Application of multispectral imaging combined with machine learning methods for rapid and non-destructive detection of zearalenone (ZEN) in maize

•GA-BPNN is an efficient method to pretreat high dimension spectral signals.•Multispectral imaging combined with machine learning is a promising technique to detect the quality of maize. Maize is inevitably contaminated by zearalenone (ZEN) that will cause serious harm to human beings. In this study...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 203; p. 111944
Main Authors Liu, Wei, Deng, Haiyang, Shi, Yule, Liu, Changhong, Zheng, Lei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2022.111944

Cover

Abstract •GA-BPNN is an efficient method to pretreat high dimension spectral signals.•Multispectral imaging combined with machine learning is a promising technique to detect the quality of maize. Maize is inevitably contaminated by zearalenone (ZEN) that will cause serious harm to human beings. In this study, multispectral imaging (MSI) technology combined with different machine learning methods were used to detect ZEN content in maize. The wavelengths that were most related to ZEN content in maize could be selected by genetic algorithm with back-propagation neural network (GA-BPNN). Our results showed that ZEN contamination level could be detected with the accuracy of 93.33 % by GA-BPNN method. In addition, for quantitative prediction of ZEN content GA-BPNN algorithm was the best method with the correlation coefficient (Rp), the root means square error (RMSEP), residual predictive deviation (RPD) and bias achieved to 0.95, 3.66 μg/kg, 5.39 and 1.55 μg/kg, respectively in prediction set. It can be concluded that multispectral imaging combined with machine learning was applicable for rapid measurement of ZEN content in maize.
AbstractList •GA-BPNN is an efficient method to pretreat high dimension spectral signals.•Multispectral imaging combined with machine learning is a promising technique to detect the quality of maize. Maize is inevitably contaminated by zearalenone (ZEN) that will cause serious harm to human beings. In this study, multispectral imaging (MSI) technology combined with different machine learning methods were used to detect ZEN content in maize. The wavelengths that were most related to ZEN content in maize could be selected by genetic algorithm with back-propagation neural network (GA-BPNN). Our results showed that ZEN contamination level could be detected with the accuracy of 93.33 % by GA-BPNN method. In addition, for quantitative prediction of ZEN content GA-BPNN algorithm was the best method with the correlation coefficient (Rp), the root means square error (RMSEP), residual predictive deviation (RPD) and bias achieved to 0.95, 3.66 μg/kg, 5.39 and 1.55 μg/kg, respectively in prediction set. It can be concluded that multispectral imaging combined with machine learning was applicable for rapid measurement of ZEN content in maize.
ArticleNumber 111944
Author Liu, Wei
Liu, Changhong
Zheng, Lei
Deng, Haiyang
Shi, Yule
Author_xml – sequence: 1
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601, China
– sequence: 2
  givenname: Haiyang
  surname: Deng
  fullname: Deng, Haiyang
  organization: Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601, China
– sequence: 3
  givenname: Yule
  surname: Shi
  fullname: Shi, Yule
  organization: School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
– sequence: 4
  givenname: Changhong
  surname: Liu
  fullname: Liu, Changhong
  email: changhong22@hfut.edu.cn
  organization: School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
– sequence: 5
  givenname: Lei
  surname: Zheng
  fullname: Zheng, Lei
  email: lzheng@hfut.edu.cn, lei.zheng@aliyun.com
  organization: School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
BookMark eNqNkE1PGzEQhi0EUpPQ_-De2sMGj_cre6qiiJZKCC4gIS6WY8-SiXa9K9sBlX_Rf4zT5IA4cbJG1vvMvM-UnbrBIWPfQMxBQHWxnfeow85jjy7OpZByDgBNUZywCSzqPCtAPpyyiZBVnklZwBc2DWErhKjyppqwf8tx7MjoSIPjQ8v7XRcpjGii1x2nXj-Re-Jm6Nfk0PIXihvea7NJE-9Qe7f_7jFuBht4O3ju9UiWa2d5ujSzGKLfmUjPyC3GhD3ueU1Z3eG-Df_-eHnzg5NLYHrFc3bW6i7g1-M7Y_e_Lu9WV9n17e8_q-V1ZmQJMSuKtRVtAzVCXVdS1lJgXiDIVq6thdJC3jZtbauyXMjFwpagpZY5VLgWIAqdz1hz4Bo_hOCxVaNPff1fBULt3aqteudW7d2qg9uU_fkhayj-d5i0UfcpwupAwFTxmdCrYAidQUs-WVJ2oE9Q3gB0QKM_
CitedBy_id crossref_primary_10_1016_j_trac_2024_117944
crossref_primary_10_1111_pbr_13228
crossref_primary_10_1016_j_microc_2025_113006
crossref_primary_10_3390_foods11213429
crossref_primary_10_1016_j_foodcont_2024_111030
crossref_primary_10_3390_foods13203339
crossref_primary_10_1109_TIM_2024_3369129
crossref_primary_10_1016_j_compag_2023_107853
crossref_primary_10_1080_01431161_2024_2377835
Cites_doi 10.1016/j.bios.2018.08.029
10.1007/s11694-019-00136-1
10.1016/S0305-0483(99)00036-5
10.1016/j.chemolab.2012.07.010
10.1039/C8AY01307A
10.1007/s12161-014-0038-x
10.1039/C1AN15487G
10.1016/j.toxicon.2019.03.004
10.1016/j.foodchem.2017.09.133
10.1037/h0071325
10.1021/jf503191e
10.1007/s10812-016-0217-1
10.1016/j.postharvbio.2008.03.013
10.2903/j.efsa.2011.2197
10.1016/j.jfoodeng.2013.04.001
10.1016/j.foodchem.2019.02.020
10.1016/S0893-6080(97)00014-2
10.3390/s19051090
10.1016/j.foodchem.2012.04.051
10.1111/nyas.12396
10.1016/j.jspr.2015.07.005
10.1021/acs.jafc.6b05614
10.1016/S0041-0101(00)00259-2
10.1016/j.biosystemseng.2015.07.010
10.5194/gmd-7-1247-2014
10.1016/j.ijfoodmicro.2007.07.024
10.1002/jssc.201900050
10.1016/j.compag.2022.106728
10.1128/CMR.16.3.497-516.2003
10.1016/j.aca.2019.02.012
10.1016/S0168-1605(96)01217-2
10.1016/j.foodchem.2020.128507
10.1016/j.chroma.2004.11.011
10.3390/toxins11100556
10.1016/j.aca.2010.03.010
10.1016/j.foodchem.2017.03.100
10.1016/j.foodcont.2012.09.006
10.1023/A:1022627411411
10.1016/j.tifs.2014.01.005
10.1016/j.foodchem.2014.10.052
10.1016/j.ins.2013.02.041
10.1080/10408398.2019.1658570
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2022.111944
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2022_111944
S026322412201140X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c251t-44bd0f917e177622720e34e12f2bdd15d13f9f7d6558288d51a2a2316eb0104a3
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Thu Oct 09 00:15:00 EDT 2025
Thu Apr 24 23:00:53 EDT 2025
Fri Feb 23 02:39:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Machine learning method
Multispectral imaging
Non-destructive detection
Zearalenone in maize
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-44bd0f917e177622720e34e12f2bdd15d13f9f7d6558288d51a2a2316eb0104a3
ParticipantIDs crossref_primary_10_1016_j_measurement_2022_111944
crossref_citationtrail_10_1016_j_measurement_2022_111944
elsevier_sciencedirect_doi_10_1016_j_measurement_2022_111944
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Bai, Zhao, Zhou, Chen, Mu (b0095) 2019; 1060
Goud, Kailasa, Kumar, Tsang, Gobi, Kim (b0055) 2018; 121
Zhang, Eremin, Wen, Yu, Li, Ke, Wang (b0030) 2017; 65
Ma, Wang, Liu, Lu, Chen, Chen, Zheng (b0165) 2015; 8
Shier, Shier, Xie, Mirocha (b0020) 2001; 39
Senthilkumar, Jayas, White (b0130) 2015; 63
Qin, Chao, Kim, Lu, Burks (b0140) 2013; 118
Ranum, Peña-Rosas, Garcia-Casal (b0035) 2014; 1312
Pereira, Fernandes, Cunha (b0070) 2014; 36
Gordon, Schudy, Wheeler, Wicklow, Greene (b0120) 1997; 35
Alisaac, Behmann, Rathgeb, Karlovsky, Mahlein (b0220) 2019; 11
Chai, Draxler (b0215) 2014; 7
Desjardins, Proctor (b0025) 2007; 119
Su, Yang, Dong, Johnson, Steffenson (b0230) 2021; 343
Wu, Xu, Chughtai, Jin (b0050) 2017; 230
Gao, Yang, Peng, Li, Cai, Qi (b0105) 2012; 137
Boussad, Lepagnot, Siarry (b0185) 2013; 237
Rogowska, Pomastowski, Sagandykova, Buszewski (b0005) 2019; 162
Wang, Liu, Xu, Feng, Yu (b0135) 2019; 13
Wang, Gao, Cao, You, Zhang, Shen (b0125) 2022; 193
Liu, Liu, Ma, Lu, Yang, Zheng (b0150) 2016; 82
Juan, Ritieni, Mañes (b0075) 2012; 134
Houck, Joines, Kay (b0195) 1995; 95
Liang, Slaughter, Ortega-Beltran, Michailides (b0110) 2015; 37
El-Masry, Mandour, Al-Rejaie, Belin, Rousseau (b0155) 2019; 19
Lucci, Derrien, Alix, Pérollier, Bayoudh (b0090) 2010; 672
Liu, Liu, Chen, Yang, Zheng (b0170) 2015; 173
EFSA Panel on Contaminants in the Food Chain, 2011.
Bennett, Klich (b0015) 2003; 16
Mehmood, Liland, Snipen, Sæbø (b0175) 2012; 118
Sinelli, Spinardi, Di Egidio, Mignani, Casiraghi (b0210) 2008; 50
Liang, Dong, Yuan, Fan, Zhao, Wang (b0085) 2019; 42
Liu, Hu, Zhu, Zhou, Jia, Zhang (b0100) 2014; 62
Eskola, Kos, Elliott, Hajšlová, Mayar (b0010) 2019; 60
Li, Ren, Shao, De Saeger, Song, Yan (b0040) 2018; 10
Shen, Zhao, Jiang, Liu, Fang, Liu, Hu, Liu (b0115) 2019; 109
Hotelling (b0180) 1933; 24
Wang, Du (b0205) 2000; 28
Dai, MacBeth (b0200) 1997; 10
Chu, Wang, Ni, Li, Li (b0225) 2020; 105
Sendin, Manley, Williams (b0160) 2018; 243
Cortes, Vapnik (b0190) 1995; 20
EFSA Journal, 9(6), 2197.
Pei, Lee, Zhang, Hu, Eremin, Zhang (b0060) 2013; 31
Liu, Liu, Lu, Ma, Chen, Yang, Zheng (b0145) 2014; 9
Guo, Wang, Wu, Tao, Chen, Wang, Zou (b0065) 2019; 286
Berthiller, Schuhmacher, Buttinger, Krska (b0080) 2005; 1062
Liu (10.1016/j.measurement.2022.111944_b0145) 2014; 9
Boussad (10.1016/j.measurement.2022.111944_b0185) 2013; 237
Berthiller (10.1016/j.measurement.2022.111944_b0080) 2005; 1062
Pereira (10.1016/j.measurement.2022.111944_b0070) 2014; 36
Wang (10.1016/j.measurement.2022.111944_b0125) 2022; 193
El-Masry (10.1016/j.measurement.2022.111944_b0155) 2019; 19
Chai (10.1016/j.measurement.2022.111944_b0215) 2014; 7
Hotelling (10.1016/j.measurement.2022.111944_b0180) 1933; 24
10.1016/j.measurement.2022.111944_b0045
Qin (10.1016/j.measurement.2022.111944_b0140) 2013; 118
Liu (10.1016/j.measurement.2022.111944_b0170) 2015; 173
Zhang (10.1016/j.measurement.2022.111944_b0030) 2017; 65
Dai (10.1016/j.measurement.2022.111944_b0200) 1997; 10
Goud (10.1016/j.measurement.2022.111944_b0055) 2018; 121
Liu (10.1016/j.measurement.2022.111944_b0100) 2014; 62
Su (10.1016/j.measurement.2022.111944_b0230) 2021; 343
Senthilkumar (10.1016/j.measurement.2022.111944_b0130) 2015; 63
Desjardins (10.1016/j.measurement.2022.111944_b0025) 2007; 119
Wu (10.1016/j.measurement.2022.111944_b0050) 2017; 230
Wang (10.1016/j.measurement.2022.111944_b0135) 2019; 13
Houck (10.1016/j.measurement.2022.111944_b0195) 1995; 95
Mehmood (10.1016/j.measurement.2022.111944_b0175) 2012; 118
Liang (10.1016/j.measurement.2022.111944_b0110) 2015; 37
Sendin (10.1016/j.measurement.2022.111944_b0160) 2018; 243
Liang (10.1016/j.measurement.2022.111944_b0085) 2019; 42
Rogowska (10.1016/j.measurement.2022.111944_b0005) 2019; 162
Pei (10.1016/j.measurement.2022.111944_b0060) 2013; 31
Juan (10.1016/j.measurement.2022.111944_b0075) 2012; 134
Gao (10.1016/j.measurement.2022.111944_b0105) 2012; 137
Bennett (10.1016/j.measurement.2022.111944_b0015) 2003; 16
Liu (10.1016/j.measurement.2022.111944_b0150) 2016; 82
Ranum (10.1016/j.measurement.2022.111944_b0035) 2014; 1312
Gordon (10.1016/j.measurement.2022.111944_b0120) 1997; 35
Ma (10.1016/j.measurement.2022.111944_b0165) 2015; 8
Cortes (10.1016/j.measurement.2022.111944_b0190) 1995; 20
Eskola (10.1016/j.measurement.2022.111944_b0010) 2019; 60
Lucci (10.1016/j.measurement.2022.111944_b0090) 2010; 672
Shen (10.1016/j.measurement.2022.111944_b0115) 2019; 109
Wang (10.1016/j.measurement.2022.111944_b0205) 2000; 28
Shier (10.1016/j.measurement.2022.111944_b0020) 2001; 39
Alisaac (10.1016/j.measurement.2022.111944_b0220) 2019; 11
Guo (10.1016/j.measurement.2022.111944_b0065) 2019; 286
Ma (10.1016/j.measurement.2022.111944_b0095) 2019; 1060
Sinelli (10.1016/j.measurement.2022.111944_b0210) 2008; 50
Chu (10.1016/j.measurement.2022.111944_b0225) 2020; 105
Li (10.1016/j.measurement.2022.111944_b0040) 2018; 10
References_xml – volume: 105
  year: 2020
  ident: b0225
  article-title: Classifying maize kernels naturally infected by fungi using near-infrared hyperspectral imaging
  publication-title: Infrared Phys. Technol.
– volume: 118
  start-page: 157
  year: 2013
  end-page: 171
  ident: b0140
  article-title: Hyperspectral and multispectral imaging for evaluating food safety and quality
  publication-title: J. Food Eng.
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: b0215
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
– volume: 63
  start-page: 80
  year: 2015
  end-page: 88
  ident: b0130
  article-title: Detection of different stages of fungal infection in stored canola using near-infrared hyperspectral imaging
  publication-title: J. Stored Prod. Res.
– volume: 243
  start-page: 311
  year: 2018
  end-page: 318
  ident: b0160
  article-title: Classification of white maize defects with multispectral imaging
  publication-title: Food Chem.
– volume: 10
  start-page: 4036
  year: 2018
  end-page: 4043
  ident: b0040
  article-title: A competitive immunoassay for zearalenone with integrated poly (dimethysiloxane) based microarray assay
  publication-title: Anal. Methods
– volume: 10
  start-page: 1505
  year: 1997
  end-page: 1521
  ident: b0200
  article-title: Effects of learning parameters on learning procedure and performance of a BPNN
  publication-title: Neural Netw.
– volume: 16
  start-page: 497
  year: 2003
  end-page: 516
  ident: b0015
  article-title: Mycotoxins
  publication-title: Clin. Microbiol. Rev.
– volume: 62
  start-page: 8325
  year: 2014
  end-page: 8332
  ident: b0100
  article-title: Highly sensitive detection of zearalenone in feed samples using competitive surface-enhanced Raman scattering immunoassay
  publication-title: J. Agric. Food Chem.
– reference: EFSA Panel on Contaminants in the Food Chain, 2011.
– volume: 118
  start-page: 62
  year: 2012
  end-page: 69
  ident: b0175
  article-title: A review of variable selection methods in partial least squares regression
  publication-title: Chemometr. Intell. Lab.
– volume: 1312
  start-page: 105
  year: 2014
  end-page: 112
  ident: b0035
  article-title: Global maize production, utilization, and consumption
  publication-title: Ann. NY. Acad. Sci.
– volume: 36
  start-page: 96
  year: 2014
  end-page: 136
  ident: b0070
  article-title: Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis
  publication-title: Trends Food Sci. Technol.
– volume: 343
  year: 2021
  ident: b0230
  article-title: Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening
  publication-title: Food Chem.
– volume: 28
  start-page: 185
  year: 2000
  end-page: 194
  ident: b0205
  article-title: Using principal component analysis in process performance for multivariate data
  publication-title: Omega
– volume: 1062
  start-page: 209
  year: 2005
  end-page: 216
  ident: b0080
  article-title: Rapid simultaneous determination of major type A-and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography-tandem mass spectrometry
  publication-title: J. Chromatogr. A
– volume: 37
  start-page: 64
  year: 2015
  end-page: 72
  ident: b0110
  article-title: Detection of fungal infection in almond kernels using near-infrared reflectance spectroscopy
  publication-title: Biosyst. Eng.
– volume: 19
  start-page: 1090
  year: 2019
  ident: b0155
  article-title: Recent applications of multispectral imaging in seed phenotyping and quality monitoring-An overview
  publication-title: Sensors
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0190
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 109
  start-page: 216
  year: 2019
  end-page: 224
  ident: b0115
  article-title: On-line detection of toxigenic fungal infection in wheat by visible/near infrared spectroscopy, LWT-Food
  publication-title: Sci Technol.
– volume: 121
  start-page: 205
  year: 2018
  end-page: 222
  ident: b0055
  article-title: Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review
  publication-title: Biosens, Bioelectron
– volume: 286
  start-page: 282
  year: 2019
  end-page: 288
  ident: b0065
  article-title: Quantitative assessment of zearalenone in maize using multivariate algorithms coupled to Raman spectroscopy
  publication-title: Food Chem.
– volume: 119
  start-page: 47
  year: 2007
  end-page: 50
  ident: b0025
  article-title: Molecular biology of
  publication-title: Int. J. Food Microbiol.
– volume: 162
  start-page: 46
  year: 2019
  end-page: 56
  ident: b0005
  article-title: Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods
  publication-title: Toxicon
– volume: 134
  start-page: 2389
  year: 2012
  end-page: 2397
  ident: b0075
  article-title: Determination of trichothecenes and zearalenones in grain cereal, flour and bread by liquid chromatography tandem mass spectrometry
  publication-title: Food Chem.
– volume: 24
  start-page: 417
  year: 1933
  end-page: 520
  ident: b0180
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
– volume: 39
  start-page: 1435
  year: 2001
  end-page: 1438
  ident: b0020
  article-title: Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins
  publication-title: Toxicon
– volume: 13
  start-page: 2157
  year: 2019
  end-page: 2166
  ident: b0135
  article-title: Identification of mildew degrees in honeysuckle using hyperspectral imaging combined with variable selection
  publication-title: J. Food Meas. Charact.
– volume: 237
  start-page: 82
  year: 2013
  end-page: 117
  ident: b0185
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
– volume: 1060
  start-page: 71
  year: 2019
  end-page: 78
  ident: b0095
  article-title: An electrochemical aptasensor for highly sensitive detection of zearalenone based on PEI-MoS
  publication-title: Anal. Chim. Acta
– volume: 173
  start-page: 482
  year: 2015
  end-page: 488
  ident: b0170
  article-title: Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit
  publication-title: Food Chem.
– reference: EFSA Journal, 9(6), 2197.
– volume: 9
  year: 2014
  ident: b0145
  article-title: Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit
  publication-title: PLoS ONE
– volume: 8
  start-page: 1629
  year: 2015
  end-page: 1636
  ident: b0165
  article-title: Discrimination of kernel quality characteristics for sunflower seeds based on multispectral imaging approach
  publication-title: Food Anal. Method.
– volume: 65
  start-page: 2240
  year: 2017
  end-page: 2247
  ident: b0030
  article-title: Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the zearalenone class of mycotoxins in maize
  publication-title: J. Agric. Food Chem.
– volume: 193
  year: 2022
  ident: b0125
  article-title: Winter wheat chlorophyll content retrieval based on machine learning using in situ hyperspectral data
  publication-title: Comput. Electron. Agric.
– volume: 42
  start-page: 2191
  year: 2019
  end-page: 2201
  ident: b0085
  article-title: Fast determination of 14 mycotoxins in chestnut by dispersive solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry
  publication-title: J. Sep. Sci.
– volume: 11
  start-page: 556
  year: 2019
  ident: b0220
  article-title: Assessment of fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging
  publication-title: Toxins
– volume: 35
  start-page: 179
  year: 1997
  end-page: 186
  ident: b0120
  article-title: Identification of Fourier transform infrared photoacoustic spectral features for detection of
  publication-title: Int. J. Food Microbiol.
– volume: 95
  start-page: 1
  year: 1995
  end-page: 10
  ident: b0195
  article-title: A genetic algorithm for function optimization: a Matlab implementation, NCSU-IE
  publication-title: Tech. Rep.
– volume: 230
  start-page: 673
  year: 2017
  end-page: 680
  ident: b0050
  article-title: Irudayaraj, Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles
  publication-title: Food Chem.
– volume: 31
  start-page: 65
  year: 2013
  end-page: 70
  ident: b0060
  article-title: Development of anti-zearalenone monoclonal antibody and detection of zearalenone in maize products from China by ELISA
  publication-title: Food Control
– volume: 137
  start-page: 229
  year: 2012
  end-page: 236
  ident: b0105
  article-title: Preparation of highly specific anti-zearalenone antibodies by using the cationic protein conjugate and development of an indirect competitive enzyme-linked immunosorbent assay
  publication-title: Analyst
– volume: 50
  start-page: 31
  year: 2008
  end-page: 36
  ident: b0210
  article-title: Evaluation of quality and nutraceutical content of blueberries (
  publication-title: Postharvest Biol. Technol.
– volume: 60
  start-page: 2773
  year: 2019
  end-page: 2789
  ident: b0010
  article-title: Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%
  publication-title: Crit. Rev. Food Sci.
– volume: 672
  start-page: 15
  year: 2010
  end-page: 19
  ident: b0090
  article-title: Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts
  publication-title: Anal. Chim. Acta
– volume: 82
  start-page: 993
  year: 2016
  end-page: 999
  ident: b0150
  article-title: Online variety discrimination of rice seeds using multispectral imaging and chemometric methods
  publication-title: J. Appl. Spectrosc.
– volume: 121
  start-page: 205
  year: 2018
  ident: 10.1016/j.measurement.2022.111944_b0055
  article-title: Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review
  publication-title: Biosens, Bioelectron
  doi: 10.1016/j.bios.2018.08.029
– volume: 13
  start-page: 2157
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0135
  article-title: Identification of mildew degrees in honeysuckle using hyperspectral imaging combined with variable selection
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-019-00136-1
– volume: 28
  start-page: 185
  year: 2000
  ident: 10.1016/j.measurement.2022.111944_b0205
  article-title: Using principal component analysis in process performance for multivariate data
  publication-title: Omega
  doi: 10.1016/S0305-0483(99)00036-5
– volume: 118
  start-page: 62
  issue: 1
  year: 2012
  ident: 10.1016/j.measurement.2022.111944_b0175
  article-title: A review of variable selection methods in partial least squares regression
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/j.chemolab.2012.07.010
– volume: 10
  start-page: 4036
  year: 2018
  ident: 10.1016/j.measurement.2022.111944_b0040
  article-title: A competitive immunoassay for zearalenone with integrated poly (dimethysiloxane) based microarray assay
  publication-title: Anal. Methods
  doi: 10.1039/C8AY01307A
– volume: 8
  start-page: 1629
  year: 2015
  ident: 10.1016/j.measurement.2022.111944_b0165
  article-title: Discrimination of kernel quality characteristics for sunflower seeds based on multispectral imaging approach
  publication-title: Food Anal. Method.
  doi: 10.1007/s12161-014-0038-x
– volume: 137
  start-page: 229
  issue: 1
  year: 2012
  ident: 10.1016/j.measurement.2022.111944_b0105
  article-title: Preparation of highly specific anti-zearalenone antibodies by using the cationic protein conjugate and development of an indirect competitive enzyme-linked immunosorbent assay
  publication-title: Analyst
  doi: 10.1039/C1AN15487G
– volume: 162
  start-page: 46
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0005
  article-title: Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2019.03.004
– volume: 243
  start-page: 311
  year: 2018
  ident: 10.1016/j.measurement.2022.111944_b0160
  article-title: Classification of white maize defects with multispectral imaging
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.09.133
– volume: 24
  start-page: 417
  year: 1933
  ident: 10.1016/j.measurement.2022.111944_b0180
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– volume: 62
  start-page: 8325
  issue: 33
  year: 2014
  ident: 10.1016/j.measurement.2022.111944_b0100
  article-title: Highly sensitive detection of zearalenone in feed samples using competitive surface-enhanced Raman scattering immunoassay
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf503191e
– volume: 9
  year: 2014
  ident: 10.1016/j.measurement.2022.111944_b0145
  article-title: Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit
  publication-title: PLoS ONE
– volume: 82
  start-page: 993
  issue: 6
  year: 2016
  ident: 10.1016/j.measurement.2022.111944_b0150
  article-title: Online variety discrimination of rice seeds using multispectral imaging and chemometric methods
  publication-title: J. Appl. Spectrosc.
  doi: 10.1007/s10812-016-0217-1
– volume: 50
  start-page: 31
  issue: 1
  year: 2008
  ident: 10.1016/j.measurement.2022.111944_b0210
  article-title: Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2008.03.013
– ident: 10.1016/j.measurement.2022.111944_b0045
  doi: 10.2903/j.efsa.2011.2197
– volume: 118
  start-page: 157
  issue: 2
  year: 2013
  ident: 10.1016/j.measurement.2022.111944_b0140
  article-title: Hyperspectral and multispectral imaging for evaluating food safety and quality
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2013.04.001
– volume: 286
  start-page: 282
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0065
  article-title: Quantitative assessment of zearalenone in maize using multivariate algorithms coupled to Raman spectroscopy
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.02.020
– volume: 10
  start-page: 1505
  year: 1997
  ident: 10.1016/j.measurement.2022.111944_b0200
  article-title: Effects of learning parameters on learning procedure and performance of a BPNN
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(97)00014-2
– volume: 109
  start-page: 216
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0115
  article-title: On-line detection of toxigenic fungal infection in wheat by visible/near infrared spectroscopy, LWT-Food
  publication-title: Sci Technol.
– volume: 95
  start-page: 1
  year: 1995
  ident: 10.1016/j.measurement.2022.111944_b0195
  article-title: A genetic algorithm for function optimization: a Matlab implementation, NCSU-IE
  publication-title: Tech. Rep.
– volume: 19
  start-page: 1090
  issue: 5
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0155
  article-title: Recent applications of multispectral imaging in seed phenotyping and quality monitoring-An overview
  publication-title: Sensors
  doi: 10.3390/s19051090
– volume: 134
  start-page: 2389
  issue: 4
  year: 2012
  ident: 10.1016/j.measurement.2022.111944_b0075
  article-title: Determination of trichothecenes and zearalenones in grain cereal, flour and bread by liquid chromatography tandem mass spectrometry
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2012.04.051
– volume: 1312
  start-page: 105
  year: 2014
  ident: 10.1016/j.measurement.2022.111944_b0035
  article-title: Global maize production, utilization, and consumption
  publication-title: Ann. NY. Acad. Sci.
  doi: 10.1111/nyas.12396
– volume: 63
  start-page: 80
  year: 2015
  ident: 10.1016/j.measurement.2022.111944_b0130
  article-title: Detection of different stages of fungal infection in stored canola using near-infrared hyperspectral imaging
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/j.jspr.2015.07.005
– volume: 65
  start-page: 2240
  issue: 10
  year: 2017
  ident: 10.1016/j.measurement.2022.111944_b0030
  article-title: Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the zearalenone class of mycotoxins in maize
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b05614
– volume: 39
  start-page: 1435
  issue: 9
  year: 2001
  ident: 10.1016/j.measurement.2022.111944_b0020
  article-title: Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(00)00259-2
– volume: 37
  start-page: 64
  year: 2015
  ident: 10.1016/j.measurement.2022.111944_b0110
  article-title: Detection of fungal infection in almond kernels using near-infrared reflectance spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2015.07.010
– volume: 7
  start-page: 1247
  year: 2014
  ident: 10.1016/j.measurement.2022.111944_b0215
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 119
  start-page: 47
  year: 2007
  ident: 10.1016/j.measurement.2022.111944_b0025
  article-title: Molecular biology of Fusarium mycotoxins
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2007.07.024
– volume: 42
  start-page: 2191
  issue: 13
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0085
  article-title: Fast determination of 14 mycotoxins in chestnut by dispersive solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201900050
– volume: 193
  year: 2022
  ident: 10.1016/j.measurement.2022.111944_b0125
  article-title: Winter wheat chlorophyll content retrieval based on machine learning using in situ hyperspectral data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106728
– volume: 16
  start-page: 497
  issue: 3
  year: 2003
  ident: 10.1016/j.measurement.2022.111944_b0015
  article-title: Mycotoxins
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.16.3.497-516.2003
– volume: 1060
  start-page: 71
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0095
  article-title: An electrochemical aptasensor for highly sensitive detection of zearalenone based on PEI-MoS2-MWCNTs nanocomposite for signal enhancement
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.02.012
– volume: 35
  start-page: 179
  issue: 2
  year: 1997
  ident: 10.1016/j.measurement.2022.111944_b0120
  article-title: Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/S0168-1605(96)01217-2
– volume: 343
  year: 2021
  ident: 10.1016/j.measurement.2022.111944_b0230
  article-title: Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128507
– volume: 105
  issue: 1
  year: 2020
  ident: 10.1016/j.measurement.2022.111944_b0225
  article-title: Classifying maize kernels naturally infected by fungi using near-infrared hyperspectral imaging
  publication-title: Infrared Phys. Technol.
– volume: 1062
  start-page: 209
  issue: 2
  year: 2005
  ident: 10.1016/j.measurement.2022.111944_b0080
  article-title: Rapid simultaneous determination of major type A-and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography-tandem mass spectrometry
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2004.11.011
– volume: 11
  start-page: 556
  issue: 10
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0220
  article-title: Assessment of fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging
  publication-title: Toxins
  doi: 10.3390/toxins11100556
– volume: 672
  start-page: 15
  issue: 1–2
  year: 2010
  ident: 10.1016/j.measurement.2022.111944_b0090
  article-title: Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.03.010
– volume: 230
  start-page: 673
  issue: 9
  year: 2017
  ident: 10.1016/j.measurement.2022.111944_b0050
  article-title: Irudayaraj, Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.03.100
– volume: 31
  start-page: 65
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2022.111944_b0060
  article-title: Development of anti-zearalenone monoclonal antibody and detection of zearalenone in maize products from China by ELISA
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2012.09.006
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.measurement.2022.111944_b0190
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 36
  start-page: 96
  issue: 2
  year: 2014
  ident: 10.1016/j.measurement.2022.111944_b0070
  article-title: Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2014.01.005
– volume: 173
  start-page: 482
  issue: 4
  year: 2015
  ident: 10.1016/j.measurement.2022.111944_b0170
  article-title: Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.10.052
– volume: 237
  start-page: 82
  issue: 237
  year: 2013
  ident: 10.1016/j.measurement.2022.111944_b0185
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.02.041
– volume: 60
  start-page: 2773
  year: 2019
  ident: 10.1016/j.measurement.2022.111944_b0010
  article-title: Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%
  publication-title: Crit. Rev. Food Sci.
  doi: 10.1080/10408398.2019.1658570
SSID ssj0006396
Score 2.4071665
Snippet •GA-BPNN is an efficient method to pretreat high dimension spectral signals.•Multispectral imaging combined with machine learning is a promising technique to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111944
SubjectTerms Machine learning method
Multispectral imaging
Non-destructive detection
Zearalenone in maize
Title Application of multispectral imaging combined with machine learning methods for rapid and non-destructive detection of zearalenone (ZEN) in maize
URI https://dx.doi.org/10.1016/j.measurement.2022.111944
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEB1MSkp7KEma0rSNUaCH9KB4JWs_DL0YE-MkxJcmYHpZJGsUNtRrE5sefOh_yD_OSLuuHQgkkOMuGmlXI-aNpDczAN_jVEcqdYILYQxXBJHcKEx5ZIXOjNUidT5Q-HKYDK7V-SgeNaC3ioXxtMra9lc2PVjr-k2rns3WrChavyKfapwASHoMU9HIR7Cr1FcxOPm3pnkQAifVOUub-9Zv4WjN8Zqsz-FoqyilNyAdpZ7GqA3c6e_Ah9phZN3qm3ahgeUevN9II7gH24HGOZ5_hPvu-j6aTR0LdMEQTHlHfRSTUJKI0b_Sfhgt84ewbBLolMjq-hE3rCoqPWfkzrI7PSss06Vl5bTkFut0s3-RWVwEFlcYZ0myhDTUBtnx79PhD1aU1HGxxH247p9e9Qa8LrrAx-TqLLhSxkaONnEoUjKU_poW2wqFdNJYK2Ir2q7jUpvE_sIts7HQUpOTmKDxWzvd_gRbfrTPwKwTGanaoCS_UDtljE2kThPsoLNjnRxAtprmfFxnJPeFMf7kK-rZbb6hodxrKK80dADyv-isSsvxEqGfK13mj9ZYTvDxvPiX14l_hXf-qYpj_AZbpC88JIdmYZphxTbhTffsYjB8AFym-mw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB0BFRQOFZ8qpQUjcYCDydrx7iYSlwgFBQi5EKSIy8qOx9VWZIkg4sCh_6H_uGPvhqRSpSL1uuuxdz3WvBn7eQbgKE51pFInuBDGcEUQyY3ClEdW6IaxWqTOXxS-6SWdO3U1iAcLcD69C-NplZXtL216sNbVk1o1m7VxntduI59qnABIegxT0WARPqhYpj4CO_0543kQBCflRkud--YrcDgjeY1mG3EUK0rpLUhTqb-D1BzwXKzDp8pjZK3yozZgAYtNWJvLI7gJy4HHOXzegl-t2YE0e3Qs8AXDbcon6iMfhZpEjH6WAmK0zO_CslHgUyKrCkh8Z2VV6WdG_ix70uPcMl1YVjwW3GKVb_YFmcVJoHGFcV5JlqCG2iA7vm_3TlheUMf5K27D3UW7f97hVdUFPiRfZ8KVMjZyFMWhSMlS-nNarCsU0kljrYitqLumS20S-xO3ho2Flpq8xASNj-10fQeW_GifgVknGqRrg5IcQ-2UMTaROk2wic4OdbILjek0Z8MqJbmvjPGQTblnP7I5DWVeQ1mpoV2Qb6LjMi_He4TOprrM_lhkGeHHv8W__J_4AXzs9G-6Wfeyd70Hq_5NeanxKyyR7vAbeTcTsx9W728eUfwB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+multispectral+imaging+combined+with+machine+learning+methods+for+rapid+and+non-destructive+detection+of+zearalenone+%28ZEN%29+in+maize&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Liu%2C+Wei&rft.au=Deng%2C+Haiyang&rft.au=Shi%2C+Yule&rft.au=Liu%2C+Changhong&rft.date=2022-11-01&rft.issn=0263-2241&rft.volume=203&rft.spage=111944&rft_id=info:doi/10.1016%2Fj.measurement.2022.111944&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2022_111944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon