volume: 12 start-page: 425 year: 1987 ident: 10.1016/j.snb.2017.07.100_bib0120 article-title: Selectivity in semiconductor gas sensors publication-title: Sens. Actuators doi: 10.1016/0250-6874(87)80061-6 – volume: 8 start-page: 187 year: 1992 ident: 10.1016/j.snb.2017.07.100_bib0130 article-title: New strategy for the development of a gas sensor based on the dynamic characteristics: principle and preliminary experiment publication-title: Sens. Actuators B doi: 10.1016/0925-4005(92)80179-2 – volume: 16 start-page: 15 year: 2007 ident: 10.1016/j.snb.2017.07.100_bib0215 article-title: Stupid data miner tricks publication-title: The Journal of Investing doi: 10.3905/joi.2007.681820 – volume: 7 start-page: 143 year: 2001 ident: 10.1016/j.snb.2017.07.100_bib0075 article-title: Conduction model of metal oxide gas sensors publication-title: J. Electroceram. doi: 10.1023/A:1014405811371 – volume: 54 start-page: 197 year: 1999 ident: 10.1016/j.snb.2017.07.100_bib0325 article-title: Electrical behavior of SnO2 thin films in humid atmosphere publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(99)00016-7 – volume: 38 start-page: 25 issue: 1 year: 2016 ident: 10.1016/j.snb.2017.07.100_bib0185 article-title: Overview of frequentist and bayesian approach to survival publication-title: Analysis Applied Medical Informatics – year: 2016 ident: 10.1016/j.snb.2017.07.100_bib0190 – volume: 161 start-page: 534 year: 2012 ident: 10.1016/j.snb.2017.07.100_bib0200 article-title: Self-adapted temperature modulation in metal-oxide semiconductor gas sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.10.072 – volume: 87 start-page: 1929 year: 1991 ident: 10.1016/j.snb.2017.07.100_bib0095 article-title: Tin oxide surfaces. Part 21.—Infrared study of the chemisorption of 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoropropan-2-ol, 1,1,1-trifluoropropan-2-one, 1,1,1,3,3,3-hexafluoropropan-2-one and trifluoroacetic acid on tin(IV) oxide gel publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/FT9918701929 – volume: 126 start-page: 1 year: 2007 ident: 10.1016/j.snb.2017.07.100_bib0105 article-title: Interactions of nanocrystalline tin oxide powder with NO2: A Raman spectroscopic study publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2006.10.013 – volume: Vol 1 year: 2013 ident: 10.1016/j.snb.2017.07.100_bib0195 – volume: 8 start-page: 8323 year: 2016 ident: 10.1016/j.snb.2017.07.100_bib0030 article-title: MOF-Based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12062 – volume: 210 start-page: 719 year: 2015 ident: 10.1016/j.snb.2017.07.100_bib0315 article-title: Impurity level in SnO2 materials and its impact on gas sensing properties publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.01.038 – volume: 81 start-page: 425 year: 1994 ident: 10.1016/j.snb.2017.07.100_bib0270 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – start-page: 1 year: 2009 ident: 10.1016/j.snb.2017.07.100_bib0010 – volume: 691 start-page: 514 year: 2017 ident: 10.1016/j.snb.2017.07.100_bib0060 article-title: Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.275 – year: 2013 ident: 10.1016/j.snb.2017.07.100_bib0050 article-title: Semiconductor gas sensing coupled with pre-sampling system for toxic compounds and chemical threat agents detection – volume: 15 start-page: R813 year: 2003 ident: 10.1016/j.snb.2017.07.100_bib0320 article-title: Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity publication-title: J. Phys.: Condens. Matter – volume: 19 issue: 055205 year: 2008 ident: 10.1016/j.snb.2017.07.100_bib0150 article-title: Gas sensors in a dynamic operation mode publication-title: Meas. Sci. Technol. – volume: 4 start-page: 283 year: 1983 ident: 10.1016/j.snb.2017.07.100_bib0165 article-title: Effects of additives on semiconductor gas sensors publication-title: Sens. Actuators doi: 10.1016/0250-6874(83)85034-3 – volume: 520 start-page: 904 year: 2010 ident: 10.1016/j.snb.2017.07.100_bib0240 article-title: CO and NH3 sensor properties and paramagnetic centers of nanocrystalline SnO2 modified by Pd and Ru publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.04.176 – start-page: 53 year: 2012 ident: 10.1016/j.snb.2017.07.100_bib0295 – volume: 149 start-page: 105 year: 2010 ident: 10.1016/j.snb.2017.07.100_bib0305 article-title: Microporous ceramic coated SnO2 sensors for hydrogen and carbon monoxide sensing in harsh reducing conditions publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.06.016 – start-page: 106 year: 2008 ident: 10.1016/j.snb.2017.07.100_bib0175 – ident: 10.1016/j.snb.2017.07.100_bib0275 – volume: 188 start-page: 709 year: 2013 ident: 10.1016/j.snb.2017.07.100_bib0020 article-title: Engineering approaches for the improvement of conductometric gas sensor parameters: part 1. Improvement of sensor sensitivity and selectivity (short survey) publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.07.101 – volume: 19 start-page: 1 year: 1979 ident: 10.1016/j.snb.2017.07.100_bib0085 article-title: Oxygen in catalysis on transition metal oxides publication-title: Catal. Rev. doi: 10.1080/03602457908065099 – volume: 60 start-page: 35 year: 1999 ident: 10.1016/j.snb.2017.07.100_bib0055 article-title: Temperature modulation in semiconductor gas sensing publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(99)00241-5 – volume: 241 start-page: 344 year: 1994 ident: 10.1016/j.snb.2017.07.100_bib0025 article-title: Low temperature deposition of glass membranes for gas sensors publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)90454-5 – volume: 16 start-page: 1488 year: 2006 ident: 10.1016/j.snb.2017.07.100_bib0260 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500652 – year: 1986 ident: 10.1016/j.snb.2017.07.100_bib0180 |
| SSID | ssj0004360 |
| Score | 2.3890822 |
| Snippet | •Selective gas detection with single metal oxide semiconductor gas sensor is shown.•Selectivity is achieved through adaptive signal processing model... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 502 |
| SubjectTerms | Adaptive algorithms Gas sensors Neural networks Semiconductor metal oxide Signal processing SnO2 |
| Title | Selective detection of individual gases and CO/H2 mixture at low concentrations in air by single semiconductor metal oxide sensors working in dynamic temperature mode |
| URI | https://dx.doi.org/10.1016/j.snb.2017.07.100 |
| Volume | 254 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3077 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004360 issn: 0925-4005 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3077 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004360 issn: 0925-4005 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3077 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004360 issn: 0925-4005 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-3077 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004360 issn: 0925-4005 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZW9FIOFbRFPFdz6KlSut7Y2dhHtAJtW3V7WJC4RX7EKGhx0CYIuPBz-J148uAhFQ49JvFIkceaGdvffB8h32LOHDdORowrF3GVp5FKlIgsggoTF1PTyLf9mU9mp_zXWXI2INO-FwZhlV3sb2N6E627N6NuNkdXRTFaUBk2Nw3HFAuBWCLtNucpqhj8uH-GeXDWdArj4AhH9zebDcar8hrRXSnyd46xye1fuelFvjneIJ-6QhEO23_ZJIPcfybrL-gDv5CHRSNiE-IV2LxuMFUeSgfFU5MVnIckVYHyFqZ_R7MYLotbvDIAVcOyvAGDTYu-Y86tgiGoYgX6DvAEYZlDhdD50iMnbLmCyzxU6lDeFha_-KpcVXDTHrajqW3F7QHZrjqqZkChna_k9PjoZDqLOt2FyIRqp44EUtboXHMpmAj5Crd4ho61SmViTGy4Rq2yhEllLKd87EK8pDaRVFJllFBsi6z50ufbBFxq7EQnRsTKhdJQy4mOhabWCWZiqtkOof2MZ6YjJUdtjGXWo88usuCkDJ2U0RQZlnfI9yeTq5aR473BvHdj9mpZZSFjvG22-39me-RjeBLtCc0-WatX1_lBqFlqPWwW5ZB8OPz5ezZ_BGIR7eY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUoLCgLBAUEhbZ30VWlMJ7YmdhLNCqaUqALQGIX-RGjoMFBk1TQTT-H78Q3Dx4SsGAb-0qRbd2Hfe45hHyPOXPcOBkxrlzEVZ5GKlEisggqTFxMTSPfdnQ8mpzxg_PkfI6M-14YhFV2vr_16Y237r4MutUcXBfF4ITKUNw0HFMsOGI5-kAWeBKnWIHt_n_EeXDWtArj7Ain90-bDcir8hrhXSkSeA6xy-2l4PQk4OyvkOUuU4S99mdWyVzuP5GlJ_yBa-TupFGxCQ4LbF43oCoPpYPiocsKLkKUqkB5C-M_g0kMV8UtvhmAqmFa3oDBrkXfUedWwRBUMQP9D_AKYZpDhdj50iMpbDmDqzyk6lDeFhZHfFXOKrhpb9vR1Lbq9oB0Vx1XM6DSzjo52_95Op5EnfBCZEK6U0cCOWt0rrkUTISAhTWeoUOtUpkYExuuUawsYVIZyykfuuAwqU0klVQZJRTbIPO-9PkmAZcaO9KJEbFyITfUcqRjoal1gpmYarZFaL_imelYyVEcY5r18LPLLGxShpuU0RQplrfIjweT65aS463JvN_G7Nm5ykLIeN3s8_vMvpHFyenRYXb46_j3NvkYRkR7XbND5uvZ3_xLSGBq_bU5oPfqve97 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+detection+of+individual+gases+and+CO%2FH2+mixture+at+low+concentrations+in+air+by+single+semiconductor+metal+oxide+sensors+working+in+dynamic+temperature+mode&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Krivetskiy%2C+V.&rft.au=Efitorov%2C+A.&rft.au=Arkhipenko%2C+A.&rft.au=Vladimirova%2C+S.&rft.date=2018-01-01&rft.issn=0925-4005&rft.volume=254&rft.spage=502&rft.epage=513&rft_id=info:doi/10.1016%2Fj.snb.2017.07.100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2017_07_100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |