Reactive power based model reference neural learning adaptive system for speed estimation in sensor-less induction motor drives

In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the...

Full description

Saved in:
Bibliographic Details
Published inThe journal of engineering research (Print) Vol. 9; no. 2; pp. 17 - 26
Main Authors Sedhuraman, K., Himavathi, S., Muthuramalingam, A.
Format Journal Article
LanguageEnglish
Published Muscat, Oman Sultan Qaboos University, College of Engineering 01.12.2012
Sultan Qaboos University
Subjects
Online AccessGet full text
ISSN1726-6009
1726-6742
1726-6742
DOI10.24200/tjer.vol9iss2pp17-26

Cover

Abstract In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power-based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab / Simulink. The superiority of the RP-MRNLAS technique is demonstrated. يقدم هذا البحث نموذج مرجعي معتمد على الطاقة التفاعلية لنظام تعلم عصبي متكيف لتقدير سرعة المحركات التأثيرية بدون مجسات (Rp-MRN-LAS) يعد هذا النموذج واحدا من أكثر النماذج شيوعا للتحكم في سرعة المحركات التأثيرية بدون مجسات أما في الطريقة التقليدية (MRAS) للنظام المتكيف فإن خطأ التكيف يكون باستخدام التكامل النسبي (PI) و عليه فإن استخدام القدرة على التخطيط اللاخطي في الشبكات العصبية و استخدام خوارزمية التعلم الفعالة يؤدي إلى زيادة تطبيق الشبكات العصبية في الكترونيات الطاقة و المحركات و هكذا تستخدم خوارزمية التعلم العصبية في آلية التكيف و تسمى عادة باسم "النموذج المرجعي العصبي لنظام التعلم التكيفي" ففي طريقة ال MRNLAS فإن الخطأ بين نموذج المرجعية المفاعلية و نماذج التعلم العصبي المتكيف يتم توزيعها من أجل تعديد أوزان الشبكة العصبية لتقدير سرعة المحرك و هناك طريقتان مختلفتان في ال MRNLAS الأولى تعتمد على التدفق المغناطيسي (RF-MRNLAS) و الأخرى تعتمد على القدرة المرتدة (RP-MRNLAS) تعد طريقة التدفق المرجعي المعتمد على القدرة المفاعلية (RP-MRNLAS) بسيطة وخالية من المعادلات التكاملية بالمقارنة مع الأساليب القائمة على التدفق و قد استفيد من هذه الميزات في البحث لابتكار طريقة ال (RP-MRNLAS) على نطاق واسع كما تمت مقارنة طريقة المقترحة من حيث دقتها و مشاكل انجراف تكامله مع طريق ال RF-MRNLAS لنفس النظام و التحقق من صحتها باستخدام برنامج ال Matlab / Simulink من هذا البحث يتضح تفوق تقنيات ال PR-MRNLAS.
AbstractList In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power- based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab/Simulink. The superiority of the RP- MRNLAS technique is demonstrated
In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power- based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab/Simulink. The superiority of the RP- MRNLAS technique is demonstrated 
In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power-based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab / Simulink. The superiority of the RP-MRNLAS technique is demonstrated. يقدم هذا البحث نموذج مرجعي معتمد على الطاقة التفاعلية لنظام تعلم عصبي متكيف لتقدير سرعة المحركات التأثيرية بدون مجسات (Rp-MRN-LAS) يعد هذا النموذج واحدا من أكثر النماذج شيوعا للتحكم في سرعة المحركات التأثيرية بدون مجسات أما في الطريقة التقليدية (MRAS) للنظام المتكيف فإن خطأ التكيف يكون باستخدام التكامل النسبي (PI) و عليه فإن استخدام القدرة على التخطيط اللاخطي في الشبكات العصبية و استخدام خوارزمية التعلم الفعالة يؤدي إلى زيادة تطبيق الشبكات العصبية في الكترونيات الطاقة و المحركات و هكذا تستخدم خوارزمية التعلم العصبية في آلية التكيف و تسمى عادة باسم "النموذج المرجعي العصبي لنظام التعلم التكيفي" ففي طريقة ال MRNLAS فإن الخطأ بين نموذج المرجعية المفاعلية و نماذج التعلم العصبي المتكيف يتم توزيعها من أجل تعديد أوزان الشبكة العصبية لتقدير سرعة المحرك و هناك طريقتان مختلفتان في ال MRNLAS الأولى تعتمد على التدفق المغناطيسي (RF-MRNLAS) و الأخرى تعتمد على القدرة المرتدة (RP-MRNLAS) تعد طريقة التدفق المرجعي المعتمد على القدرة المفاعلية (RP-MRNLAS) بسيطة وخالية من المعادلات التكاملية بالمقارنة مع الأساليب القائمة على التدفق و قد استفيد من هذه الميزات في البحث لابتكار طريقة ال (RP-MRNLAS) على نطاق واسع كما تمت مقارنة طريقة المقترحة من حيث دقتها و مشاكل انجراف تكامله مع طريق ال RF-MRNLAS لنفس النظام و التحقق من صحتها باستخدام برنامج ال Matlab / Simulink من هذا البحث يتضح تفوق تقنيات ال PR-MRNLAS.
Author Sedhuraman, K.
Muthuramalingam, A.
Himavathi, S.
Author_xml – sequence: 1
  fullname: Sedhuraman, K.
– sequence: 2
  fullname: Himavathi, S.
– sequence: 3
  fullname: Muthuramalingam, A.
BookMark eNqNkc9KJDEQh8PiwrrqIwh5gXaT6vyxj4voriAIouemJqlID5mkSXqUOfnqZmd2ZY-eUknV91Hk950dpZyIsXMpLkCBED-WNZWLlxyHqVaYZ2k7MF_YsbRgOmMVHP2rhRi-sbNa10IIAGVUD8fs7YHQLdML8Tm_UuErrOT5JnuKvFCgQskRT7QtGHkkLGlKzxw9znuo7upCGx5y4XWmRlJdpg0uU058SrxSqrl0kWptV791-8YmL23elyaop-xrwFjp7O95wp5urh-vfnd3979ur37edQ60NJ1FXCEoLVZaE6D1GDAMUgtJwq56CGA1SCsBBwrKWKkHpyzh4HsiBb4_YbcHr8-4HufSliy7MeM07h9yeR6xLJOLNILxTl0KaS7FoAbhsddWGArakdVE0Fzm4NqmGXevGOOHUIpxn8r4J5Xx_1SatoH6ALqSa23f-2nu_MBRG6aAH1gvrNayfwe6tKVp
ContentType Journal Article
Contributor Himavathi, S
Muthuramalingam, A
Contributor_xml – sequence: 1
  fullname: Himavathi, S
– sequence: 2
  fullname: Muthuramalingam, A
DBID ADJCN
AHFXO
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.24200/tjer.vol9iss2pp17-26
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate نموذج مرجعي معتمد على الطاقة التفاعلية لنظام تعلم عصبي متكيف لتقدير سرعة المحركات التأثيرية بدون مجسات
EISSN 1726-6742
EndPage 26
ExternalDocumentID oai_doaj_org_article_26dc48016809490da35706ef5ce75ee2
10.24200/tjer.vol9iss2pp17-26
10_24200_tjer_vol9iss2pp17_26
307551
GroupedDBID ABDBF
ACUHS
ADBBV
ADJCN
AFWDF
AHFXO
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
IPNFZ
RIG
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c2516-7aaba2450b55e2a7dafaf91501e07b32f27521712a9ef467159c47ea9d3ee42d3
IEDL.DBID UNPAY
ISSN 1726-6009
1726-6742
IngestDate Fri Oct 03 12:44:52 EDT 2025
Tue Aug 19 17:10:59 EDT 2025
Wed Oct 01 06:06:28 EDT 2025
Thu Sep 25 15:07:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
LCCallNum_Ident TK
Language English
License http://creativecommons.org/licenses/by-nd/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2516-7aaba2450b55e2a7dafaf91501e07b32f27521712a9ef467159c47ea9d3ee42d3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.squ.edu.om/index.php/tjer/article/download/112/124
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_26dc48016809490da35706ef5ce75ee2
unpaywall_primary_10_24200_tjer_vol9iss2pp17_26
crossref_primary_10_24200_tjer_vol9iss2pp17_26
emarefa_primary_307551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Muscat, Oman
PublicationPlace_xml – name: Muscat, Oman
PublicationTitle The journal of engineering research (Print)
PublicationYear 2012
Publisher Sultan Qaboos University, College of Engineering
Sultan Qaboos University
Publisher_xml – name: Sultan Qaboos University, College of Engineering
– name: Sultan Qaboos University
SSID ssj0002246432
Score 1.8644459
Snippet In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS)...
SourceID doaj
unpaywall
crossref
emarefa
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 17
SubjectTerms Automatic control
Electric motors, Induction
induction motor, speed estimator, mras, neural network, back propagation algorithm, reactive power
Reactive power (Electrical engineering)
الحوسبة
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhl7SHkjQN3XyhQ67qamVZso6bjyUUEkI-IDczlsaly-KYZZeSU_96RrK7-JYecrSxhawnzXuDpTeMnVXeYg2FE9a7IHRmJ6LwSovCWK-tChmmWoc3t-b6Sf98zp8Hpb7inrDOHrgbuLEywUeLE1NQIuJkgCy30mCde7Q5Yoq-snCDZGqeTF00UW361WmVEcTqrju-Q4wk5Xg1x2Vc_o4-TrUtBeporjAgpuTfnw7pAl0Tae2smxZe_8BiMaCf2S770utGPu36u8e2sPnKPg_cBPfZ33uEFL34XSx9xiNBBR6LnS34xk-WRzcOaqj3Vf3FpwHa9FLnXc5JxPKHljiNX9Hq7w428t8Nf6B892UpFhQZeaz3kc5DUOuUs_PLZTSv_caeZlePF9eir68gPKkaIyxABUrnsspzVGAD1FA7UogTlLbKVK0skbudKHBYU0Al5UP4IThCEDXheMC2m5cGvzMuwbsJOlsFX2jUFqRFmQVSM1iZKsgR-_FvcMu2s9EoKf1IaJQRjXKIRqnMiJ1HCDYPRxfsdIPmRtnPjfK9uTFiBz2Am3YopJFGHLHxBs__68_hR_TniH0ivaW63TDHbHu1XOMJaZpVdZqm7xsbAvUG
  priority: 102
  providerName: Directory of Open Access Journals
Title Reactive power based model reference neural learning adaptive system for speed estimation in sensor-less induction motor drives
URI https://search.emarefa.net/detail/BIM-307551
https://journals.squ.edu.om/index.php/tjer/article/download/112/124
https://doaj.org/article/26dc48016809490da35706ef5ce75ee2
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1726-6742
  dateEnd: 20201231
  omitProxy: true
  ssIdentifier: ssj0002246432
  issn: 1726-6742
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF64F2xPCofuHrjdR6Oj0tpVSFRVZSVyily7ElVWGVDmlUFF_46YycbrTiBuCXR2Io9k5lvIs83AG9Lq7AyuebKaseTWM15bmXC80zZREkXY-h1-PE8O1smH67Sqz043tbCDDt4O7v93hfekq8OvIGeLCLqvmIbDVsaOc8mvzYuIsgQUZi6B_tZSoB8AvvL84vFl1AKKTNOIV2P15QJ9nU8FJqECBN6P6BplbJpyGN7loWdCBWI_EO1rqF7il73N3VjftyZ1WonDp0-ArddQX_85Nts05Uz-_MPcsf_XOJjeDjgVLboRZ7AHtZP4WCHvfAZ_PqEJnhLduFbrTEfEB3zzdVWbOSvZZ79gyYaeFyv2cKZJgzqudIZgWZ22VAMZSfkbfpCSnZTs0vKr9ctX5EnZr6_SKi_oNk7kn_ferLc57A8Pfl8fMaHfg7cEorKuDKmNDJJRZmmKI1ypjKVJkQ6R6HKWFZSEZhQc2k0VuTACWmRvaDRZDGYkN0cwqRe1_gCmDBWz1Gr0tk8wUQZoVDEjtATllnpxBRmWx0WTU_bUVC6E5Re-C0udpVeyGwK77ymR2HPuh0erNvrYlAHiTnr6XaynJJiLZyJUyUyrFKLKkWUUzgc7GSch1woYdIpRKPZ_N37vPznEa_gAYE52R-1eQ2Trt3gGwJMXXkUfjQcDZ_Fb-mWG-4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4lGfFlod84JqN10ns-LiUVhUSVUVZqZwix55U0FU2TbNCcOGvM3ay0YoTiFsSTUaxZzLzjeT5BuBtaRVWJteRstpFaaLmUW5FGuVS2VQJl2CYdfjxXJ4t0w9X2dUeHG97YYYdvJvd3faNtxSrA2-gJ4uIu2_YxsOWxs6zya-NiwkyxJSm7sG-zAiQT2B_eX6x-BJaIYWMKKXr8Zoqwb6Ph1IT50GhjwOaVimahiK2Z1nYyVCByD906xq6p-x1f1M35sd3s1rt5KHTR-C2K-iPn9zMNl05sz__IHf8zyU-hoMBp7JFL_IE9rB-Cg932Aufwa9PaEK0ZBd-1BrzCdExP1xtxUb-WubZP0jRwON6zRbONOGlniudEWhmlw3lUHZC0aZvpGRfa3ZJ9fW6jVYUiZmfLxL6L0h7R_LvW0-W-xyWpyefj8-iYZ5DZAlFyUgZUxqRZrzMMhRGOVOZShMinSNXZSIqoQhMqLkwGisK4IS0yF_QaPIYTMlvDmFSr2t8AYwbq-eoVelsnmKqDFfIE0foCUtZOj6F2daGRdPTdhRU7gSjF36Li12jF0JO4Z239CjsWbfDg3V7XQzmIDFnPd2OzKko1tyZJFNcYpVZVBmimMLh4CejHgqhhEmnEI9u83ffc_TPb7yEBwTmRH_U5hVMunaDrwkwdeWb4Yf4DUfNGvk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Power+based+Model+Reference+Neural+Learning+Adaptive+System+for+Speed+Estimation+in+Sensor-less+Induction+Motor+Drives&rft.jtitle=The+journal+of+engineering+research+%28Print%29&rft.au=Sedhuraman%2C+K&rft.au=Himavathi%2C+S&rft.au=Muthuramalingam%2C+A&rft.date=2012-12-01&rft.issn=1726-6009&rft.eissn=1726-6742&rft.volume=9&rft.issue=2&rft.spage=17&rft_id=info:doi/10.24200%2Ftjer.vol9iss2pp17-26&rft.externalDBID=n%2Fa&rft.externalDocID=10_24200_tjer_vol9iss2pp17_26
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-6009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-6009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-6009&client=summon