A neural network with strong interpretability for solving optimization problems
Accurate and rapid solutions to optimization problems are crucial in scientific and engineering fields. To address diverse optimization challenges, this paper proposes an Optimization Problem Solving Network (OPSN), a novel neural network with strong interpretability. By introducing the Lagrange mul...
Saved in:
| Published in | Applied soft computing Vol. 170; p. 112688 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 |
| DOI | 10.1016/j.asoc.2024.112688 |
Cover
| Abstract | Accurate and rapid solutions to optimization problems are crucial in scientific and engineering fields. To address diverse optimization challenges, this paper proposes an Optimization Problem Solving Network (OPSN), a novel neural network with strong interpretability. By introducing the Lagrange multiplier method and Karush–Kuhn–Tucker (KKT) conditions, the theoretical conditions that must be satisfied to obtain the optimal solution are derived. Based on these conditions, OPSN is developed. The network structure of OPSN is similar to that of the backpropagation (BP) neural network; however, the forward computation formula is redesigned to incorporate the constraint information inherent in the optimization problem. By introducing the penalty coefficient, the activation functions of the network nodes are redefined to assess whether the constraints are satisfied. Additionally, a special node is added to capture information about the objective function. To reduce the adjustable parameters, the network input is fixed at 1, and the normalization algorithm has been developed based on the search range of each variable. The network is initialized with random weights as starting values. Extensive testing on 15 CEC2017 benchmark functions and six real-world engineering problems demonstrates OPSN’s superior performance, faster convergence, and broad applicability compared to five established optimization algorithms.
•New meta-heuristic algorithm for solving optimization problems.•Neural network with strong interpretability.•New forward calculation formula and activation function.•CEC2017 and engineering problem test. |
|---|---|
| AbstractList | Accurate and rapid solutions to optimization problems are crucial in scientific and engineering fields. To address diverse optimization challenges, this paper proposes an Optimization Problem Solving Network (OPSN), a novel neural network with strong interpretability. By introducing the Lagrange multiplier method and Karush–Kuhn–Tucker (KKT) conditions, the theoretical conditions that must be satisfied to obtain the optimal solution are derived. Based on these conditions, OPSN is developed. The network structure of OPSN is similar to that of the backpropagation (BP) neural network; however, the forward computation formula is redesigned to incorporate the constraint information inherent in the optimization problem. By introducing the penalty coefficient, the activation functions of the network nodes are redefined to assess whether the constraints are satisfied. Additionally, a special node is added to capture information about the objective function. To reduce the adjustable parameters, the network input is fixed at 1, and the normalization algorithm has been developed based on the search range of each variable. The network is initialized with random weights as starting values. Extensive testing on 15 CEC2017 benchmark functions and six real-world engineering problems demonstrates OPSN’s superior performance, faster convergence, and broad applicability compared to five established optimization algorithms.
•New meta-heuristic algorithm for solving optimization problems.•Neural network with strong interpretability.•New forward calculation formula and activation function.•CEC2017 and engineering problem test. |
| ArticleNumber | 112688 |
| Author | Fan, Shicai Liao, Kaiji Liao, Yiming Fan, Jianhan Zou, Jianxiao |
| Author_xml | – sequence: 1 givenname: Jianhan orcidid: 0009-0009-8924-4020 surname: Fan fullname: Fan, Jianhan organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China – sequence: 2 givenname: Yiming surname: Liao fullname: Liao, Yiming organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, Guangdong, China – sequence: 3 givenname: Jianxiao orcidid: 0000-0002-8676-8322 surname: Zou fullname: Zou, Jianxiao email: jxzou@uestc.edu.cn organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China – sequence: 4 givenname: Kaiji surname: Liao fullname: Liao, Kaiji organization: State Grid Sichuan Electric Power Company Marketing Service Center, 610042, Sichuan, China – sequence: 5 givenname: Shicai surname: Fan fullname: Fan, Shicai organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China |
| BookMark | eNp9kL1OwzAUhT0UibbwAkx-gQTbSexEYqkq_qRKXWC2_HMNLmkc2aZVeXpSlZnpDPd-R0ffAs2GMABCd5SUlFB-vytVCqZkhNUlpYy37QzNacPbou5qfo0WKe3I9Nixdo62KzzAd1T9FPkY4hc--vyJU45h-MB-yBDHCFlp3_t8wi5EnEJ_8NMxjNnv_Y_KPgx4jEH3sE836MqpPsHtXy7R-9Pj2_ql2GyfX9erTWFYQ3NBG211bVnlmsaB5VZw2umqo1Q4bQRoZap2mmgNEXUnhKZEiVZYypyAmvNqidil18SQUgQnx-j3Kp4kJfKsQe7kWYM8a5AXDRP0cIFgWnbwEGUyHgYD1kcwWdrg_8N_Ac9ybCU |
| Cites_doi | 10.1166/jbic.2012.1002 10.1016/j.asoc.2020.106761 10.1016/j.neucom.2017.04.075 10.1016/j.advengsoft.2016.05.015 10.1007/s10489-017-1019-8 10.1016/j.chemolab.2015.08.020 10.1007/s00521-020-04849-z 10.1016/S0166-3615(99)00046-9 10.3390/electronics10212689 10.1016/j.advengsoft.2016.01.008 10.1007/s42235-023-00387-1 10.1016/j.knosys.2015.07.006 10.1007/s11227-019-03098-9 10.1016/j.eswa.2023.120594 10.1177/0278364917745980 10.1080/0305215X.2019.1624740 10.1109/ACCESS.2020.3024108 10.3390/app12178392 10.1109/ACCESS.2021.3067597 10.1007/s11831-023-09928-7 10.1016/j.eswa.2020.113917 10.1115/1.2919393 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2024.112688 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2024_112688 S1568494624014625 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c251t-15bdb4d23f55fed6d7619b39117fbc7ebac38169dc074977b10a787d12f7e4663 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Wed Oct 01 06:42:23 EDT 2025 Sat Feb 15 15:52:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optimization problem solving network OPSN Metaheuristic Optimization problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c251t-15bdb4d23f55fed6d7619b39117fbc7ebac38169dc074977b10a787d12f7e4663 |
| ORCID | 0009-0009-8924-4020 0000-0002-8676-8322 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_112688 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_112688 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hussien, Hassanien, Houssein, Amin, Azar (b1) 2020; 52 Yue, Zhang (b22) 2020; 76 Sahab, Toropov, Gandomi (b7) 2013 Sayyadi, Awasthi (b10) 2018; 5 Ping, Sun, Chen (b41) 2020; 2020 Kannan, Kramer (b38) 1994; 116 Nadimi-Shahraki, Zamani, Asghari Varzaneh, Mirjalili (b25) 2023; 30 Arora (b39) 2004 Ogundokun, Maskeliunas, Misra, Damaševičius (b33) 2022 Hussien, Amin, Wang, Liang, Alsanad, Gumaei, Chen (b5) 2020; 8 Reddi, Kale, Kumar (b35) 2018 Wu, Mallipeddi, Suganthan (b14) 2017 Nadimi-Shahraki, Taghian, Zamani, Mirjalili, Elaziz (b28) 2023; 18 Meraihi, Gabis, Mirjalili, Ramdane-Cherif (b20) 2021; 9 Nadimi-Shahraki, Taghian, Mirjalili (b26) 2021; 166 Beheshti, Shamsuddin (b4) 2013; 5 Yao, Yuan, Tsai, Zhang, Lu, Ding (b31) 2023; 230 Abdolrasol, Hussain, Ustun, Sarker, Hannan, Mohamed, Ali, Mekhilef, Milad (b13) 2021; 10 Nadimi-Shahraki, Moeini, Taghian, Mirjalili (b27) 2023 Singh, Gangwar, Singh, Pathak (b19) 2019; 41 Mirjalili, Lewis (b23) 2016; 95 Rana, Latiff, Abdulhamid, Chiroma (b24) 2020; 32 Mirjalili (b18) 2015; 89 Nadimi-Shahraki, Taghian, Mirjalili, Faris (b29) 2020; 97 Khoshniat, Jamarani, Ahmadzadeh, Haghi Kashani, Mahdipour (b6) 2023 Marini, Walczak (b16) 2015; 149 Hassanien, Emary (b8) 2016 Jain, Saihjpal, Singh, Singh (b15) 2022; 12 Hashim, Hussien (b30) 2022; 242 Mirjalili, Mirjalili, Saremi, Faris, Aljarah (b21) 2018; 48 Coello Coello (b37) 2000; 41 Masoud Rabbani, Farrokhi-Asl (b12) 2020; 7 Luenberger, Ye (b9) 2008 Yuqiuge Hao, Shamsuzzoha (b2) 2018; 5 Wang, Zhang, Zhang, Meng, Sun, Ma, Liu, Luo, Chen (b34) 2024 Englert, Vien, Toussaint (b32) 2017; 36 Villarrubia, De Paz, Chamoso, la Prieta (b3) 2018; 272 Garcia-Gonzalo, Fernandez-Martinez (b17) 2012; 1 Mezura-Montes, Coello (b36) 2005 Zhang, Zhou, Li, Pan (b40) 2016; 99 Yang (b11) 2010 Reddi (10.1016/j.asoc.2024.112688_b35) 2018 Hashim (10.1016/j.asoc.2024.112688_b30) 2022; 242 Marini (10.1016/j.asoc.2024.112688_b16) 2015; 149 Rana (10.1016/j.asoc.2024.112688_b24) 2020; 32 Arora (10.1016/j.asoc.2024.112688_b39) 2004 Nadimi-Shahraki (10.1016/j.asoc.2024.112688_b26) 2021; 166 Mirjalili (10.1016/j.asoc.2024.112688_b23) 2016; 95 Yue (10.1016/j.asoc.2024.112688_b22) 2020; 76 Jain (10.1016/j.asoc.2024.112688_b15) 2022; 12 Villarrubia (10.1016/j.asoc.2024.112688_b3) 2018; 272 Ogundokun (10.1016/j.asoc.2024.112688_b33) 2022 Hassanien (10.1016/j.asoc.2024.112688_b8) 2016 Wu (10.1016/j.asoc.2024.112688_b14) 2017 Englert (10.1016/j.asoc.2024.112688_b32) 2017; 36 Yuqiuge Hao (10.1016/j.asoc.2024.112688_b2) 2018; 5 Garcia-Gonzalo (10.1016/j.asoc.2024.112688_b17) 2012; 1 Mezura-Montes (10.1016/j.asoc.2024.112688_b36) 2005 Mirjalili (10.1016/j.asoc.2024.112688_b21) 2018; 48 Khoshniat (10.1016/j.asoc.2024.112688_b6) 2023 Yang (10.1016/j.asoc.2024.112688_b11) 2010 Singh (10.1016/j.asoc.2024.112688_b19) 2019; 41 Nadimi-Shahraki (10.1016/j.asoc.2024.112688_b27) 2023 Yao (10.1016/j.asoc.2024.112688_b31) 2023; 230 Ping (10.1016/j.asoc.2024.112688_b41) 2020; 2020 Mirjalili (10.1016/j.asoc.2024.112688_b18) 2015; 89 Beheshti (10.1016/j.asoc.2024.112688_b4) 2013; 5 Sahab (10.1016/j.asoc.2024.112688_b7) 2013 Meraihi (10.1016/j.asoc.2024.112688_b20) 2021; 9 Nadimi-Shahraki (10.1016/j.asoc.2024.112688_b25) 2023; 30 Luenberger (10.1016/j.asoc.2024.112688_b9) 2008 Masoud Rabbani (10.1016/j.asoc.2024.112688_b12) 2020; 7 Kannan (10.1016/j.asoc.2024.112688_b38) 1994; 116 Nadimi-Shahraki (10.1016/j.asoc.2024.112688_b28) 2023; 18 Nadimi-Shahraki (10.1016/j.asoc.2024.112688_b29) 2020; 97 Sayyadi (10.1016/j.asoc.2024.112688_b10) 2018; 5 Zhang (10.1016/j.asoc.2024.112688_b40) 2016; 99 Hussien (10.1016/j.asoc.2024.112688_b1) 2020; 52 Coello Coello (10.1016/j.asoc.2024.112688_b37) 2000; 41 Abdolrasol (10.1016/j.asoc.2024.112688_b13) 2021; 10 Wang (10.1016/j.asoc.2024.112688_b34) 2024 Hussien (10.1016/j.asoc.2024.112688_b5) 2020; 8 |
| References_xml | – volume: 97 year: 2020 ident: b29 article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Appl. Soft Comput. – volume: 12 start-page: 8392 year: 2022 ident: b15 article-title: An overview of variants and advancements of PSO algorithm publication-title: Appl. Sci. – volume: 41 start-page: 1 year: 2019 end-page: 19 ident: b19 article-title: A novel hybridization of artificial neural network and moth-flame optimization (ANN–MFO) for multi-objective optimization in magnetic abrasive finishing of aluminium 6060 publication-title: J. Br. Soc. Mech. Sci. Eng. – year: 2008 ident: b9 article-title: Linear and nonlinear programming publication-title: International Series in Operations Research & Management Science – year: 2024 ident: b34 article-title: Provable adaptivity of adam under non-uniform smoothness – volume: 2020 year: 2020 ident: b41 article-title: Solving power economic dispatch problem with a novel quantum-behaved particle swarm optimization algorithm publication-title: Math. Probl. Eng. – volume: 7 start-page: 60 year: 2020 end-page: 75 ident: b12 article-title: A hybrid robust possibilistic approach for a sustainable supply chain location-allocation network design publication-title: Int. J. Syst. Sci.: Oper. Logist. – year: 2010 ident: b11 article-title: Engineering optimization: An introduction with metaheuristic applications publication-title: Wiley Online Library: Books – volume: 30 start-page: 4113 year: 2023 end-page: 4159 ident: b25 article-title: A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations publication-title: Arch. Comput. Methods Eng. – volume: 242 year: 2022 ident: b30 article-title: Snake optimizer: A novel meta-heuristic optimization algorithm publication-title: Knowl.-Based Syst. – volume: 10 start-page: 2689 year: 2021 ident: b13 article-title: Artificial neural networks based optimization techniques: A review publication-title: Electronics – volume: 18 year: 2023 ident: b28 article-title: MMKE: Multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems publication-title: PLoS ONE – volume: 230 year: 2023 ident: b31 article-title: ESO: An enhanced snake optimizer for real-world engineering problems publication-title: Expert Syst. Appl. – start-page: 593 year: 2022 end-page: 604 ident: b33 article-title: Improved CNN based on batch normalization and adam optimizer publication-title: International Conference on Computational Science and Its Applications – volume: 149 start-page: 153 year: 2015 end-page: 165 ident: b16 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemometr. Intell. Lab. Syst. – volume: 76 start-page: 5609 year: 2020 end-page: 5635 ident: b22 article-title: Grasshopper optimization algorithm with principal component analysis for global optimization publication-title: J. Supercomput. – volume: 36 start-page: 1474 year: 2017 end-page: 1488 ident: b32 article-title: Inverse KKT: Learning cost functions of manipulation tasks from demonstrations publication-title: Int. J. Robot. Res. – start-page: 25 year: 2013 end-page: 47 ident: b7 article-title: A review on traditional and modern structural optimization: problems and techniques publication-title: Metaheuristic Applications in Structures and Infrastructures – volume: 5 start-page: 161 year: 2018 end-page: 174 ident: b10 article-title: A simulation-based optimisation approach for identifying key determinants for sustainable transportation planning publication-title: Int. J. Syst. Sci.: Oper. Logist. – volume: 1 start-page: 3 year: 2012 end-page: 16 ident: b17 article-title: A brief historical review of particle swarm optimization (PSO) publication-title: J. Bioinform. Intell. Control – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b18 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 48 start-page: 805 year: 2018 end-page: 820 ident: b21 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Appl. Intell. – year: 2018 ident: b35 article-title: On the convergence of adam and beyond – start-page: 1 year: 2023 end-page: 42 ident: b6 article-title: Nature-inspired metaheuristic methods in software testing publication-title: Soft Comput. – volume: 52 start-page: 945 year: 2020 end-page: 959 ident: b1 article-title: New binary whale optimization algorithm for discrete optimization problems publication-title: Eng. Optim. – volume: 5 start-page: 116 year: 2018 end-page: 132 ident: b2 article-title: Virtual factory system design and implementation: integrated sustainable manufacturing publication-title: Int. J. Syst. Sci.: Oper. Logist. – year: 2017 ident: b14 article-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization – volume: 272 start-page: 10 year: 2018 end-page: 16 ident: b3 article-title: Artificial neural networks used in optimization problems publication-title: Neurocomputing – volume: 8 start-page: 173548 year: 2020 end-page: 173565 ident: b5 article-title: Crow search algorithm: Theory, recent advances, and applications publication-title: IEEE Access – year: 2004 ident: b39 article-title: Introduction to Optimum Design – year: 2016 ident: b8 article-title: Swarm intelligence: Principles, advances, and applications – volume: 99 start-page: 121 year: 2016 end-page: 136 ident: b40 article-title: Grey wolf optimizer for unmanned combat aerial vehicle path planning publication-title: Adv. Eng. Softw. – volume: 32 start-page: 16245 year: 2020 end-page: 16277 ident: b24 article-title: Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments publication-title: Neural Comput. Appl. – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b37 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – volume: 5 start-page: 1 year: 2013 end-page: 35 ident: b4 article-title: A review of population-based meta-heuristic algorithms publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 9 start-page: 50001 year: 2021 end-page: 50024 ident: b20 article-title: Grasshopper optimization algorithm: Theory, variants, and applications publication-title: IEEE Access – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b23 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: b38 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. – start-page: 652 year: 2005 end-page: 662 ident: b36 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms publication-title: Mexican International Conference on Artificial Intelligence – volume: 166 year: 2021 ident: b26 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst. Appl. – year: 2023 ident: b27 article-title: Discrete improved grey wolf optimizer for community detection publication-title: J. Bionic Eng. – volume: 1 start-page: 3 issue: 1 year: 2012 ident: 10.1016/j.asoc.2024.112688_b17 article-title: A brief historical review of particle swarm optimization (PSO) publication-title: J. Bioinform. Intell. Control doi: 10.1166/jbic.2012.1002 – volume: 97 year: 2020 ident: 10.1016/j.asoc.2024.112688_b29 article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106761 – volume: 272 start-page: 10 year: 2018 ident: 10.1016/j.asoc.2024.112688_b3 article-title: Artificial neural networks used in optimization problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.075 – volume: 99 start-page: 121 year: 2016 ident: 10.1016/j.asoc.2024.112688_b40 article-title: Grey wolf optimizer for unmanned combat aerial vehicle path planning publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.05.015 – start-page: 25 year: 2013 ident: 10.1016/j.asoc.2024.112688_b7 article-title: A review on traditional and modern structural optimization: problems and techniques – year: 2008 ident: 10.1016/j.asoc.2024.112688_b9 article-title: Linear and nonlinear programming – volume: 48 start-page: 805 year: 2018 ident: 10.1016/j.asoc.2024.112688_b21 article-title: Grasshopper optimization algorithm for multi-objective optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-017-1019-8 – year: 2018 ident: 10.1016/j.asoc.2024.112688_b35 – volume: 149 start-page: 153 year: 2015 ident: 10.1016/j.asoc.2024.112688_b16 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.020 – start-page: 1 year: 2023 ident: 10.1016/j.asoc.2024.112688_b6 article-title: Nature-inspired metaheuristic methods in software testing publication-title: Soft Comput. – year: 2010 ident: 10.1016/j.asoc.2024.112688_b11 article-title: Engineering optimization: An introduction with metaheuristic applications – volume: 32 start-page: 16245 year: 2020 ident: 10.1016/j.asoc.2024.112688_b24 article-title: Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04849-z – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.asoc.2024.112688_b37 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 10 start-page: 2689 issue: 21 year: 2021 ident: 10.1016/j.asoc.2024.112688_b13 article-title: Artificial neural networks based optimization techniques: A review publication-title: Electronics doi: 10.3390/electronics10212689 – year: 2016 ident: 10.1016/j.asoc.2024.112688_b8 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2024.112688_b23 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – year: 2023 ident: 10.1016/j.asoc.2024.112688_b27 article-title: Discrete improved grey wolf optimizer for community detection publication-title: J. Bionic Eng. doi: 10.1007/s42235-023-00387-1 – volume: 41 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2024.112688_b19 article-title: A novel hybridization of artificial neural network and moth-flame optimization (ANN–MFO) for multi-objective optimization in magnetic abrasive finishing of aluminium 6060 publication-title: J. Br. Soc. Mech. Sci. Eng. – volume: 5 start-page: 116 issue: 2 year: 2018 ident: 10.1016/j.asoc.2024.112688_b2 article-title: Virtual factory system design and implementation: integrated sustainable manufacturing publication-title: Int. J. Syst. Sci.: Oper. Logist. – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.asoc.2024.112688_b18 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 76 start-page: 5609 year: 2020 ident: 10.1016/j.asoc.2024.112688_b22 article-title: Grasshopper optimization algorithm with principal component analysis for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-019-03098-9 – volume: 230 year: 2023 ident: 10.1016/j.asoc.2024.112688_b31 article-title: ESO: An enhanced snake optimizer for real-world engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120594 – volume: 36 start-page: 1474 issue: 13–14 year: 2017 ident: 10.1016/j.asoc.2024.112688_b32 article-title: Inverse KKT: Learning cost functions of manipulation tasks from demonstrations publication-title: Int. J. Robot. Res. doi: 10.1177/0278364917745980 – volume: 52 start-page: 945 issue: 6 year: 2020 ident: 10.1016/j.asoc.2024.112688_b1 article-title: New binary whale optimization algorithm for discrete optimization problems publication-title: Eng. Optim. doi: 10.1080/0305215X.2019.1624740 – volume: 8 start-page: 173548 year: 2020 ident: 10.1016/j.asoc.2024.112688_b5 article-title: Crow search algorithm: Theory, recent advances, and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024108 – volume: 12 start-page: 8392 issue: 17 year: 2022 ident: 10.1016/j.asoc.2024.112688_b15 article-title: An overview of variants and advancements of PSO algorithm publication-title: Appl. Sci. doi: 10.3390/app12178392 – volume: 242 issue: C year: 2022 ident: 10.1016/j.asoc.2024.112688_b30 article-title: Snake optimizer: A novel meta-heuristic optimization algorithm publication-title: Knowl.-Based Syst. – start-page: 652 year: 2005 ident: 10.1016/j.asoc.2024.112688_b36 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms – year: 2017 ident: 10.1016/j.asoc.2024.112688_b14 – year: 2004 ident: 10.1016/j.asoc.2024.112688_b39 – volume: 5 start-page: 161 year: 2018 ident: 10.1016/j.asoc.2024.112688_b10 article-title: A simulation-based optimisation approach for identifying key determinants for sustainable transportation planning publication-title: Int. J. Syst. Sci.: Oper. Logist. – year: 2024 ident: 10.1016/j.asoc.2024.112688_b34 – volume: 9 start-page: 50001 year: 2021 ident: 10.1016/j.asoc.2024.112688_b20 article-title: Grasshopper optimization algorithm: Theory, variants, and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067597 – volume: 18 issue: 1 January year: 2023 ident: 10.1016/j.asoc.2024.112688_b28 article-title: MMKE: Multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems publication-title: PLoS ONE – start-page: 593 year: 2022 ident: 10.1016/j.asoc.2024.112688_b33 article-title: Improved CNN based on batch normalization and adam optimizer – volume: 5 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.asoc.2024.112688_b4 article-title: A review of population-based meta-heuristic algorithms publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 30 start-page: 4113 issue: 7 year: 2023 ident: 10.1016/j.asoc.2024.112688_b25 article-title: A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-023-09928-7 – volume: 166 year: 2021 ident: 10.1016/j.asoc.2024.112688_b26 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113917 – volume: 2020 issue: 1 year: 2020 ident: 10.1016/j.asoc.2024.112688_b41 article-title: Solving power economic dispatch problem with a novel quantum-behaved particle swarm optimization algorithm publication-title: Math. Probl. Eng. – volume: 7 start-page: 60 issue: 1 year: 2020 ident: 10.1016/j.asoc.2024.112688_b12 article-title: A hybrid robust possibilistic approach for a sustainable supply chain location-allocation network design publication-title: Int. J. Syst. Sci.: Oper. Logist. – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.asoc.2024.112688_b38 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 |
| SSID | ssj0016928 |
| Score | 2.4316397 |
| Snippet | Accurate and rapid solutions to optimization problems are crucial in scientific and engineering fields. To address diverse optimization challenges, this paper... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 112688 |
| SubjectTerms | Metaheuristic OPSN Optimization problem Optimization problem solving network |
| Title | A neural network with strong interpretability for solving optimization problems |
| URI | https://dx.doi.org/10.1016/j.asoc.2024.112688 |
| Volume | 170 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KXrz4Fuuj5OBNYt1tsukeS7HUVxW10Nuy2SRSwbbYevDib3cmmy0K4sHLLiwJLJPM5Mvkm3wAJy1E4amSEbfSFlwgBOA6zQvuhHK5iV1k_EjfDpL-UFyN5KgG3aoWhmiVIfaXMd1H6_ClGazZnI3HzUfcebRFKhJck9DdYyo0F0KRisHZ55LmESWp11elxpxah8KZkuOVowVwjxgLX0nj1Vd-WZy-LTi9TVgPSJF1yp_ZgpqdbMNGpcLAglPuwF2H0aWU2HRSUroZ5VbZnHLcz2y8JBV6FuwHQ5DKcL5RHoFNMV68hkJMFqRl5rsw7F08dfs8yCTwAsHJgkdSGy1M3HJSOmsSQ5kJ3cIoppwulNV5QaeDqSkQLiDc09F5jm5qotgpKxBx7MHKZDqx-8B04nBIBZ3dKSFT9G3h8Bm1raKi-bQOp5V9sll5G0ZW0cReMrJmRtbMSmvWQVYmzH6MaYbh-o9-B__sdwhrManzek71Eaws3t7tMUKGhW74OdGA1U734eae3pfX_cEXf7DCbw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTwIxEJ0gHvTitxE_e_BmKu7SbtkjIRJUwIOQcGu229ZgIhDBgxd_u9Nul2hiPHjZw6ZNmtfO9HX6pgNw2UAWngoeUcNNThlSAKrSLKeWCZvp2Ebaz3R_kHRH7H7MxxVol7kwTlYZfH_h0723Dn_qAc36fDKpP-HJo8lSluCehOYe8zVYZzwW7gR2_bnSeURJ6gusutbUNQ-ZM4XIK0MI8JAYM59K48uv_LI7fdtxOjuwFagiaRWj2YWKme7BdlmGgQSr3IfHFnGvUmLTaaHpJi64ShYuyP1MJitVoZfBfhBkqQQXnAskkBk6jNeQiUlCbZnFAYw6t8N2l4Y6CTRHdrKkEVdaMR03LOfW6ES70IRqoBsTVuXCqCx314OpzpEvIN9T0U2Gdqqj2ArDkHIcQnU6m5ojICqxOKfMXd4JxlM0bmbxGzWNcFnzaQ2uSnzkvHgOQ5Y6sRfp0JQOTVmgWQNeQih_TKpEf_1Hv-N_9ruAje6w35O9u8HDCWzGrlSvF1ifQnX59m7OkD8s1blfH18q_sJv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network+with+strong+interpretability+for+solving+optimization+problems&rft.jtitle=Applied+soft+computing&rft.au=Fan%2C+Jianhan&rft.au=Liao%2C+Yiming&rft.au=Zou%2C+Jianxiao&rft.au=Liao%2C+Kaiji&rft.date=2025-02-01&rft.issn=1568-4946&rft.volume=170&rft.spage=112688&rft_id=info:doi/10.1016%2Fj.asoc.2024.112688&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2024_112688 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |