An algorithm for automated extraction of resonance parameters from the stabilization method

The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The process requires labor-intensive numerical manipulation of a large number of eigenvalues of a parameter-dependent Hamiltonian matrix, followed by a...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 316; p. 109815
Main Authors Langner, Johanna, Sadhukhan, Anjan, Saha, Jayanta K., Witek, Henryk A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text
ISSN0010-4655
DOI10.1016/j.cpc.2025.109815

Cover

Abstract The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The process requires labor-intensive numerical manipulation of a large number of eigenvalues of a parameter-dependent Hamiltonian matrix, followed by a fitting procedure. In this article, we present ReSMax, an efficient algorithm implemented as an open-access Python code, which offers full automation of the stabilization diagram analysis in a user-friendly environment while maintaining high numerical precision of the computed resonance characteristics. As a test case, we use ReSMax to analyze the natural parity doubly-excited resonance states (Se1, Se3, Po1, and Po3) of helium, demonstrating the accuracy and efficiency of the developed methodology. The presented algorithm is applicable to a wide range of resonances in atomic, molecular, and nuclear systems. Program Title:ReSMax CPC Library link to program files:https://doi.org/10.17632/8yny7jycgz.1 Developer's repository link:https://github.com/giogina/ReSMax Licensing provisions: MIT Programming language: Python Nature of problem: The stabilization method is a widely used indirect approach for identifying resonance states (RSs) in atomic and molecular systems. It analyzes the behavior of energy eigenvalues of the system's Hamiltonian as a function of a basis set parameter, as visualized in stabilization diagrams (SDs) [1]. Resonance states manifest as plateaus in these SDs and are characterized by the position and width of the associated Lorentzian peaks in the density of states (DOS) [2]. However, applying this method in practice remains labor-intensive and error-prone: analyzing large eigenvalue datasets, identifying plateau regions, and fitting DOS peaks manually requires significant effort and expert judgment. These difficulties limit the method's scalability and reproducibility, especially for systems with many closely spaced resonances or high angular momentum states. There is currently no widely available open-source tool that automates the entire workflow in a robust, accurate, and user-friendly way. Solution method:ReSMax is an open-source Python program that automates the extraction of resonance parameters from stabilization diagrams. Given an input file containing the eigenvalue spectrum of a Hamiltonian across a range of basis set parameter values, it computes the density of states (DOS) for each root, identifies local maxima corresponding to potential resonances, and fits them to Lorentzian functions. Peaks are grouped into resonance candidates based on energy proximity and root uniqueness, and the best-fitting peak is selected for each resonance. A combination of numerical filtering, symmetry checks, and fit quality metrics ensures robust peak detection. Automatic resonance detection completes in a few seconds. An interactive interface allows optional refinement of resonance assignments before final export of the results. Additional comments including restrictions and unusual features: Resonances indicated by descending plateaus in the SD — which can appear due to insufficient basis set size for fluorescence-active resonances as well as directly below ionization thresholds — are assigned approximate energies and flagged for manual inspection. While ReSMax was developed for helium-like ions, the method is general and capable of detecting resonance states of a wide range of systems. [1]A.U. Hazi, H.S. Taylor, Phys. Rev. A 1 (1970) 1109.[2]V.A. Mandelshtam, T.R. Ravuri, H.S. Taylor, Phys. Rev. Lett. 70 (1993) 1932.
AbstractList The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The process requires labor-intensive numerical manipulation of a large number of eigenvalues of a parameter-dependent Hamiltonian matrix, followed by a fitting procedure. In this article, we present ReSMax, an efficient algorithm implemented as an open-access Python code, which offers full automation of the stabilization diagram analysis in a user-friendly environment while maintaining high numerical precision of the computed resonance characteristics. As a test case, we use ReSMax to analyze the natural parity doubly-excited resonance states (Se1, Se3, Po1, and Po3) of helium, demonstrating the accuracy and efficiency of the developed methodology. The presented algorithm is applicable to a wide range of resonances in atomic, molecular, and nuclear systems. Program Title:ReSMax CPC Library link to program files:https://doi.org/10.17632/8yny7jycgz.1 Developer's repository link:https://github.com/giogina/ReSMax Licensing provisions: MIT Programming language: Python Nature of problem: The stabilization method is a widely used indirect approach for identifying resonance states (RSs) in atomic and molecular systems. It analyzes the behavior of energy eigenvalues of the system's Hamiltonian as a function of a basis set parameter, as visualized in stabilization diagrams (SDs) [1]. Resonance states manifest as plateaus in these SDs and are characterized by the position and width of the associated Lorentzian peaks in the density of states (DOS) [2]. However, applying this method in practice remains labor-intensive and error-prone: analyzing large eigenvalue datasets, identifying plateau regions, and fitting DOS peaks manually requires significant effort and expert judgment. These difficulties limit the method's scalability and reproducibility, especially for systems with many closely spaced resonances or high angular momentum states. There is currently no widely available open-source tool that automates the entire workflow in a robust, accurate, and user-friendly way. Solution method:ReSMax is an open-source Python program that automates the extraction of resonance parameters from stabilization diagrams. Given an input file containing the eigenvalue spectrum of a Hamiltonian across a range of basis set parameter values, it computes the density of states (DOS) for each root, identifies local maxima corresponding to potential resonances, and fits them to Lorentzian functions. Peaks are grouped into resonance candidates based on energy proximity and root uniqueness, and the best-fitting peak is selected for each resonance. A combination of numerical filtering, symmetry checks, and fit quality metrics ensures robust peak detection. Automatic resonance detection completes in a few seconds. An interactive interface allows optional refinement of resonance assignments before final export of the results. Additional comments including restrictions and unusual features: Resonances indicated by descending plateaus in the SD — which can appear due to insufficient basis set size for fluorescence-active resonances as well as directly below ionization thresholds — are assigned approximate energies and flagged for manual inspection. While ReSMax was developed for helium-like ions, the method is general and capable of detecting resonance states of a wide range of systems. [1]A.U. Hazi, H.S. Taylor, Phys. Rev. A 1 (1970) 1109.[2]V.A. Mandelshtam, T.R. Ravuri, H.S. Taylor, Phys. Rev. Lett. 70 (1993) 1932.
ArticleNumber 109815
Author Langner, Johanna
Witek, Henryk A.
Sadhukhan, Anjan
Saha, Jayanta K.
Author_xml – sequence: 1
  givenname: Johanna
  orcidid: 0000-0003-1312-7759
  surname: Langner
  fullname: Langner, Johanna
  email: johanna.langner@nycu.edu.tw
  organization: Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
– sequence: 2
  givenname: Anjan
  orcidid: 0000-0003-4454-7377
  surname: Sadhukhan
  fullname: Sadhukhan, Anjan
  organization: Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
– sequence: 3
  givenname: Jayanta K.
  orcidid: 0000-0002-1159-1905
  surname: Saha
  fullname: Saha, Jayanta K.
  organization: Department of Physics, Aliah University, IIA/27, Newtown, Kolkata 700160, India
– sequence: 4
  givenname: Henryk A.
  orcidid: 0000-0002-9013-1287
  surname: Witek
  fullname: Witek, Henryk A.
  email: hwitek@nycu.edu.tw
  organization: Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
BookMark eNp9kM9OwzAMh3MYEtvgAbjlBTqSdlkbcZom_kmTuMCJQ-S4Dsu0NlMSEPD0dJQzJ8vy77Psb8YmfeiJsSspFlLI1fV-gUdclKJUQ68bqSZsKoQUxXKl1DmbpbQXQtS1rqbsdd1zOLyF6POu4y5EDu85dJCp5fSZI2D2oefB8Ugp9NAj8SNE6ChTTNzF0PG8I54yWH_w3_AbH6a70F6wMweHRJd_dc5e7m6fNw_F9un-cbPeFlgqmYtlqQBchbVcAiptpcWmcc6ttAbZAqHEttSOrGotyAZ07TRVYK2oEBuJ1ZzJcS_GkFIkZ47RdxC_jBTmZMTszWDEnIyY0cjA3IwMDYd9eIomoafhu9ZHwmza4P-hfwCX6nCA
Cites_doi 10.1103/PhysRevC.65.054305
10.1140/epjd/e2019-100400-5
10.1103/PhysRevA.75.062509
10.1088/0953-4075/28/15/010
10.1140/epjd/e2002-00124-1
10.1103/PhysRevA.56.4537
10.1063/1.3376029
10.1016/S0370-1573(98)00002-7
10.1088/0953-4075/21/24/001
10.1103/PhysRevA.88.012702
10.1103/PhysRevA.74.032714
10.1103/PhysRevA.103.012811
10.1088/0953-4075/39/11/010
10.1016/0009-2614(83)87093-6
10.1103/PhysRevA.4.662
10.1038/s41586-020-2649-2
10.1021/acs.jpca.8b01523
10.1007/BF01375457
10.1137/141000671
10.1103/PhysRevLett.111.243201
10.1103/PhysRevA.12.885
10.1002/qua.25981
10.1088/0022-3700/3/5/003
10.1016/0010-4655(73)90038-6
10.1103/PhysRevC.77.014312
10.1007/s13538-024-01544-5
10.1016/j.cplett.2011.10.032
10.1063/1.2801981
10.1038/s41592-019-0686-2
10.1103/PhysRevA.98.033416
10.1103/PhysRevLett.70.1932
10.1016/0168-583X(94)00850-7
10.1103/PhysRevA.71.052503
10.1103/PhysRevA.79.062514
10.1103/PhysRevE.70.066411
10.1103/PhysRevA.80.022513
10.1088/0022-3700/13/4/001
10.1021/acs.jpca.8b12573
10.1007/BF01340013
10.1103/PhysRevA.1.1109
10.1016/0370-1573(83)90112-6
10.1088/0253-6102/65/3/347
10.1063/1.442271
10.1016/0009-2614(84)80161-X
10.1103/PhysRevA.49.2470
10.1103/PhysRevA.72.010703
10.1109/MCSE.2007.55
10.1002/qua.22817
10.1016/0022-2852(62)90021-8
10.1103/PhysRevA.110.062802
10.1039/C6CP05342D
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2025.109815
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_cpc_2025_109815
S0010465525003170
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACVFH
ACZNC
ADBBV
ADCNI
ADECG
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFZHZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-425aaf3c714ac59b1bc88fff699a1daec1cd29feb5dba18a97f9e3abb03cc81c3
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Wed Oct 01 05:33:22 EDT 2025
Sat Oct 04 17:01:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Stabilization method
Doubly excited states
Three-body system
Resonance states
Stabilization diagram
Automatic resonance detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-425aaf3c714ac59b1bc88fff699a1daec1cd29feb5dba18a97f9e3abb03cc81c3
ORCID 0000-0002-9013-1287
0000-0003-4454-7377
0000-0002-1159-1905
0000-0003-1312-7759
ParticipantIDs crossref_primary_10_1016_j_cpc_2025_109815
elsevier_sciencedirect_doi_10_1016_j_cpc_2025_109815
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hunter (br0480) 2007; 9
Kar, Ho (br0270) 2006; 39
Lasso, Cardona, Sanz-Vicario (br0140) 2013; 88
Hylleraas (br0430) 1928; 48
Burgers, Wintgen, Rest (br0520) 1995; 28
Fels, Hazi (br0160) 1971; 4
Mohr, Tiesinga, Newell, Taylor (br0510) 2024
Sadhukhan, Dutta, Saha (br0330) 2019; 73
Ghoshal, Ho (br0290) 2009; 79
González-Lezana, Delgado-Barrio, Villarreal, Gadéa (br0370) 2002; 20
Fennimore, Matsika (br0390) 2018; 122
Nakashima, Nakatsuji (br0540) 2007; 127
McCurdy, McNutt (br0090) 1983; 94
Lefebvre (br0130) 1988; 21
Drachman, Houston (br0180) 1975; 12
deHarak, Childers, Martin (br0010) 2006; 74
Saha, Bhattacharyya, Mukherjee, Mukherjee (br0050) 2011; 517
Kasthurirangan, Saha, Agnihotri, Bhattacharyya, Misra, Kumar, Mukherjee, Santos, Costa, Indelicato, Mukherjee, Tribedi (br0020) 2013; 111
Müller, Lindroth, Bari, Borovik, Hillenbrand, Holste, Indelicato, Kilcoyne, Klumpp, Martins, Viefhaus, Wilhelm, Schippers (br0030) 2018; 98
Isaacson, Truhlar (br0110) 1984; 110
Saha, Bhattacharyya, Mukherjee (br0320) 2016; 65
Saha, Bhattacharyya, Mukherjee (br0300) 2010; 132
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (br0490) 2020; 585
Ho (br0060) 1983; 99
Kar, Ho (br0230) 2005; 71
Zhang, Zhou, Meng, Zhao (br0400) 2008; 77
Hazi, Taylor (br0120) 1970; 1
Kar, Ho (br0280) 2007; 75
Sil, Barik, Dutta, Mondal, Saha, Mukhopadhyay (br0530) 2024; 54
Sadhukhan, Pestka, Podeszwa, Witek (br0420) 2025
Mandelshtam, Ravuri, Taylor (br0200) 1993; 70
Fennimore, Matsika (br0380) 2016; 18
Burke (br0150) 1973; 6
Chen (br0580) 1997; 56
Maier, Cederbaum, Domcke (br0190) 1980; 13
Hylleraas (br0440) 1929; 54
Langner (br0410) 2025
Kar, Ho (br0250) 2004; 70
Mohr, Tiesinga, Newell, Taylor (br0560) 2006
Amaro, Santos, Bhattacharyya, Mukherjee, Saha (br0210) 2021; 103
Bezanson, Edelman, Karpinski, Shah (br0460) 2017; 59
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (br0500) 2020; 17
Saha, Mukherjee (br0240) 2009; 80
Calais, Löwdin (br0450) 1962; 8
Van Rossum, Drake (br0470) 2009
Ordóñez Lasso, Cardona, Sanz-Vicario (br0570) 2013; 88
Holoien, Midtdal (br0170) 1970; 3
Saha, Bhattacharyya, Mukherjee, Mukherjee (br0310) 2011; 111
Müller, Hillenbrand, Wang, Schippers, Lindroth, Trinter, Seltmann, Reinwardt, Martins, Kheifets, Bray (br0040) 2024; 110
Dutta, Sil, Saha, Mukherjee (br0340) 2019; 119
Müller, Yang, Burgdörfer (br0220) 1994; 49
Moiseyev (br0070) 1998; 302
Kar, Ho (br0260) 2005; 72
Masui, Ho (br0080) 2002; 65
Deutscher, Yang, Burgdörfer (br0350) 1995; 100
Landau, Haritan (br0360) 2019; 123
Simons (br0100) 1981; 75
Nakashima, Nakatsuji (br0550) 2008; 128
Dutta (10.1016/j.cpc.2025.109815_br0340) 2019; 119
Drachman (10.1016/j.cpc.2025.109815_br0180) 1975; 12
Ordóñez Lasso (10.1016/j.cpc.2025.109815_br0570) 2013; 88
Saha (10.1016/j.cpc.2025.109815_br0050) 2011; 517
Lasso (10.1016/j.cpc.2025.109815_br0140) 2013; 88
Holoien (10.1016/j.cpc.2025.109815_br0170) 1970; 3
Lefebvre (10.1016/j.cpc.2025.109815_br0130) 1988; 21
Fennimore (10.1016/j.cpc.2025.109815_br0380) 2016; 18
Hazi (10.1016/j.cpc.2025.109815_br0120) 1970; 1
Ho (10.1016/j.cpc.2025.109815_br0060) 1983; 99
Langner (10.1016/j.cpc.2025.109815_br0410)
Hylleraas (10.1016/j.cpc.2025.109815_br0430) 1928; 48
Burgers (10.1016/j.cpc.2025.109815_br0520) 1995; 28
Fels (10.1016/j.cpc.2025.109815_br0160) 1971; 4
Kar (10.1016/j.cpc.2025.109815_br0280) 2007; 75
Sadhukhan (10.1016/j.cpc.2025.109815_br0330) 2019; 73
Sil (10.1016/j.cpc.2025.109815_br0530) 2024; 54
Kar (10.1016/j.cpc.2025.109815_br0250) 2004; 70
Calais (10.1016/j.cpc.2025.109815_br0450) 1962; 8
Müller (10.1016/j.cpc.2025.109815_br0220) 1994; 49
Saha (10.1016/j.cpc.2025.109815_br0300) 2010; 132
Nakashima (10.1016/j.cpc.2025.109815_br0540) 2007; 127
Hylleraas (10.1016/j.cpc.2025.109815_br0440) 1929; 54
deHarak (10.1016/j.cpc.2025.109815_br0010) 2006; 74
Mohr (10.1016/j.cpc.2025.109815_br0510) 2024
Ghoshal (10.1016/j.cpc.2025.109815_br0290) 2009; 79
Fennimore (10.1016/j.cpc.2025.109815_br0390) 2018; 122
Müller (10.1016/j.cpc.2025.109815_br0030) 2018; 98
Mohr (10.1016/j.cpc.2025.109815_br0560) 2006
Hunter (10.1016/j.cpc.2025.109815_br0480) 2007; 9
Simons (10.1016/j.cpc.2025.109815_br0100) 1981; 75
Sadhukhan (10.1016/j.cpc.2025.109815_br0420)
Kar (10.1016/j.cpc.2025.109815_br0260) 2005; 72
Zhang (10.1016/j.cpc.2025.109815_br0400) 2008; 77
McCurdy (10.1016/j.cpc.2025.109815_br0090) 1983; 94
Van Rossum (10.1016/j.cpc.2025.109815_br0470) 2009
Harris (10.1016/j.cpc.2025.109815_br0490) 2020; 585
Saha (10.1016/j.cpc.2025.109815_br0240) 2009; 80
Moiseyev (10.1016/j.cpc.2025.109815_br0070) 1998; 302
Kar (10.1016/j.cpc.2025.109815_br0230) 2005; 71
Saha (10.1016/j.cpc.2025.109815_br0310) 2011; 111
Kasthurirangan (10.1016/j.cpc.2025.109815_br0020) 2013; 111
Isaacson (10.1016/j.cpc.2025.109815_br0110) 1984; 110
Nakashima (10.1016/j.cpc.2025.109815_br0550) 2008; 128
Saha (10.1016/j.cpc.2025.109815_br0320) 2016; 65
Müller (10.1016/j.cpc.2025.109815_br0040) 2024; 110
Maier (10.1016/j.cpc.2025.109815_br0190) 1980; 13
Chen (10.1016/j.cpc.2025.109815_br0580) 1997; 56
Amaro (10.1016/j.cpc.2025.109815_br0210) 2021; 103
Mandelshtam (10.1016/j.cpc.2025.109815_br0200) 1993; 70
Virtanen (10.1016/j.cpc.2025.109815_br0500) 2020; 17
Kar (10.1016/j.cpc.2025.109815_br0270) 2006; 39
Masui (10.1016/j.cpc.2025.109815_br0080) 2002; 65
Burke (10.1016/j.cpc.2025.109815_br0150) 1973; 6
Landau (10.1016/j.cpc.2025.109815_br0360) 2019; 123
Deutscher (10.1016/j.cpc.2025.109815_br0350) 1995; 100
Bezanson (10.1016/j.cpc.2025.109815_br0460) 2017; 59
González-Lezana (10.1016/j.cpc.2025.109815_br0370) 2002; 20
References_xml – volume: 54
  start-page: 174
  year: 2024
  ident: br0530
  article-title: Effect of mass polarization on bound and resonance states of two-electron systems
  publication-title: Braz. J. Phys.
– volume: 122
  start-page: 4048
  year: 2018
  end-page: 4057
  ident: br0390
  article-title: Electronic resonances of nucleobases using stabilization methods
  publication-title: J. Phys. Chem. A
– year: 2009
  ident: br0470
  article-title: Python 3 Reference Manual: (Python Documentation Manual Part 2), Documentation for Python
– volume: 1
  start-page: 1109
  year: 1970
  ident: br0120
  article-title: Stabilization method of calculating resonance energies: model problem
  publication-title: Phys. Rev. A
– volume: 80
  year: 2009
  ident: br0240
  article-title: Doubly excited bound and resonance
  publication-title: Phys. Rev. A
– volume: 127
  year: 2007
  ident: br0540
  article-title: Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 592
  year: 1970
  ident: br0170
  article-title: Tests of the multiconfiguration energy-bound method for Feshbach-type autoionization states of two-electron atoms. I. Application to He states below the
  publication-title: J. Phys. B, At. Mol. Phys.
– volume: 77
  year: 2008
  ident: br0400
  article-title: Real stabilization method for nuclear single-particle resonances
  publication-title: Phys. Rev. C
– volume: 110
  start-page: 130
  year: 1984
  ident: br0110
  article-title: Single-root, real-basis-function method with correct branch-point structure for complex resonances energies
  publication-title: Chem. Phys. Lett.
– volume: 28
  start-page: 3163
  year: 1995
  ident: br0520
  article-title: Highly doubly excited S states of the helium atom
  publication-title: J. Phys. B, At. Mol. Opt. Phys.
– volume: 88
  year: 2013
  ident: br0570
  article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium
  publication-title: Phys. Rev. A
– volume: 72
  year: 2005
  ident: br0260
  article-title: Doubly excited
  publication-title: Phys. Rev. A
– volume: 79
  year: 2009
  ident: br0290
  article-title: Doubly excited resonance states of helium in exponential cosine-screened Coulomb potentials
  publication-title: Phys. Rev. A
– volume: 49
  start-page: 2470
  year: 1994
  ident: br0220
  article-title: Calculation of resonances in doubly excited helium using the stabilization method
  publication-title: Phys. Rev. A
– volume: 75
  start-page: 2465
  year: 1981
  ident: br0100
  article-title: Resonance state lifetimes from stabilization graphs
  publication-title: J. Chem. Phys.
– year: 2024
  ident: br0510
  article-title: Codata Internationally Recommended 2022 Values of the Fundamental Physical Constants
– volume: 98
  year: 2018
  ident: br0030
  article-title: Photoionization of metastable heliumlike C
  publication-title: Phys. Rev. A
– volume: 110
  year: 2024
  ident: br0040
  article-title: Double-K-hole resonances in single photoionization of He-like B
  publication-title: Phys. Rev. A
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: br0500
  article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat. Methods
– volume: 65
  year: 2002
  ident: br0080
  article-title: Resonance states with the complex absorbing potential method
  publication-title: Phys. Rev. C
– volume: 100
  start-page: 336
  year: 1995
  end-page: 341
  ident: br0350
  article-title: Accurate calculation of atomic resonances near surfaces
  publication-title: Proceedings of the Tenth International Workshop on Inelastic Ion-Surface Collisions
– volume: 39
  start-page: 2445
  year: 2006
  end-page: 2453
  ident: br0270
  article-title: Doubly excited inter-shell P-wave resonances of helium in weakly coupled plasmas
  publication-title: J. Phys. B, At. Mol. Opt. Phys.
– volume: 302
  start-page: 212
  year: 1998
  end-page: 293
  ident: br0070
  article-title: Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling
  publication-title: Phys. Rep.
– volume: 18
  start-page: 30536
  year: 2016
  end-page: 30545
  ident: br0380
  article-title: Core-excited and shape resonances of uracil
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: br0480
  article-title: Matplotlib: a 2d graphics environment
  publication-title: Comput. Sci. Eng.
– year: 2025
  ident: br0410
– volume: 119
  year: 2019
  ident: br0340
  article-title: Extensive investigations for metastable-bound and resonance
  publication-title: Int. J. Quantum Chem.
– volume: 13
  start-page: L119
  year: 1980
  ident: br0190
  article-title: A spherical-box approach to resonances
  publication-title: J. Phys. B, At. Mol. Phys.
– volume: 20
  start-page: 227
  year: 2002
  end-page: 232
  ident: br0370
  article-title: Application of the stabilization method to interacting resonances
  publication-title: Eur. Phys. J. D
– volume: 111
  year: 2013
  ident: br0020
  article-title: Observation of
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 250
  year: 2019
  ident: br0330
  article-title: Critical stability and structural properties of screened two-electron system in Feshbach resonance state
  publication-title: Eur. Phys. J. D
– year: 2025
  ident: br0420
  article-title: Elimination of angular dependency in quantum three-body problem made easy
– volume: 75
  year: 2007
  ident: br0280
  article-title: Bound states and resonance states of the plasma-embedded
  publication-title: Phys. Rev. A
– volume: 99
  start-page: 1
  year: 1983
  end-page: 68
  ident: br0060
  article-title: The method of complex coordinate rotation and its applications to atomic collision processes
  publication-title: Phys. Rep.
– volume: 71
  year: 2005
  ident: br0230
  article-title: Ground state and resonance state of
  publication-title: Phys. Rev. A
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: br0490
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 128
  year: 2008
  ident: br0550
  article-title: Solving the electron-nuclear Schrödinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 1819
  year: 2011
  end-page: 1823
  ident: br0310
  article-title: resonance states of two electron atoms by stabilization method
  publication-title: Int. J. Quantum Chem.
– volume: 74
  year: 2006
  ident: br0010
  article-title: Ejected electron spectrum of He below the
  publication-title: Phys. Rev. A
– volume: 88
  year: 2013
  ident: br0140
  article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium
  publication-title: Phys. Rev. A
– volume: 132
  year: 2010
  ident: br0300
  article-title: Metastable bound
  publication-title: J. Chem. Phys.
– volume: 103
  year: 2021
  ident: br0210
  article-title: Stabilization method with the relativistic configuration-interaction calculation applied to two-electron resonances
  publication-title: Phys. Rev. A
– volume: 70
  start-page: 1932
  year: 1993
  ident: br0200
  article-title: Calculation of the density of resonance states using the stabilization method
  publication-title: Phys. Rev. Lett.
– volume: 517
  start-page: 223
  year: 2011
  end-page: 226
  ident: br0050
  article-title: On the diagnosis of fluorescence active autoionizing states of helium
  publication-title: Chem. Phys. Lett.
– volume: 21
  start-page: L709
  year: 1988
  ident: br0130
  article-title: Resonance widths and normalisation
  publication-title: J. Phys. B, At. Mol. Opt. Phys.
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  ident: br0460
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev.
– volume: 56
  start-page: 4537
  year: 1997
  end-page: 4544
  ident: br0580
  article-title: Doubly excited
  publication-title: Phys. Rev. A
– volume: 48
  start-page: 469
  year: 1928
  end-page: 494
  ident: br0430
  article-title: Über den Grundzustand des Heliumatoms
  publication-title: Z. Phys.
– volume: 12
  start-page: 885
  year: 1975
  end-page: 890
  ident: br0180
  article-title: Positronium-hydrogen elastic scattering
  publication-title: Phys. Rev. A
– year: 2006
  ident: br0560
  article-title: Codata Internationally Recommended 2006 Values of the Fundamental Physical Constants
– volume: 6
  start-page: 288
  year: 1973
  end-page: 302
  ident: br0150
  article-title: The R-matrix method in atomic physics
  publication-title: Comput. Phys. Commun.
– volume: 8
  start-page: 203
  year: 1962
  end-page: 211
  ident: br0450
  article-title: A simple method of treating atomic integrals containing functions of
  publication-title: J. Mol. Spectrosc.
– volume: 4
  start-page: 662
  year: 1971
  ident: br0160
  article-title: Calculation of energies and widths of compound-state resonances in elastic scattering: stabilization method
  publication-title: Phys. Rev. A
– volume: 70
  year: 2004
  ident: br0250
  article-title: Autoionizing
  publication-title: Phys. Rev. E
– volume: 94
  start-page: 306
  year: 1983
  ident: br0090
  article-title: On the possibility of analytically continuing stabilization graphs to determine resonance positions and widths accurately
  publication-title: Chem. Phys. Lett.
– volume: 123
  start-page: 5091
  year: 2019
  end-page: 5105
  ident: br0360
  article-title: The clusterization technique: a systematic search for the resonance energies obtained via Padé
  publication-title: J. Phys. Chem. A
– volume: 54
  start-page: 347
  year: 1929
  end-page: 366
  ident: br0440
  article-title: Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium
  publication-title: Z. Phys.
– volume: 65
  start-page: 347
  year: 2016
  end-page: 353
  ident: br0320
  article-title: Electronic structure of helium atom in a quantum dot
  publication-title: Commun. Theor. Phys.
– volume: 65
  year: 2002
  ident: 10.1016/j.cpc.2025.109815_br0080
  article-title: Resonance states with the complex absorbing potential method
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.65.054305
– volume: 73
  start-page: 250
  issue: 12
  year: 2019
  ident: 10.1016/j.cpc.2025.109815_br0330
  article-title: Critical stability and structural properties of screened two-electron system in Feshbach resonance state
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2019-100400-5
– volume: 75
  year: 2007
  ident: 10.1016/j.cpc.2025.109815_br0280
  article-title: Bound states and resonance states of the plasma-embedded ppμ molecular ion
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.062509
– volume: 28
  start-page: 3163
  issue: 15
  year: 1995
  ident: 10.1016/j.cpc.2025.109815_br0520
  article-title: Highly doubly excited S states of the helium atom
  publication-title: J. Phys. B, At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/28/15/010
– year: 2009
  ident: 10.1016/j.cpc.2025.109815_br0470
– volume: 20
  start-page: 227
  issue: 2
  year: 2002
  ident: 10.1016/j.cpc.2025.109815_br0370
  article-title: Application of the stabilization method to interacting resonances
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2002-00124-1
– volume: 56
  start-page: 4537
  year: 1997
  ident: 10.1016/j.cpc.2025.109815_br0580
  article-title: Doubly excited Se1,3, Po1,3, and De1,3 resonances in He below the n=2 He+ threshold
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.56.4537
– volume: 132
  issue: 13
  year: 2010
  ident: 10.1016/j.cpc.2025.109815_br0300
  article-title: Metastable bound Do1,3 states below N=3 ionization threshold of He+
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3376029
– volume: 88
  year: 2013
  ident: 10.1016/j.cpc.2025.109815_br0140
  article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium
  publication-title: Phys. Rev. A
– year: 2006
  ident: 10.1016/j.cpc.2025.109815_br0560
– ident: 10.1016/j.cpc.2025.109815_br0410
– year: 2024
  ident: 10.1016/j.cpc.2025.109815_br0510
– ident: 10.1016/j.cpc.2025.109815_br0420
– volume: 302
  start-page: 212
  issue: 5
  year: 1998
  ident: 10.1016/j.cpc.2025.109815_br0070
  article-title: Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(98)00002-7
– volume: 21
  start-page: L709
  year: 1988
  ident: 10.1016/j.cpc.2025.109815_br0130
  article-title: Resonance widths and normalisation
  publication-title: J. Phys. B, At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/21/24/001
– volume: 88
  year: 2013
  ident: 10.1016/j.cpc.2025.109815_br0570
  article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.012702
– volume: 74
  year: 2006
  ident: 10.1016/j.cpc.2025.109815_br0010
  article-title: Ejected electron spectrum of He below the N=2 threshold
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.032714
– volume: 103
  year: 2021
  ident: 10.1016/j.cpc.2025.109815_br0210
  article-title: Stabilization method with the relativistic configuration-interaction calculation applied to two-electron resonances
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.012811
– volume: 39
  start-page: 2445
  issue: 11
  year: 2006
  ident: 10.1016/j.cpc.2025.109815_br0270
  article-title: Doubly excited inter-shell P-wave resonances of helium in weakly coupled plasmas
  publication-title: J. Phys. B, At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/39/11/010
– volume: 94
  start-page: 306
  year: 1983
  ident: 10.1016/j.cpc.2025.109815_br0090
  article-title: On the possibility of analytically continuing stabilization graphs to determine resonance positions and widths accurately
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(83)87093-6
– volume: 4
  start-page: 662
  year: 1971
  ident: 10.1016/j.cpc.2025.109815_br0160
  article-title: Calculation of energies and widths of compound-state resonances in elastic scattering: stabilization method
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.4.662
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.cpc.2025.109815_br0490
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 122
  start-page: 4048
  issue: 16
  year: 2018
  ident: 10.1016/j.cpc.2025.109815_br0390
  article-title: Electronic resonances of nucleobases using stabilization methods
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b01523
– volume: 54
  start-page: 347
  issue: 5
  year: 1929
  ident: 10.1016/j.cpc.2025.109815_br0440
  article-title: Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium
  publication-title: Z. Phys.
  doi: 10.1007/BF01375457
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.cpc.2025.109815_br0460
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– volume: 111
  year: 2013
  ident: 10.1016/j.cpc.2025.109815_br0020
  article-title: Observation of 2p3d(Po1)→1s3d(De1) radiative transition in He-like Si, S, and Cl ions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.243201
– volume: 12
  start-page: 885
  year: 1975
  ident: 10.1016/j.cpc.2025.109815_br0180
  article-title: Positronium-hydrogen elastic scattering
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.12.885
– volume: 119
  issue: 18
  year: 2019
  ident: 10.1016/j.cpc.2025.109815_br0340
  article-title: Extensive investigations for metastable-bound and resonance Fe3 states of He atom
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25981
– volume: 3
  start-page: 592
  year: 1970
  ident: 10.1016/j.cpc.2025.109815_br0170
  article-title: Tests of the multiconfiguration energy-bound method for Feshbach-type autoionization states of two-electron atoms. I. Application to He states below the n=2 threshold
  publication-title: J. Phys. B, At. Mol. Phys.
  doi: 10.1088/0022-3700/3/5/003
– volume: 6
  start-page: 288
  issue: 6
  year: 1973
  ident: 10.1016/j.cpc.2025.109815_br0150
  article-title: The R-matrix method in atomic physics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(73)90038-6
– volume: 77
  year: 2008
  ident: 10.1016/j.cpc.2025.109815_br0400
  article-title: Real stabilization method for nuclear single-particle resonances
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.77.014312
– volume: 128
  year: 2008
  ident: 10.1016/j.cpc.2025.109815_br0550
  article-title: Solving the electron-nuclear Schrödinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method
  publication-title: J. Chem. Phys.
– volume: 54
  start-page: 174
  issue: 5
  year: 2024
  ident: 10.1016/j.cpc.2025.109815_br0530
  article-title: Effect of mass polarization on bound and resonance states of two-electron systems
  publication-title: Braz. J. Phys.
  doi: 10.1007/s13538-024-01544-5
– volume: 517
  start-page: 223
  issue: 4
  year: 2011
  ident: 10.1016/j.cpc.2025.109815_br0050
  article-title: On the diagnosis of fluorescence active autoionizing states of helium
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.10.032
– volume: 127
  issue: 22
  year: 2007
  ident: 10.1016/j.cpc.2025.109815_br0540
  article-title: Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2801981
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.cpc.2025.109815_br0500
  article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 98
  year: 2018
  ident: 10.1016/j.cpc.2025.109815_br0030
  article-title: Photoionization of metastable heliumlike C4+(1s2s3S1) ions: precision study of intermediate doubly excited states
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.033416
– volume: 70
  start-page: 1932
  year: 1993
  ident: 10.1016/j.cpc.2025.109815_br0200
  article-title: Calculation of the density of resonance states using the stabilization method
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1932
– volume: 100
  start-page: 336
  issue: 2
  year: 1995
  ident: 10.1016/j.cpc.2025.109815_br0350
  article-title: Accurate calculation of atomic resonances near surfaces
  publication-title: Nucl. Instrum. Methods Phys. Res. B
  doi: 10.1016/0168-583X(94)00850-7
– volume: 71
  year: 2005
  ident: 10.1016/j.cpc.2025.109815_br0230
  article-title: Ground state and resonance state of Ps− in plasmas with various Debye lengths
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.052503
– volume: 79
  year: 2009
  ident: 10.1016/j.cpc.2025.109815_br0290
  article-title: Doubly excited resonance states of helium in exponential cosine-screened Coulomb potentials
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.062514
– volume: 70
  year: 2004
  ident: 10.1016/j.cpc.2025.109815_br0250
  article-title: Autoionizing Se1 resonance of H− in Debye plasma environments
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066411
– volume: 80
  year: 2009
  ident: 10.1016/j.cpc.2025.109815_br0240
  article-title: Doubly excited bound and resonance (Pe3) states of helium
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.022513
– volume: 13
  start-page: L119
  year: 1980
  ident: 10.1016/j.cpc.2025.109815_br0190
  article-title: A spherical-box approach to resonances
  publication-title: J. Phys. B, At. Mol. Phys.
  doi: 10.1088/0022-3700/13/4/001
– volume: 123
  start-page: 5091
  issue: 24
  year: 2019
  ident: 10.1016/j.cpc.2025.109815_br0360
  article-title: The clusterization technique: a systematic search for the resonance energies obtained via Padé
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b12573
– volume: 48
  start-page: 469
  issue: 7
  year: 1928
  ident: 10.1016/j.cpc.2025.109815_br0430
  article-title: Über den Grundzustand des Heliumatoms
  publication-title: Z. Phys.
  doi: 10.1007/BF01340013
– volume: 1
  start-page: 1109
  year: 1970
  ident: 10.1016/j.cpc.2025.109815_br0120
  article-title: Stabilization method of calculating resonance energies: model problem
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.1.1109
– volume: 99
  start-page: 1
  issue: 1
  year: 1983
  ident: 10.1016/j.cpc.2025.109815_br0060
  article-title: The method of complex coordinate rotation and its applications to atomic collision processes
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(83)90112-6
– volume: 65
  start-page: 347
  issue: 3
  year: 2016
  ident: 10.1016/j.cpc.2025.109815_br0320
  article-title: Electronic structure of helium atom in a quantum dot
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/65/3/347
– volume: 75
  start-page: 2465
  year: 1981
  ident: 10.1016/j.cpc.2025.109815_br0100
  article-title: Resonance state lifetimes from stabilization graphs
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442271
– volume: 110
  start-page: 130
  year: 1984
  ident: 10.1016/j.cpc.2025.109815_br0110
  article-title: Single-root, real-basis-function method with correct branch-point structure for complex resonances energies
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(84)80161-X
– volume: 49
  start-page: 2470
  year: 1994
  ident: 10.1016/j.cpc.2025.109815_br0220
  article-title: Calculation of resonances in doubly excited helium using the stabilization method
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.49.2470
– volume: 72
  year: 2005
  ident: 10.1016/j.cpc.2025.109815_br0260
  article-title: Doubly excited 2s2p Po1,3 resonance states of helium in dense plasmas
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.010703
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 10.1016/j.cpc.2025.109815_br0480
  article-title: Matplotlib: a 2d graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 111
  start-page: 1819
  issue: 7–8
  year: 2011
  ident: 10.1016/j.cpc.2025.109815_br0310
  article-title: (Se1) resonance states of two electron atoms by stabilization method
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.22817
– volume: 8
  start-page: 203
  issue: 1
  year: 1962
  ident: 10.1016/j.cpc.2025.109815_br0450
  article-title: A simple method of treating atomic integrals containing functions of r12
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(62)90021-8
– volume: 110
  year: 2024
  ident: 10.1016/j.cpc.2025.109815_br0040
  article-title: Double-K-hole resonances in single photoionization of He-like B3+ ions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.110.062802
– volume: 18
  start-page: 30536
  year: 2016
  ident: 10.1016/j.cpc.2025.109815_br0380
  article-title: Core-excited and shape resonances of uracil
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05342D
SSID ssj0007793
Score 2.4785545
Snippet The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109815
SubjectTerms Automatic resonance detection
Doubly excited states
Resonance states
Stabilization diagram
Stabilization method
Three-body system
Title An algorithm for automated extraction of resonance parameters from the stabilization method
URI https://dx.doi.org/10.1016/j.cpc.2025.109815
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0010-4655
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  issn: 0010-4655
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0010-4655
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0010-4655
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0010-4655
  databaseCode: AKRWK
  dateStart: 19690701
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jIngRP3F-jBw8CXVrl7TNcQzHdLiDOBx4KEma6MS1Y-uu_u2-17SooBdPpSUPykveF_m93yPkEkKEsNyEXsxZiAUK95QEezRdjQFKBrykzL-fhKMpu5vxWYMM6l4YhFVWvt_59NJbV186lTY7y_kce3zxfpLjvRyczAjrdsYinGJw_fEF84iiingX_A2urm82S4yXXiKLYcCRVCnGybi_xaZv8Wa4R3arRJH23b_sk4bJDsh2CdjU60Py3M-ofH_JobZ_XVDIPKncFDmknyal4G9Xrl-B5pZCPZ0jq4ahSPO9QPjLmmJXCYXcj0JyiPBY14xJ3TzpIzId3jwORl41KMHTkJ4UHtidlLanI59JzYXylY5ja20ohPRTabSv00BYo3iqpB9LEVlhelKpbk_r2Ne9Y9LM8sycEApSSoHRW7B9ZphB8pZUwRopQDRIW-SqVlGydHwYSQ0Ue0tAnwnqM3H6bBFWKzH5sakJ-Ou_xU7_J3ZGdvDNNQqek2ax2pgLyBgK1S6PRJts9W_Howk-xw9P40_0JMNM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiPrE-9-BJiG0em2SPpViqtj21UPAQdje7WrFJadOrv92ZbIIKevGa7ECY7Mx8w37zLSE3UCK4YTp0YhaE2KAwRwqIR91RWKCEx0rJ_NE4HEyDxxmbNUivnoVBWmWV-21OL7N19aRdebO9nM9xxhfPJxmey8HOjKBv3wqYF2EHdvfxxfOIokp5FxIOLq-PNkuSl1qijKHHUFUpxqtxfytO3wpOf5_sVUiRdu3HHJCGzg7JdsnYVOsj8tzNqHh_yaG5f11QgJ5UbIoc8KdOKSTclR1YoLmh0FDnKKuhKep8L5D_sqY4VkIB_FFAh8iPtdOY1F4ofUym_ftJb-BUNyU4CvBJ4UDgCWF8FbmBUIxLV6o4NsaEnAs3FVq5KvW40ZKlUrix4JHh2hdSdnylYlf5J6SZ5Zk-JRSspISoNxD8gQ40qrekEtYIDqZe2iK3tYuSpRXESGqm2FsC_kzQn4n1Z4sEtROTH381gYT9t9nZ_8yuyc5gMhomw4fx0znZxTd2avCCNIvVRl8CfCjkVbk9PgGa7MM-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+automated+extraction+of+resonance+parameters+from+the+stabilization+method&rft.jtitle=Computer+physics+communications&rft.au=Langner%2C+Johanna&rft.au=Sadhukhan%2C+Anjan&rft.au=Saha%2C+Jayanta+K.&rft.au=Witek%2C+Henryk+A.&rft.date=2025-11-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.volume=316&rft_id=info:doi/10.1016%2Fj.cpc.2025.109815&rft.externalDocID=S0010465525003170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon