Max-SAT with cardinality constraint parameterized by the number of clauses

Max-SAT with cardinality constraint (CC-Max-SAT) is one of the classical NP-complete problems. In this problem, given a CNF-formula Φ on n variables, positive integers k and t, the goal is to find an assignment β with at most k variables set to true (also called a weight k-assignment) such that the...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 1056; p. 115540
Main Authors Jain, Pallavi, Kanesh, Lawqueen, Panolan, Fahad, Saha, Souvik, Sahu, Abhishek, Saurabh, Saket, Upasana, Anannya
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.11.2025
Subjects
Online AccessGet full text
ISSN0304-3975
DOI10.1016/j.tcs.2025.115540

Cover

Abstract Max-SAT with cardinality constraint (CC-Max-SAT) is one of the classical NP-complete problems. In this problem, given a CNF-formula Φ on n variables, positive integers k and t, the goal is to find an assignment β with at most k variables set to true (also called a weight k-assignment) such that the number of clauses satisfied by β is at least t. The problem is known to be W[2]-hard with respect to the parameter k. In this paper, we study the problem with respect to the parameter t. The special case of CC-Max-SAT, when all the clauses contain only positive literals (known as Maximum Coverage), is known to admit a 2O(t)nO(1) algorithm. We present a 2O(t)nO(1) algorithm for the general case, CC-Max-SAT. We further study the problem through the lens of kernelization. Since Maximum Coverage does not admit polynomial kernel with respect to the parameter t, we focus our study on Kd,d-free formulas (that is, the clause-variable incidence bipartite graph of the formula that excludes Kd,d as a subgraph). Recently, in [Jain et al., SODA 2023], an O(dtd+1) kernel has been designed for the Maximum Coverage problem on Kd,d-free incidence graphs. We extend this result to CC-Max-SAT on Kd,d-free formulas and design an O(d4d2td+1) kernel.
AbstractList Max-SAT with cardinality constraint (CC-Max-SAT) is one of the classical NP-complete problems. In this problem, given a CNF-formula Φ on n variables, positive integers k and t, the goal is to find an assignment β with at most k variables set to true (also called a weight k-assignment) such that the number of clauses satisfied by β is at least t. The problem is known to be W[2]-hard with respect to the parameter k. In this paper, we study the problem with respect to the parameter t. The special case of CC-Max-SAT, when all the clauses contain only positive literals (known as Maximum Coverage), is known to admit a 2O(t)nO(1) algorithm. We present a 2O(t)nO(1) algorithm for the general case, CC-Max-SAT. We further study the problem through the lens of kernelization. Since Maximum Coverage does not admit polynomial kernel with respect to the parameter t, we focus our study on Kd,d-free formulas (that is, the clause-variable incidence bipartite graph of the formula that excludes Kd,d as a subgraph). Recently, in [Jain et al., SODA 2023], an O(dtd+1) kernel has been designed for the Maximum Coverage problem on Kd,d-free incidence graphs. We extend this result to CC-Max-SAT on Kd,d-free formulas and design an O(d4d2td+1) kernel.
ArticleNumber 115540
Author Jain, Pallavi
Panolan, Fahad
Kanesh, Lawqueen
Upasana, Anannya
Sahu, Abhishek
Saha, Souvik
Saurabh, Saket
Author_xml – sequence: 1
  givenname: Pallavi
  surname: Jain
  fullname: Jain, Pallavi
  email: pallavi@iitj.ac.in
  organization: IIT Jodhpur, India
– sequence: 2
  givenname: Lawqueen
  surname: Kanesh
  fullname: Kanesh, Lawqueen
  email: lawqueen@iiti.ac.in
  organization: IIT Indore, India
– sequence: 3
  givenname: Fahad
  surname: Panolan
  fullname: Panolan, Fahad
  email: f.panolan@leeds.ac.uk
  organization: School of Computing, University of Leeds, UK
– sequence: 4
  givenname: Souvik
  surname: Saha
  fullname: Saha, Souvik
  email: souviks@imsc.res.in
  organization: The Institute of Mathematical Sciences, HBNI, India
– sequence: 5
  givenname: Abhishek
  surname: Sahu
  fullname: Sahu, Abhishek
  email: abhisheksahu@niser.ac.in
  organization: National Institute of Science Education and Research, HBNI, India
– sequence: 6
  givenname: Saket
  surname: Saurabh
  fullname: Saurabh, Saket
  email: saket@imsc.res.in
  organization: The Institute of Mathematical Sciences, HBNI, India
– sequence: 7
  givenname: Anannya
  surname: Upasana
  fullname: Upasana, Anannya
  email: anannyaupas@imsc.res.in
  organization: The Institute of Mathematical Sciences, HBNI, India
BookMark eNp9kM1OAjEUhbvAREAfwF1fYMb-TKdMXBHibzAuxHVzp3MbSqBD2qLi0zsE197k5K6-k5NvQkahD0jIDWclZ7y-3ZTZplIwoUrOlarYiIyZZFUhG60uySSlDRtO6XpMXl7hu3ifr-iXz2tqIXY-wNbnI7V9SDmCD5nuIcIOM0b_gx1tjzSvkYbDrsVIe0ftFg4J0xW5cLBNeP33p-Tj4X61eCqWb4_Pi_mysELxXEjXqcpaaGuhGpAgVTPjTGunlGas6lqwjR4i2oox4apaVq1m4LhQ6LSeySnh514b-5QiOrOPfgfxaDgzJwFmYwYB5iTAnAUMzN2ZwWHYp8dokvUYLHY-os2m6_0_9C9TmWc_
Cites_doi 10.1016/S0020-0190(02)00434-9
10.1145/2650261
10.1007/s00224-007-1309-3
10.1007/s00453-001-0019-5
10.1613/jair.5628
10.1613/jair.5128
10.1016/j.tcs.2018.10.030
10.1145/285055.285059
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2025.115540
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
ExternalDocumentID 10_1016_j_tcs_2025_115540
S0304397525004785
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
~HD
29Q
AAEDT
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
ADVLN
AEXQZ
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
G-2
HZ~
LG9
M26
M41
R2-
SSZ
TAE
WUQ
XJT
ZY4
ID FETCH-LOGICAL-c251t-3fd54ccab6259a3a35981077f557004dbac97ac92b4002f4634b70af125ef7783
IEDL.DBID .~1
ISSN 0304-3975
IngestDate Wed Oct 01 05:18:36 EDT 2025
Sat Oct 11 16:50:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Parameterized algorithms
FPT
Max-SAT
Kernel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c251t-3fd54ccab6259a3a35981077f557004dbac97ac92b4002f4634b70af125ef7783
ParticipantIDs crossref_primary_10_1016_j_tcs_2025_115540
elsevier_sciencedirect_doi_10_1016_j_tcs_2025_115540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-11-21
PublicationDateYYYYMMDD 2025-11-21
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-21
  day: 21
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Muise, Beck, McIlraith (bib0002) 2016; 57
Naor, Schulman, Srinivasan (bib0015) 1995
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (bib0005) 2015
Dom, Lokshtanov, Saurabh (bib0009) 2014; 11
Sviridenko (bib0003) 2001; 30
Telle, Villanger (bib0013) 2019; 770
Lokshtanov, Panolan, Ramanujan (bib0012) 2022; 229
Feige (bib0004) 1998; 45
Zhang, Bacchus (bib0001) 2012
Guo, Niedermeier, Wernicke (bib0014) 2007; 41
Manurangsi (bib0006) 2020
Bläser (bib0008) 2003; 85
Agrawal, Choudhary, Jain, Kanesh, Sahlot, Saurabh (bib0010) 2018
Skowron, Faliszewski (bib0007) 2017; 60
Jain, Kanesh, Panolan, Saha, Sahu, Saurabh, Upasana (bib0011) 2023
Telle (10.1016/j.tcs.2025.115540_bib0013) 2019; 770
Agrawal (10.1016/j.tcs.2025.115540_bib0010) 2018
Skowron (10.1016/j.tcs.2025.115540_bib0007) 2017; 60
Jain (10.1016/j.tcs.2025.115540_bib0011) 2023
Sviridenko (10.1016/j.tcs.2025.115540_bib0003) 2001; 30
Guo (10.1016/j.tcs.2025.115540_bib0014) 2007; 41
Bläser (10.1016/j.tcs.2025.115540_bib0008) 2003; 85
Dom (10.1016/j.tcs.2025.115540_bib0009) 2014; 11
Cygan (10.1016/j.tcs.2025.115540_bib0005) 2015
Zhang (10.1016/j.tcs.2025.115540_bib0001) 2012
Feige (10.1016/j.tcs.2025.115540_bib0004) 1998; 45
Lokshtanov (10.1016/j.tcs.2025.115540_bib0012) 2022; 229
Naor (10.1016/j.tcs.2025.115540_bib0015) 1995
Muise (10.1016/j.tcs.2025.115540_bib0002) 2016; 57
Manurangsi (10.1016/j.tcs.2025.115540_bib0006) 2020
References_xml – volume: 229
  start-page: 91:1
  year: 2022
  end-page: 91:20
  ident: bib0012
  article-title: Backdoor sets on nowhere dense SAT
  publication-title: 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France
– start-page: 751
  year: 2018
  end-page: 763
  ident: bib0010
  article-title: Hitting and covering partially
  publication-title: COCOON
– volume: 60
  start-page: 687
  year: 2017
  end-page: 716
  ident: bib0007
  article-title: Chamberlin-Courant rule with approval ballots: approximating the maxcover problem with bounded frequencies in FPT time
  publication-title: J. Artif. Intell. Res.
– start-page: 3713
  year: 2023
  end-page: 3733
  ident: bib0011
  article-title: Parameterized approximation scheme for biclique-free max
  publication-title: Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023
– start-page: 1846
  year: 2012
  end-page: 1852
  ident: bib0001
  article-title: MAXSAT Heuristics for cost optimal planning
  publication-title: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada
– volume: 30
  start-page: 398
  year: 2001
  end-page: 405
  ident: bib0003
  article-title: Best possible approximation algorithm for MAX SAT with cardinality constraint
  publication-title: Algorithmica
– year: 2015
  ident: bib0005
  article-title: Parameterized Algorithms
– volume: 45
  start-page: 634
  year: 1998
  end-page: 652
  ident: bib0004
  article-title: A threshold of ln
  publication-title: J. ACM
– volume: 85
  start-page: 327
  year: 2003
  end-page: 331
  ident: bib0008
  article-title: Computing small partial coverings
  publication-title: Inf. Process. Lett.
– volume: 11
  start-page: 13:1
  year: 2014
  end-page: 13:20
  ident: bib0009
  article-title: Kernelization lower bounds through colors and IDs
  publication-title: ACM Trans. Algorithms
– start-page: 182
  year: 1995
  end-page: 191
  ident: bib0015
  article-title: Splitters and near-optimal derandomization
  publication-title: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23–25 October 1995
– start-page: 62
  year: 2020
  end-page: 81
  ident: bib0006
  article-title: Tight running time lower bounds for strong inapproximability of maximum
  publication-title: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020
– volume: 41
  start-page: 501
  year: 2007
  end-page: 520
  ident: bib0014
  article-title: Parameterized complexity of vertex cover variants
  publication-title: Theory Comput. Syst.
– volume: 770
  start-page: 62
  year: 2019
  end-page: 68
  ident: bib0013
  article-title: FPT algorithms for domination in sparse graphs and beyond
  publication-title: Theor. Comput. Sci.
– volume: 57
  start-page: 113
  year: 2016
  end-page: 149
  ident: bib0002
  article-title: Optimal partial-order plan relaxation via MaxSAT
  publication-title: J. Artif. Intell. Res.
– start-page: 62
  year: 2020
  ident: 10.1016/j.tcs.2025.115540_bib0006
  article-title: Tight running time lower bounds for strong inapproximability of maximum k-coverage, unique set cover and related problems (via t-wise agreement testing theorem)
– volume: 229
  start-page: 91:1
  year: 2022
  ident: 10.1016/j.tcs.2025.115540_bib0012
  article-title: Backdoor sets on nowhere dense SAT
– start-page: 751
  year: 2018
  ident: 10.1016/j.tcs.2025.115540_bib0010
  article-title: Hitting and covering partially
– year: 2015
  ident: 10.1016/j.tcs.2025.115540_bib0005
– start-page: 3713
  year: 2023
  ident: 10.1016/j.tcs.2025.115540_bib0011
  article-title: Parameterized approximation scheme for biclique-free max k-weight SAT and max coverage
– volume: 85
  start-page: 327
  issue: 6
  year: 2003
  ident: 10.1016/j.tcs.2025.115540_bib0008
  article-title: Computing small partial coverings
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(02)00434-9
– volume: 11
  start-page: 13:1
  issue: 2
  year: 2014
  ident: 10.1016/j.tcs.2025.115540_bib0009
  article-title: Kernelization lower bounds through colors and IDs
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2650261
– volume: 41
  start-page: 501
  issue: 3
  year: 2007
  ident: 10.1016/j.tcs.2025.115540_bib0014
  article-title: Parameterized complexity of vertex cover variants
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-007-1309-3
– volume: 30
  start-page: 398
  issue: 3
  year: 2001
  ident: 10.1016/j.tcs.2025.115540_bib0003
  article-title: Best possible approximation algorithm for MAX SAT with cardinality constraint
  publication-title: Algorithmica
  doi: 10.1007/s00453-001-0019-5
– volume: 60
  start-page: 687
  year: 2017
  ident: 10.1016/j.tcs.2025.115540_bib0007
  article-title: Chamberlin-Courant rule with approval ballots: approximating the maxcover problem with bounded frequencies in FPT time
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.5628
– volume: 57
  start-page: 113
  year: 2016
  ident: 10.1016/j.tcs.2025.115540_bib0002
  article-title: Optimal partial-order plan relaxation via MaxSAT
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.5128
– start-page: 182
  year: 1995
  ident: 10.1016/j.tcs.2025.115540_bib0015
  article-title: Splitters and near-optimal derandomization
– volume: 770
  start-page: 62
  year: 2019
  ident: 10.1016/j.tcs.2025.115540_bib0013
  article-title: FPT algorithms for domination in sparse graphs and beyond
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2018.10.030
– volume: 45
  start-page: 634
  issue: 4
  year: 1998
  ident: 10.1016/j.tcs.2025.115540_bib0004
  article-title: A threshold of ln n for approximating set cover
  publication-title: J. ACM
  doi: 10.1145/285055.285059
– start-page: 1846
  year: 2012
  ident: 10.1016/j.tcs.2025.115540_bib0001
  article-title: MAXSAT Heuristics for cost optimal planning
SSID ssj0000576
Score 2.4591377
Snippet Max-SAT with cardinality constraint (CC-Max-SAT) is one of the classical NP-complete problems. In this problem, given a CNF-formula Φ on n variables, positive...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 115540
SubjectTerms FPT
Kernel
Max-SAT
Parameterized algorithms
Title Max-SAT with cardinality constraint parameterized by the number of clauses
URI https://dx.doi.org/10.1016/j.tcs.2025.115540
Volume 1056
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0304-3975
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  issn: 0304-3975
  databaseCode: ACRLP
  dateStart: 20211104
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0304-3975
  databaseCode: AIKHN
  dateStart: 20211104
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0304-3975
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0304-3975
  databaseCode: AKRWK
  dateStart: 19750601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4QvejBB2rEB-nBk0kFSruPIyESxMAFSLht2m43wSgQWRL14G93Zh8-Er142MNu2s1mZjv9pjPzDcBVHAZSOxfyGH0vLgNheOg8wb2QSnVNGHgZldJw5PWncjBTswp0y1oYSqssbH9u0zNrXTxpFNJsrObzxpiCeribUlyOKGao0FxKn7oY3Lx_pXkgHsnjlRQBwNFlZDPL8UotMXYLhYZDZecfv-1N3_ab3gHsFUCRdfJvOYSKW1Rhv2zCwIo1WYXd4Sfx6voIBkP9wsedCaPzVWZJ_TnSZpaAIPWDSBnRfT9RGsz8zcXMvDJ8Actbg7Blwuyj3qzd-himvdtJt8-LdgncIkhJeTuJlUSFGHJpdFsTNx86d36iMg772Ggb-ngJg-tWJBK1YPymThDiuMT3g_YJbC2WC3cKDH087ZRFcGUEnRGFiWo5IZrWqLZxXlCD61JQ0SpnxYjKdLGHCKUakVSjXKo1kKUoox-qjdBq_z3t7H_TzmGH7qhcULQuYCt93rhLxA2pqWc_Rh22O3f3_dEH-3O_1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD0wIYVSJ85jrCqqUpoubaVulp04UhG0FU0lYOC3c5cHDwkWhiyJHUV38fm7h78DuIwD31HGBFaMvpfl-FxbgXG55QZ0VFcHvptRKYUDtzt2ehMxqUC7PAtDZZWF7c9tematizuNQpqNxXTaGFJSD3dTyssRxYxYg3VHcI88sOv3rzoPBCR5wpJSADi8TG1mRV5pRJTdXKDlEFkA5LfN6duG09mF7QIpslb-MXtQMbMa7JRdGFixKGuwFX4yry73oReqF2vYGjEKsLKI9J9DbRYREqSGECkjvu8nqoOZvpmY6VeGL2B5bxA2T1j0qFZLszyAced21O5aRb8EK0KUklp2EgsHNaLJp1G2InI-9O68RGQk9rFWUeDhxTUuXJ44qAbt3agEMY5JPM-3D6E6m8_METB08pQREaIrzSlIFCSiaTi_ibSwtXH9OlyVgpKLnBZDlvViDxKlKkmqMpdqHZxSlPKHbiWa7b-nHf9v2gVsdEdhX_bvBvcnsElP6Owgb55CNX1emTMEEak-z36SD6-rwWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Max-SAT+with+cardinality+constraint+parameterized+by+the+number+of+clauses&rft.jtitle=Theoretical+computer+science&rft.au=Jain%2C+Pallavi&rft.au=Kanesh%2C+Lawqueen&rft.au=Panolan%2C+Fahad&rft.au=Saha%2C+Souvik&rft.date=2025-11-21&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.volume=1056&rft_id=info:doi/10.1016%2Fj.tcs.2025.115540&rft.externalDocID=S0304397525004785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon