An algorithm for automated extraction of resonance parameters from the stabilization method
The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The process requires labor-intensive numerical manipulation of a large number of eigenvalues of a parameter-dependent Hamiltonian matrix, followed by a...
Saved in:
| Published in | Computer physics communications Vol. 316; p. 109815 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4655 |
| DOI | 10.1016/j.cpc.2025.109815 |
Cover
| Abstract | The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The process requires labor-intensive numerical manipulation of a large number of eigenvalues of a parameter-dependent Hamiltonian matrix, followed by a fitting procedure. In this article, we present ReSMax, an efficient algorithm implemented as an open-access Python code, which offers full automation of the stabilization diagram analysis in a user-friendly environment while maintaining high numerical precision of the computed resonance characteristics. As a test case, we use ReSMax to analyze the natural parity doubly-excited resonance states (Se1, Se3, Po1, and Po3) of helium, demonstrating the accuracy and efficiency of the developed methodology. The presented algorithm is applicable to a wide range of resonances in atomic, molecular, and nuclear systems.
Program Title:ReSMax
CPC Library link to program files:https://doi.org/10.17632/8yny7jycgz.1
Developer's repository link:https://github.com/giogina/ReSMax
Licensing provisions: MIT
Programming language: Python
Nature of problem: The stabilization method is a widely used indirect approach for identifying resonance states (RSs) in atomic and molecular systems. It analyzes the behavior of energy eigenvalues of the system's Hamiltonian as a function of a basis set parameter, as visualized in stabilization diagrams (SDs) [1]. Resonance states manifest as plateaus in these SDs and are characterized by the position and width of the associated Lorentzian peaks in the density of states (DOS) [2]. However, applying this method in practice remains labor-intensive and error-prone: analyzing large eigenvalue datasets, identifying plateau regions, and fitting DOS peaks manually requires significant effort and expert judgment. These difficulties limit the method's scalability and reproducibility, especially for systems with many closely spaced resonances or high angular momentum states. There is currently no widely available open-source tool that automates the entire workflow in a robust, accurate, and user-friendly way.
Solution method:ReSMax is an open-source Python program that automates the extraction of resonance parameters from stabilization diagrams. Given an input file containing the eigenvalue spectrum of a Hamiltonian across a range of basis set parameter values, it computes the density of states (DOS) for each root, identifies local maxima corresponding to potential resonances, and fits them to Lorentzian functions. Peaks are grouped into resonance candidates based on energy proximity and root uniqueness, and the best-fitting peak is selected for each resonance. A combination of numerical filtering, symmetry checks, and fit quality metrics ensures robust peak detection. Automatic resonance detection completes in a few seconds. An interactive interface allows optional refinement of resonance assignments before final export of the results.
Additional comments including restrictions and unusual features: Resonances indicated by descending plateaus in the SD — which can appear due to insufficient basis set size for fluorescence-active resonances as well as directly below ionization thresholds — are assigned approximate energies and flagged for manual inspection. While ReSMax was developed for helium-like ions, the method is general and capable of detecting resonance states of a wide range of systems.
[1]A.U. Hazi, H.S. Taylor, Phys. Rev. A 1 (1970) 1109.[2]V.A. Mandelshtam, T.R. Ravuri, H.S. Taylor, Phys. Rev. Lett. 70 (1993) 1932. |
|---|---|
| AbstractList | The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The process requires labor-intensive numerical manipulation of a large number of eigenvalues of a parameter-dependent Hamiltonian matrix, followed by a fitting procedure. In this article, we present ReSMax, an efficient algorithm implemented as an open-access Python code, which offers full automation of the stabilization diagram analysis in a user-friendly environment while maintaining high numerical precision of the computed resonance characteristics. As a test case, we use ReSMax to analyze the natural parity doubly-excited resonance states (Se1, Se3, Po1, and Po3) of helium, demonstrating the accuracy and efficiency of the developed methodology. The presented algorithm is applicable to a wide range of resonances in atomic, molecular, and nuclear systems.
Program Title:ReSMax
CPC Library link to program files:https://doi.org/10.17632/8yny7jycgz.1
Developer's repository link:https://github.com/giogina/ReSMax
Licensing provisions: MIT
Programming language: Python
Nature of problem: The stabilization method is a widely used indirect approach for identifying resonance states (RSs) in atomic and molecular systems. It analyzes the behavior of energy eigenvalues of the system's Hamiltonian as a function of a basis set parameter, as visualized in stabilization diagrams (SDs) [1]. Resonance states manifest as plateaus in these SDs and are characterized by the position and width of the associated Lorentzian peaks in the density of states (DOS) [2]. However, applying this method in practice remains labor-intensive and error-prone: analyzing large eigenvalue datasets, identifying plateau regions, and fitting DOS peaks manually requires significant effort and expert judgment. These difficulties limit the method's scalability and reproducibility, especially for systems with many closely spaced resonances or high angular momentum states. There is currently no widely available open-source tool that automates the entire workflow in a robust, accurate, and user-friendly way.
Solution method:ReSMax is an open-source Python program that automates the extraction of resonance parameters from stabilization diagrams. Given an input file containing the eigenvalue spectrum of a Hamiltonian across a range of basis set parameter values, it computes the density of states (DOS) for each root, identifies local maxima corresponding to potential resonances, and fits them to Lorentzian functions. Peaks are grouped into resonance candidates based on energy proximity and root uniqueness, and the best-fitting peak is selected for each resonance. A combination of numerical filtering, symmetry checks, and fit quality metrics ensures robust peak detection. Automatic resonance detection completes in a few seconds. An interactive interface allows optional refinement of resonance assignments before final export of the results.
Additional comments including restrictions and unusual features: Resonances indicated by descending plateaus in the SD — which can appear due to insufficient basis set size for fluorescence-active resonances as well as directly below ionization thresholds — are assigned approximate energies and flagged for manual inspection. While ReSMax was developed for helium-like ions, the method is general and capable of detecting resonance states of a wide range of systems.
[1]A.U. Hazi, H.S. Taylor, Phys. Rev. A 1 (1970) 1109.[2]V.A. Mandelshtam, T.R. Ravuri, H.S. Taylor, Phys. Rev. Lett. 70 (1993) 1932. |
| ArticleNumber | 109815 |
| Author | Langner, Johanna Witek, Henryk A. Sadhukhan, Anjan Saha, Jayanta K. |
| Author_xml | – sequence: 1 givenname: Johanna orcidid: 0000-0003-1312-7759 surname: Langner fullname: Langner, Johanna email: johanna.langner@nycu.edu.tw organization: Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan – sequence: 2 givenname: Anjan orcidid: 0000-0003-4454-7377 surname: Sadhukhan fullname: Sadhukhan, Anjan organization: Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan – sequence: 3 givenname: Jayanta K. orcidid: 0000-0002-1159-1905 surname: Saha fullname: Saha, Jayanta K. organization: Department of Physics, Aliah University, IIA/27, Newtown, Kolkata 700160, India – sequence: 4 givenname: Henryk A. orcidid: 0000-0002-9013-1287 surname: Witek fullname: Witek, Henryk A. email: hwitek@nycu.edu.tw organization: Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan |
| BookMark | eNp9kM9OwzAMh3MYEtvgAbjlBTqSdlkbcZom_kmTuMCJQ-S4Dsu0NlMSEPD0dJQzJ8vy77Psb8YmfeiJsSspFlLI1fV-gUdclKJUQ68bqSZsKoQUxXKl1DmbpbQXQtS1rqbsdd1zOLyF6POu4y5EDu85dJCp5fSZI2D2oefB8Ugp9NAj8SNE6ChTTNzF0PG8I54yWH_w3_AbH6a70F6wMweHRJd_dc5e7m6fNw_F9un-cbPeFlgqmYtlqQBchbVcAiptpcWmcc6ttAbZAqHEttSOrGotyAZ07TRVYK2oEBuJ1ZzJcS_GkFIkZ47RdxC_jBTmZMTszWDEnIyY0cjA3IwMDYd9eIomoafhu9ZHwmza4P-hfwCX6nCA |
| Cites_doi | 10.1103/PhysRevC.65.054305 10.1140/epjd/e2019-100400-5 10.1103/PhysRevA.75.062509 10.1088/0953-4075/28/15/010 10.1140/epjd/e2002-00124-1 10.1103/PhysRevA.56.4537 10.1063/1.3376029 10.1016/S0370-1573(98)00002-7 10.1088/0953-4075/21/24/001 10.1103/PhysRevA.88.012702 10.1103/PhysRevA.74.032714 10.1103/PhysRevA.103.012811 10.1088/0953-4075/39/11/010 10.1016/0009-2614(83)87093-6 10.1103/PhysRevA.4.662 10.1038/s41586-020-2649-2 10.1021/acs.jpca.8b01523 10.1007/BF01375457 10.1137/141000671 10.1103/PhysRevLett.111.243201 10.1103/PhysRevA.12.885 10.1002/qua.25981 10.1088/0022-3700/3/5/003 10.1016/0010-4655(73)90038-6 10.1103/PhysRevC.77.014312 10.1007/s13538-024-01544-5 10.1016/j.cplett.2011.10.032 10.1063/1.2801981 10.1038/s41592-019-0686-2 10.1103/PhysRevA.98.033416 10.1103/PhysRevLett.70.1932 10.1016/0168-583X(94)00850-7 10.1103/PhysRevA.71.052503 10.1103/PhysRevA.79.062514 10.1103/PhysRevE.70.066411 10.1103/PhysRevA.80.022513 10.1088/0022-3700/13/4/001 10.1021/acs.jpca.8b12573 10.1007/BF01340013 10.1103/PhysRevA.1.1109 10.1016/0370-1573(83)90112-6 10.1088/0253-6102/65/3/347 10.1063/1.442271 10.1016/0009-2614(84)80161-X 10.1103/PhysRevA.49.2470 10.1103/PhysRevA.72.010703 10.1109/MCSE.2007.55 10.1002/qua.22817 10.1016/0022-2852(62)90021-8 10.1103/PhysRevA.110.062802 10.1039/C6CP05342D |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cpc.2025.109815 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 10_1016_j_cpc_2025_109815 S0010465525003170 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABNEU ABQEM ABQYD ABWVN ABXDB ACDAQ ACFVG ACGFS ACLOT ACLVX ACNNM ACRLP ACRPL ACSBN ACVFH ACZNC ADBBV ADCNI ADECG ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFZHZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c251t-425aaf3c714ac59b1bc88fff699a1daec1cd29feb5dba18a97f9e3abb03cc81c3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4655 |
| IngestDate | Wed Oct 01 05:33:22 EDT 2025 Sat Oct 04 17:01:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stabilization method Doubly excited states Three-body system Resonance states Stabilization diagram Automatic resonance detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c251t-425aaf3c714ac59b1bc88fff699a1daec1cd29feb5dba18a97f9e3abb03cc81c3 |
| ORCID | 0000-0002-9013-1287 0000-0003-4454-7377 0000-0002-1159-1905 0000-0003-1312-7759 |
| ParticipantIDs | crossref_primary_10_1016_j_cpc_2025_109815 elsevier_sciencedirect_doi_10_1016_j_cpc_2025_109815 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hunter (br0480) 2007; 9 Kar, Ho (br0270) 2006; 39 Lasso, Cardona, Sanz-Vicario (br0140) 2013; 88 Hylleraas (br0430) 1928; 48 Burgers, Wintgen, Rest (br0520) 1995; 28 Fels, Hazi (br0160) 1971; 4 Mohr, Tiesinga, Newell, Taylor (br0510) 2024 Sadhukhan, Dutta, Saha (br0330) 2019; 73 Ghoshal, Ho (br0290) 2009; 79 González-Lezana, Delgado-Barrio, Villarreal, Gadéa (br0370) 2002; 20 Fennimore, Matsika (br0390) 2018; 122 Nakashima, Nakatsuji (br0540) 2007; 127 McCurdy, McNutt (br0090) 1983; 94 Lefebvre (br0130) 1988; 21 Drachman, Houston (br0180) 1975; 12 deHarak, Childers, Martin (br0010) 2006; 74 Saha, Bhattacharyya, Mukherjee, Mukherjee (br0050) 2011; 517 Kasthurirangan, Saha, Agnihotri, Bhattacharyya, Misra, Kumar, Mukherjee, Santos, Costa, Indelicato, Mukherjee, Tribedi (br0020) 2013; 111 Müller, Lindroth, Bari, Borovik, Hillenbrand, Holste, Indelicato, Kilcoyne, Klumpp, Martins, Viefhaus, Wilhelm, Schippers (br0030) 2018; 98 Isaacson, Truhlar (br0110) 1984; 110 Saha, Bhattacharyya, Mukherjee (br0320) 2016; 65 Saha, Bhattacharyya, Mukherjee (br0300) 2010; 132 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (br0490) 2020; 585 Ho (br0060) 1983; 99 Kar, Ho (br0230) 2005; 71 Zhang, Zhou, Meng, Zhao (br0400) 2008; 77 Hazi, Taylor (br0120) 1970; 1 Kar, Ho (br0280) 2007; 75 Sil, Barik, Dutta, Mondal, Saha, Mukhopadhyay (br0530) 2024; 54 Sadhukhan, Pestka, Podeszwa, Witek (br0420) 2025 Mandelshtam, Ravuri, Taylor (br0200) 1993; 70 Fennimore, Matsika (br0380) 2016; 18 Burke (br0150) 1973; 6 Chen (br0580) 1997; 56 Maier, Cederbaum, Domcke (br0190) 1980; 13 Hylleraas (br0440) 1929; 54 Langner (br0410) 2025 Kar, Ho (br0250) 2004; 70 Mohr, Tiesinga, Newell, Taylor (br0560) 2006 Amaro, Santos, Bhattacharyya, Mukherjee, Saha (br0210) 2021; 103 Bezanson, Edelman, Karpinski, Shah (br0460) 2017; 59 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (br0500) 2020; 17 Saha, Mukherjee (br0240) 2009; 80 Calais, Löwdin (br0450) 1962; 8 Van Rossum, Drake (br0470) 2009 Ordóñez Lasso, Cardona, Sanz-Vicario (br0570) 2013; 88 Holoien, Midtdal (br0170) 1970; 3 Saha, Bhattacharyya, Mukherjee, Mukherjee (br0310) 2011; 111 Müller, Hillenbrand, Wang, Schippers, Lindroth, Trinter, Seltmann, Reinwardt, Martins, Kheifets, Bray (br0040) 2024; 110 Dutta, Sil, Saha, Mukherjee (br0340) 2019; 119 Müller, Yang, Burgdörfer (br0220) 1994; 49 Moiseyev (br0070) 1998; 302 Kar, Ho (br0260) 2005; 72 Masui, Ho (br0080) 2002; 65 Deutscher, Yang, Burgdörfer (br0350) 1995; 100 Landau, Haritan (br0360) 2019; 123 Simons (br0100) 1981; 75 Nakashima, Nakatsuji (br0550) 2008; 128 Dutta (10.1016/j.cpc.2025.109815_br0340) 2019; 119 Drachman (10.1016/j.cpc.2025.109815_br0180) 1975; 12 Ordóñez Lasso (10.1016/j.cpc.2025.109815_br0570) 2013; 88 Saha (10.1016/j.cpc.2025.109815_br0050) 2011; 517 Lasso (10.1016/j.cpc.2025.109815_br0140) 2013; 88 Holoien (10.1016/j.cpc.2025.109815_br0170) 1970; 3 Lefebvre (10.1016/j.cpc.2025.109815_br0130) 1988; 21 Fennimore (10.1016/j.cpc.2025.109815_br0380) 2016; 18 Hazi (10.1016/j.cpc.2025.109815_br0120) 1970; 1 Ho (10.1016/j.cpc.2025.109815_br0060) 1983; 99 Langner (10.1016/j.cpc.2025.109815_br0410) Hylleraas (10.1016/j.cpc.2025.109815_br0430) 1928; 48 Burgers (10.1016/j.cpc.2025.109815_br0520) 1995; 28 Fels (10.1016/j.cpc.2025.109815_br0160) 1971; 4 Kar (10.1016/j.cpc.2025.109815_br0280) 2007; 75 Sadhukhan (10.1016/j.cpc.2025.109815_br0330) 2019; 73 Sil (10.1016/j.cpc.2025.109815_br0530) 2024; 54 Kar (10.1016/j.cpc.2025.109815_br0250) 2004; 70 Calais (10.1016/j.cpc.2025.109815_br0450) 1962; 8 Müller (10.1016/j.cpc.2025.109815_br0220) 1994; 49 Saha (10.1016/j.cpc.2025.109815_br0300) 2010; 132 Nakashima (10.1016/j.cpc.2025.109815_br0540) 2007; 127 Hylleraas (10.1016/j.cpc.2025.109815_br0440) 1929; 54 deHarak (10.1016/j.cpc.2025.109815_br0010) 2006; 74 Mohr (10.1016/j.cpc.2025.109815_br0510) 2024 Ghoshal (10.1016/j.cpc.2025.109815_br0290) 2009; 79 Fennimore (10.1016/j.cpc.2025.109815_br0390) 2018; 122 Müller (10.1016/j.cpc.2025.109815_br0030) 2018; 98 Mohr (10.1016/j.cpc.2025.109815_br0560) 2006 Hunter (10.1016/j.cpc.2025.109815_br0480) 2007; 9 Simons (10.1016/j.cpc.2025.109815_br0100) 1981; 75 Sadhukhan (10.1016/j.cpc.2025.109815_br0420) Kar (10.1016/j.cpc.2025.109815_br0260) 2005; 72 Zhang (10.1016/j.cpc.2025.109815_br0400) 2008; 77 McCurdy (10.1016/j.cpc.2025.109815_br0090) 1983; 94 Van Rossum (10.1016/j.cpc.2025.109815_br0470) 2009 Harris (10.1016/j.cpc.2025.109815_br0490) 2020; 585 Saha (10.1016/j.cpc.2025.109815_br0240) 2009; 80 Moiseyev (10.1016/j.cpc.2025.109815_br0070) 1998; 302 Kar (10.1016/j.cpc.2025.109815_br0230) 2005; 71 Saha (10.1016/j.cpc.2025.109815_br0310) 2011; 111 Kasthurirangan (10.1016/j.cpc.2025.109815_br0020) 2013; 111 Isaacson (10.1016/j.cpc.2025.109815_br0110) 1984; 110 Nakashima (10.1016/j.cpc.2025.109815_br0550) 2008; 128 Saha (10.1016/j.cpc.2025.109815_br0320) 2016; 65 Müller (10.1016/j.cpc.2025.109815_br0040) 2024; 110 Maier (10.1016/j.cpc.2025.109815_br0190) 1980; 13 Chen (10.1016/j.cpc.2025.109815_br0580) 1997; 56 Amaro (10.1016/j.cpc.2025.109815_br0210) 2021; 103 Mandelshtam (10.1016/j.cpc.2025.109815_br0200) 1993; 70 Virtanen (10.1016/j.cpc.2025.109815_br0500) 2020; 17 Kar (10.1016/j.cpc.2025.109815_br0270) 2006; 39 Masui (10.1016/j.cpc.2025.109815_br0080) 2002; 65 Burke (10.1016/j.cpc.2025.109815_br0150) 1973; 6 Landau (10.1016/j.cpc.2025.109815_br0360) 2019; 123 Deutscher (10.1016/j.cpc.2025.109815_br0350) 1995; 100 Bezanson (10.1016/j.cpc.2025.109815_br0460) 2017; 59 González-Lezana (10.1016/j.cpc.2025.109815_br0370) 2002; 20 |
| References_xml | – volume: 54 start-page: 174 year: 2024 ident: br0530 article-title: Effect of mass polarization on bound and resonance states of two-electron systems publication-title: Braz. J. Phys. – volume: 122 start-page: 4048 year: 2018 end-page: 4057 ident: br0390 article-title: Electronic resonances of nucleobases using stabilization methods publication-title: J. Phys. Chem. A – year: 2009 ident: br0470 article-title: Python 3 Reference Manual: (Python Documentation Manual Part 2), Documentation for Python – volume: 1 start-page: 1109 year: 1970 ident: br0120 article-title: Stabilization method of calculating resonance energies: model problem publication-title: Phys. Rev. A – volume: 80 year: 2009 ident: br0240 article-title: Doubly excited bound and resonance publication-title: Phys. Rev. A – volume: 127 year: 2007 ident: br0540 article-title: Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method publication-title: J. Chem. Phys. – volume: 3 start-page: 592 year: 1970 ident: br0170 article-title: Tests of the multiconfiguration energy-bound method for Feshbach-type autoionization states of two-electron atoms. I. Application to He states below the publication-title: J. Phys. B, At. Mol. Phys. – volume: 77 year: 2008 ident: br0400 article-title: Real stabilization method for nuclear single-particle resonances publication-title: Phys. Rev. C – volume: 110 start-page: 130 year: 1984 ident: br0110 article-title: Single-root, real-basis-function method with correct branch-point structure for complex resonances energies publication-title: Chem. Phys. Lett. – volume: 28 start-page: 3163 year: 1995 ident: br0520 article-title: Highly doubly excited S states of the helium atom publication-title: J. Phys. B, At. Mol. Opt. Phys. – volume: 88 year: 2013 ident: br0570 article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium publication-title: Phys. Rev. A – volume: 72 year: 2005 ident: br0260 article-title: Doubly excited publication-title: Phys. Rev. A – volume: 79 year: 2009 ident: br0290 article-title: Doubly excited resonance states of helium in exponential cosine-screened Coulomb potentials publication-title: Phys. Rev. A – volume: 49 start-page: 2470 year: 1994 ident: br0220 article-title: Calculation of resonances in doubly excited helium using the stabilization method publication-title: Phys. Rev. A – volume: 75 start-page: 2465 year: 1981 ident: br0100 article-title: Resonance state lifetimes from stabilization graphs publication-title: J. Chem. Phys. – year: 2024 ident: br0510 article-title: Codata Internationally Recommended 2022 Values of the Fundamental Physical Constants – volume: 98 year: 2018 ident: br0030 article-title: Photoionization of metastable heliumlike C publication-title: Phys. Rev. A – volume: 110 year: 2024 ident: br0040 article-title: Double-K-hole resonances in single photoionization of He-like B publication-title: Phys. Rev. A – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: br0500 article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat. Methods – volume: 65 year: 2002 ident: br0080 article-title: Resonance states with the complex absorbing potential method publication-title: Phys. Rev. C – volume: 100 start-page: 336 year: 1995 end-page: 341 ident: br0350 article-title: Accurate calculation of atomic resonances near surfaces publication-title: Proceedings of the Tenth International Workshop on Inelastic Ion-Surface Collisions – volume: 39 start-page: 2445 year: 2006 end-page: 2453 ident: br0270 article-title: Doubly excited inter-shell P-wave resonances of helium in weakly coupled plasmas publication-title: J. Phys. B, At. Mol. Opt. Phys. – volume: 302 start-page: 212 year: 1998 end-page: 293 ident: br0070 article-title: Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling publication-title: Phys. Rep. – volume: 18 start-page: 30536 year: 2016 end-page: 30545 ident: br0380 article-title: Core-excited and shape resonances of uracil publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: br0480 article-title: Matplotlib: a 2d graphics environment publication-title: Comput. Sci. Eng. – year: 2025 ident: br0410 – volume: 119 year: 2019 ident: br0340 article-title: Extensive investigations for metastable-bound and resonance publication-title: Int. J. Quantum Chem. – volume: 13 start-page: L119 year: 1980 ident: br0190 article-title: A spherical-box approach to resonances publication-title: J. Phys. B, At. Mol. Phys. – volume: 20 start-page: 227 year: 2002 end-page: 232 ident: br0370 article-title: Application of the stabilization method to interacting resonances publication-title: Eur. Phys. J. D – volume: 111 year: 2013 ident: br0020 article-title: Observation of publication-title: Phys. Rev. Lett. – volume: 73 start-page: 250 year: 2019 ident: br0330 article-title: Critical stability and structural properties of screened two-electron system in Feshbach resonance state publication-title: Eur. Phys. J. D – year: 2025 ident: br0420 article-title: Elimination of angular dependency in quantum three-body problem made easy – volume: 75 year: 2007 ident: br0280 article-title: Bound states and resonance states of the plasma-embedded publication-title: Phys. Rev. A – volume: 99 start-page: 1 year: 1983 end-page: 68 ident: br0060 article-title: The method of complex coordinate rotation and its applications to atomic collision processes publication-title: Phys. Rep. – volume: 71 year: 2005 ident: br0230 article-title: Ground state and resonance state of publication-title: Phys. Rev. A – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: br0490 article-title: Array programming with NumPy publication-title: Nature – volume: 128 year: 2008 ident: br0550 article-title: Solving the electron-nuclear Schrödinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method publication-title: J. Chem. Phys. – volume: 111 start-page: 1819 year: 2011 end-page: 1823 ident: br0310 article-title: resonance states of two electron atoms by stabilization method publication-title: Int. J. Quantum Chem. – volume: 74 year: 2006 ident: br0010 article-title: Ejected electron spectrum of He below the publication-title: Phys. Rev. A – volume: 88 year: 2013 ident: br0140 article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium publication-title: Phys. Rev. A – volume: 132 year: 2010 ident: br0300 article-title: Metastable bound publication-title: J. Chem. Phys. – volume: 103 year: 2021 ident: br0210 article-title: Stabilization method with the relativistic configuration-interaction calculation applied to two-electron resonances publication-title: Phys. Rev. A – volume: 70 start-page: 1932 year: 1993 ident: br0200 article-title: Calculation of the density of resonance states using the stabilization method publication-title: Phys. Rev. Lett. – volume: 517 start-page: 223 year: 2011 end-page: 226 ident: br0050 article-title: On the diagnosis of fluorescence active autoionizing states of helium publication-title: Chem. Phys. Lett. – volume: 21 start-page: L709 year: 1988 ident: br0130 article-title: Resonance widths and normalisation publication-title: J. Phys. B, At. Mol. Opt. Phys. – volume: 59 start-page: 65 year: 2017 end-page: 98 ident: br0460 article-title: Julia: a fresh approach to numerical computing publication-title: SIAM Rev. – volume: 56 start-page: 4537 year: 1997 end-page: 4544 ident: br0580 article-title: Doubly excited publication-title: Phys. Rev. A – volume: 48 start-page: 469 year: 1928 end-page: 494 ident: br0430 article-title: Über den Grundzustand des Heliumatoms publication-title: Z. Phys. – volume: 12 start-page: 885 year: 1975 end-page: 890 ident: br0180 article-title: Positronium-hydrogen elastic scattering publication-title: Phys. Rev. A – year: 2006 ident: br0560 article-title: Codata Internationally Recommended 2006 Values of the Fundamental Physical Constants – volume: 6 start-page: 288 year: 1973 end-page: 302 ident: br0150 article-title: The R-matrix method in atomic physics publication-title: Comput. Phys. Commun. – volume: 8 start-page: 203 year: 1962 end-page: 211 ident: br0450 article-title: A simple method of treating atomic integrals containing functions of publication-title: J. Mol. Spectrosc. – volume: 4 start-page: 662 year: 1971 ident: br0160 article-title: Calculation of energies and widths of compound-state resonances in elastic scattering: stabilization method publication-title: Phys. Rev. A – volume: 70 year: 2004 ident: br0250 article-title: Autoionizing publication-title: Phys. Rev. E – volume: 94 start-page: 306 year: 1983 ident: br0090 article-title: On the possibility of analytically continuing stabilization graphs to determine resonance positions and widths accurately publication-title: Chem. Phys. Lett. – volume: 123 start-page: 5091 year: 2019 end-page: 5105 ident: br0360 article-title: The clusterization technique: a systematic search for the resonance energies obtained via Padé publication-title: J. Phys. Chem. A – volume: 54 start-page: 347 year: 1929 end-page: 366 ident: br0440 article-title: Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium publication-title: Z. Phys. – volume: 65 start-page: 347 year: 2016 end-page: 353 ident: br0320 article-title: Electronic structure of helium atom in a quantum dot publication-title: Commun. Theor. Phys. – volume: 65 year: 2002 ident: 10.1016/j.cpc.2025.109815_br0080 article-title: Resonance states with the complex absorbing potential method publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.65.054305 – volume: 73 start-page: 250 issue: 12 year: 2019 ident: 10.1016/j.cpc.2025.109815_br0330 article-title: Critical stability and structural properties of screened two-electron system in Feshbach resonance state publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2019-100400-5 – volume: 75 year: 2007 ident: 10.1016/j.cpc.2025.109815_br0280 article-title: Bound states and resonance states of the plasma-embedded ppμ molecular ion publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.062509 – volume: 28 start-page: 3163 issue: 15 year: 1995 ident: 10.1016/j.cpc.2025.109815_br0520 article-title: Highly doubly excited S states of the helium atom publication-title: J. Phys. B, At. Mol. Opt. Phys. doi: 10.1088/0953-4075/28/15/010 – year: 2009 ident: 10.1016/j.cpc.2025.109815_br0470 – volume: 20 start-page: 227 issue: 2 year: 2002 ident: 10.1016/j.cpc.2025.109815_br0370 article-title: Application of the stabilization method to interacting resonances publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2002-00124-1 – volume: 56 start-page: 4537 year: 1997 ident: 10.1016/j.cpc.2025.109815_br0580 article-title: Doubly excited Se1,3, Po1,3, and De1,3 resonances in He below the n=2 He+ threshold publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.56.4537 – volume: 132 issue: 13 year: 2010 ident: 10.1016/j.cpc.2025.109815_br0300 article-title: Metastable bound Do1,3 states below N=3 ionization threshold of He+ publication-title: J. Chem. Phys. doi: 10.1063/1.3376029 – volume: 88 year: 2013 ident: 10.1016/j.cpc.2025.109815_br0140 article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium publication-title: Phys. Rev. A – year: 2006 ident: 10.1016/j.cpc.2025.109815_br0560 – ident: 10.1016/j.cpc.2025.109815_br0410 – year: 2024 ident: 10.1016/j.cpc.2025.109815_br0510 – ident: 10.1016/j.cpc.2025.109815_br0420 – volume: 302 start-page: 212 issue: 5 year: 1998 ident: 10.1016/j.cpc.2025.109815_br0070 article-title: Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling publication-title: Phys. Rep. doi: 10.1016/S0370-1573(98)00002-7 – volume: 21 start-page: L709 year: 1988 ident: 10.1016/j.cpc.2025.109815_br0130 article-title: Resonance widths and normalisation publication-title: J. Phys. B, At. Mol. Opt. Phys. doi: 10.1088/0953-4075/21/24/001 – volume: 88 year: 2013 ident: 10.1016/j.cpc.2025.109815_br0570 article-title: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.012702 – volume: 74 year: 2006 ident: 10.1016/j.cpc.2025.109815_br0010 article-title: Ejected electron spectrum of He below the N=2 threshold publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.032714 – volume: 103 year: 2021 ident: 10.1016/j.cpc.2025.109815_br0210 article-title: Stabilization method with the relativistic configuration-interaction calculation applied to two-electron resonances publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.012811 – volume: 39 start-page: 2445 issue: 11 year: 2006 ident: 10.1016/j.cpc.2025.109815_br0270 article-title: Doubly excited inter-shell P-wave resonances of helium in weakly coupled plasmas publication-title: J. Phys. B, At. Mol. Opt. Phys. doi: 10.1088/0953-4075/39/11/010 – volume: 94 start-page: 306 year: 1983 ident: 10.1016/j.cpc.2025.109815_br0090 article-title: On the possibility of analytically continuing stabilization graphs to determine resonance positions and widths accurately publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(83)87093-6 – volume: 4 start-page: 662 year: 1971 ident: 10.1016/j.cpc.2025.109815_br0160 article-title: Calculation of energies and widths of compound-state resonances in elastic scattering: stabilization method publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.4.662 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 10.1016/j.cpc.2025.109815_br0490 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 122 start-page: 4048 issue: 16 year: 2018 ident: 10.1016/j.cpc.2025.109815_br0390 article-title: Electronic resonances of nucleobases using stabilization methods publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b01523 – volume: 54 start-page: 347 issue: 5 year: 1929 ident: 10.1016/j.cpc.2025.109815_br0440 article-title: Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium publication-title: Z. Phys. doi: 10.1007/BF01375457 – volume: 59 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.cpc.2025.109815_br0460 article-title: Julia: a fresh approach to numerical computing publication-title: SIAM Rev. doi: 10.1137/141000671 – volume: 111 year: 2013 ident: 10.1016/j.cpc.2025.109815_br0020 article-title: Observation of 2p3d(Po1)→1s3d(De1) radiative transition in He-like Si, S, and Cl ions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.243201 – volume: 12 start-page: 885 year: 1975 ident: 10.1016/j.cpc.2025.109815_br0180 article-title: Positronium-hydrogen elastic scattering publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.12.885 – volume: 119 issue: 18 year: 2019 ident: 10.1016/j.cpc.2025.109815_br0340 article-title: Extensive investigations for metastable-bound and resonance Fe3 states of He atom publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25981 – volume: 3 start-page: 592 year: 1970 ident: 10.1016/j.cpc.2025.109815_br0170 article-title: Tests of the multiconfiguration energy-bound method for Feshbach-type autoionization states of two-electron atoms. I. Application to He states below the n=2 threshold publication-title: J. Phys. B, At. Mol. Phys. doi: 10.1088/0022-3700/3/5/003 – volume: 6 start-page: 288 issue: 6 year: 1973 ident: 10.1016/j.cpc.2025.109815_br0150 article-title: The R-matrix method in atomic physics publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(73)90038-6 – volume: 77 year: 2008 ident: 10.1016/j.cpc.2025.109815_br0400 article-title: Real stabilization method for nuclear single-particle resonances publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.77.014312 – volume: 128 year: 2008 ident: 10.1016/j.cpc.2025.109815_br0550 article-title: Solving the electron-nuclear Schrödinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method publication-title: J. Chem. Phys. – volume: 54 start-page: 174 issue: 5 year: 2024 ident: 10.1016/j.cpc.2025.109815_br0530 article-title: Effect of mass polarization on bound and resonance states of two-electron systems publication-title: Braz. J. Phys. doi: 10.1007/s13538-024-01544-5 – volume: 517 start-page: 223 issue: 4 year: 2011 ident: 10.1016/j.cpc.2025.109815_br0050 article-title: On the diagnosis of fluorescence active autoionizing states of helium publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.10.032 – volume: 127 issue: 22 year: 2007 ident: 10.1016/j.cpc.2025.109815_br0540 article-title: Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method publication-title: J. Chem. Phys. doi: 10.1063/1.2801981 – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.cpc.2025.109815_br0500 article-title: SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 98 year: 2018 ident: 10.1016/j.cpc.2025.109815_br0030 article-title: Photoionization of metastable heliumlike C4+(1s2s3S1) ions: precision study of intermediate doubly excited states publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.033416 – volume: 70 start-page: 1932 year: 1993 ident: 10.1016/j.cpc.2025.109815_br0200 article-title: Calculation of the density of resonance states using the stabilization method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1932 – volume: 100 start-page: 336 issue: 2 year: 1995 ident: 10.1016/j.cpc.2025.109815_br0350 article-title: Accurate calculation of atomic resonances near surfaces publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/0168-583X(94)00850-7 – volume: 71 year: 2005 ident: 10.1016/j.cpc.2025.109815_br0230 article-title: Ground state and resonance state of Ps− in plasmas with various Debye lengths publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.052503 – volume: 79 year: 2009 ident: 10.1016/j.cpc.2025.109815_br0290 article-title: Doubly excited resonance states of helium in exponential cosine-screened Coulomb potentials publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.062514 – volume: 70 year: 2004 ident: 10.1016/j.cpc.2025.109815_br0250 article-title: Autoionizing Se1 resonance of H− in Debye plasma environments publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066411 – volume: 80 year: 2009 ident: 10.1016/j.cpc.2025.109815_br0240 article-title: Doubly excited bound and resonance (Pe3) states of helium publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.022513 – volume: 13 start-page: L119 year: 1980 ident: 10.1016/j.cpc.2025.109815_br0190 article-title: A spherical-box approach to resonances publication-title: J. Phys. B, At. Mol. Phys. doi: 10.1088/0022-3700/13/4/001 – volume: 123 start-page: 5091 issue: 24 year: 2019 ident: 10.1016/j.cpc.2025.109815_br0360 article-title: The clusterization technique: a systematic search for the resonance energies obtained via Padé publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b12573 – volume: 48 start-page: 469 issue: 7 year: 1928 ident: 10.1016/j.cpc.2025.109815_br0430 article-title: Über den Grundzustand des Heliumatoms publication-title: Z. Phys. doi: 10.1007/BF01340013 – volume: 1 start-page: 1109 year: 1970 ident: 10.1016/j.cpc.2025.109815_br0120 article-title: Stabilization method of calculating resonance energies: model problem publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.1.1109 – volume: 99 start-page: 1 issue: 1 year: 1983 ident: 10.1016/j.cpc.2025.109815_br0060 article-title: The method of complex coordinate rotation and its applications to atomic collision processes publication-title: Phys. Rep. doi: 10.1016/0370-1573(83)90112-6 – volume: 65 start-page: 347 issue: 3 year: 2016 ident: 10.1016/j.cpc.2025.109815_br0320 article-title: Electronic structure of helium atom in a quantum dot publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/65/3/347 – volume: 75 start-page: 2465 year: 1981 ident: 10.1016/j.cpc.2025.109815_br0100 article-title: Resonance state lifetimes from stabilization graphs publication-title: J. Chem. Phys. doi: 10.1063/1.442271 – volume: 110 start-page: 130 year: 1984 ident: 10.1016/j.cpc.2025.109815_br0110 article-title: Single-root, real-basis-function method with correct branch-point structure for complex resonances energies publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(84)80161-X – volume: 49 start-page: 2470 year: 1994 ident: 10.1016/j.cpc.2025.109815_br0220 article-title: Calculation of resonances in doubly excited helium using the stabilization method publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.2470 – volume: 72 year: 2005 ident: 10.1016/j.cpc.2025.109815_br0260 article-title: Doubly excited 2s2p Po1,3 resonance states of helium in dense plasmas publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.010703 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 10.1016/j.cpc.2025.109815_br0480 article-title: Matplotlib: a 2d graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 111 start-page: 1819 issue: 7–8 year: 2011 ident: 10.1016/j.cpc.2025.109815_br0310 article-title: (Se1) resonance states of two electron atoms by stabilization method publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.22817 – volume: 8 start-page: 203 issue: 1 year: 1962 ident: 10.1016/j.cpc.2025.109815_br0450 article-title: A simple method of treating atomic integrals containing functions of r12 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(62)90021-8 – volume: 110 year: 2024 ident: 10.1016/j.cpc.2025.109815_br0040 article-title: Double-K-hole resonances in single photoionization of He-like B3+ ions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.110.062802 – volume: 18 start-page: 30536 year: 2016 ident: 10.1016/j.cpc.2025.109815_br0380 article-title: Core-excited and shape resonances of uracil publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05342D |
| SSID | ssj0007793 |
| Score | 2.4785545 |
| Snippet | The application of the stabilization method (Hazi and Taylor, 1970 [1]) to extract accurate energy and lifetimes of resonance states is challenging: The... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109815 |
| SubjectTerms | Automatic resonance detection Doubly excited states Resonance states Stabilization diagram Stabilization method Three-body system |
| Title | An algorithm for automated extraction of resonance parameters from the stabilization method |
| URI | https://dx.doi.org/10.1016/j.cpc.2025.109815 |
| Volume | 316 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0010-4655 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection issn: 0010-4655 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0010-4655 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0010-4655 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007793 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0010-4655 databaseCode: AKRWK dateStart: 19690701 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jIngRP3F-jBw8CXVrl7TNcQzHdLiDOBx4KEma6MS1Y-uu_u2-17SooBdPpSUPykveF_m93yPkEkKEsNyEXsxZiAUK95QEezRdjQFKBrykzL-fhKMpu5vxWYMM6l4YhFVWvt_59NJbV186lTY7y_kce3zxfpLjvRyczAjrdsYinGJw_fEF84iiingX_A2urm82S4yXXiKLYcCRVCnGybi_xaZv8Wa4R3arRJH23b_sk4bJDsh2CdjU60Py3M-ofH_JobZ_XVDIPKncFDmknyal4G9Xrl-B5pZCPZ0jq4ahSPO9QPjLmmJXCYXcj0JyiPBY14xJ3TzpIzId3jwORl41KMHTkJ4UHtidlLanI59JzYXylY5ja20ohPRTabSv00BYo3iqpB9LEVlhelKpbk_r2Ne9Y9LM8sycEApSSoHRW7B9ZphB8pZUwRopQDRIW-SqVlGydHwYSQ0Ue0tAnwnqM3H6bBFWKzH5sakJ-Ou_xU7_J3ZGdvDNNQqek2ax2pgLyBgK1S6PRJts9W_Howk-xw9P40_0JMNM |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiPrE-9-BJiG0em2SPpViqtj21UPAQdje7WrFJadOrv92ZbIIKevGa7ECY7Mx8w37zLSE3UCK4YTp0YhaE2KAwRwqIR91RWKCEx0rJ_NE4HEyDxxmbNUivnoVBWmWV-21OL7N19aRdebO9nM9xxhfPJxmey8HOjKBv3wqYF2EHdvfxxfOIokp5FxIOLq-PNkuSl1qijKHHUFUpxqtxfytO3wpOf5_sVUiRdu3HHJCGzg7JdsnYVOsj8tzNqHh_yaG5f11QgJ5UbIoc8KdOKSTclR1YoLmh0FDnKKuhKep8L5D_sqY4VkIB_FFAh8iPtdOY1F4ofUym_ftJb-BUNyU4CvBJ4UDgCWF8FbmBUIxLV6o4NsaEnAs3FVq5KvW40ZKlUrix4JHh2hdSdnylYlf5J6SZ5Zk-JRSspISoNxD8gQ40qrekEtYIDqZe2iK3tYuSpRXESGqm2FsC_kzQn4n1Z4sEtROTH381gYT9t9nZ_8yuyc5gMhomw4fx0znZxTd2avCCNIvVRl8CfCjkVbk9PgGa7MM- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+automated+extraction+of+resonance+parameters+from+the+stabilization+method&rft.jtitle=Computer+physics+communications&rft.au=Langner%2C+Johanna&rft.au=Sadhukhan%2C+Anjan&rft.au=Saha%2C+Jayanta+K.&rft.au=Witek%2C+Henryk+A.&rft.date=2025-11-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.volume=316&rft_id=info:doi/10.1016%2Fj.cpc.2025.109815&rft.externalDocID=S0010465525003170 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |