Reactive power based model reference neural learning adaptive system for speed estimation in sensor-less induction motor drives
In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the...
Saved in:
| Published in | The journal of engineering research (Print) Vol. 9; no. 2; pp. 17 - 26 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Muscat, Oman
Sultan Qaboos University, College of Engineering
01.12.2012
Sultan Qaboos University |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1726-6009 1726-6742 1726-6742 |
| DOI | 10.24200/tjer.vol9iss2pp17-26 |
Cover
| Abstract | In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power-based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab / Simulink. The superiority of the RP-MRNLAS technique is demonstrated.
يقدم هذا البحث نموذج مرجعي معتمد على الطاقة التفاعلية لنظام تعلم عصبي متكيف لتقدير سرعة المحركات التأثيرية بدون مجسات (Rp-MRN-LAS) يعد هذا النموذج واحدا من أكثر النماذج شيوعا للتحكم في سرعة المحركات التأثيرية بدون مجسات أما في الطريقة التقليدية (MRAS) للنظام المتكيف فإن خطأ التكيف يكون باستخدام التكامل النسبي (PI) و عليه فإن استخدام القدرة على التخطيط اللاخطي في الشبكات العصبية و استخدام خوارزمية التعلم الفعالة يؤدي إلى زيادة تطبيق الشبكات العصبية في الكترونيات الطاقة و المحركات و هكذا تستخدم خوارزمية التعلم العصبية في آلية التكيف و تسمى عادة باسم "النموذج المرجعي العصبي لنظام التعلم التكيفي" ففي طريقة ال MRNLAS فإن الخطأ بين نموذج المرجعية المفاعلية و نماذج التعلم العصبي المتكيف يتم توزيعها من أجل تعديد أوزان الشبكة العصبية لتقدير سرعة المحرك و هناك طريقتان مختلفتان في ال MRNLAS الأولى تعتمد على التدفق المغناطيسي (RF-MRNLAS) و الأخرى تعتمد على القدرة المرتدة (RP-MRNLAS) تعد طريقة التدفق المرجعي المعتمد على القدرة المفاعلية (RP-MRNLAS) بسيطة وخالية من المعادلات التكاملية بالمقارنة مع الأساليب القائمة على التدفق و قد استفيد من هذه الميزات في البحث لابتكار طريقة ال (RP-MRNLAS) على نطاق واسع كما تمت مقارنة طريقة المقترحة من حيث دقتها و مشاكل انجراف تكامله مع طريق ال RF-MRNLAS لنفس النظام و التحقق من صحتها باستخدام برنامج ال Matlab / Simulink من هذا البحث يتضح تفوق تقنيات ال PR-MRNLAS. |
|---|---|
| AbstractList | In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power- based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab/Simulink. The superiority of the RP- MRNLAS technique is demonstrated In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power- based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab/Simulink. The superiority of the RP- MRNLAS technique is demonstrated In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS) based speed estimation is one of the most popular methods used for sensor-less controlled induction motor drives. In conventional MRAS, the error adaptation is done using a Proportional-integral-(PI). The non-linear mapping capability of a neural network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. Thus, a neural learning algorithm is used for the adaptation mechanism in MRAS and is often referred to as a model reference neural learning adaptive system (MRNLAS). In MRNLAS, the error between the reference and neural learning adaptive models is back propagated to adjust the weights of the neural network for rotor speed estimation. The two different methods of MRNLAS are flux based (RF-MRNLAS) and reactive power based (RP-MRNLAS). The reactive power-based methods are simple and free from integral equations as compared to flux based methods. The advantage of the reactive power based method and the NN learning algorithms are exploited in this work to yield a RPMRNLAS. The performance of the proposed RP-MRNLAS is analyzed extensively. The proposed RP-MRNLAS is compared in terms of accuracy and integrator drift problems with popular rotor flux-based MRNLAS for the same system and validated through Matlab / Simulink. The superiority of the RP-MRNLAS technique is demonstrated. يقدم هذا البحث نموذج مرجعي معتمد على الطاقة التفاعلية لنظام تعلم عصبي متكيف لتقدير سرعة المحركات التأثيرية بدون مجسات (Rp-MRN-LAS) يعد هذا النموذج واحدا من أكثر النماذج شيوعا للتحكم في سرعة المحركات التأثيرية بدون مجسات أما في الطريقة التقليدية (MRAS) للنظام المتكيف فإن خطأ التكيف يكون باستخدام التكامل النسبي (PI) و عليه فإن استخدام القدرة على التخطيط اللاخطي في الشبكات العصبية و استخدام خوارزمية التعلم الفعالة يؤدي إلى زيادة تطبيق الشبكات العصبية في الكترونيات الطاقة و المحركات و هكذا تستخدم خوارزمية التعلم العصبية في آلية التكيف و تسمى عادة باسم "النموذج المرجعي العصبي لنظام التعلم التكيفي" ففي طريقة ال MRNLAS فإن الخطأ بين نموذج المرجعية المفاعلية و نماذج التعلم العصبي المتكيف يتم توزيعها من أجل تعديد أوزان الشبكة العصبية لتقدير سرعة المحرك و هناك طريقتان مختلفتان في ال MRNLAS الأولى تعتمد على التدفق المغناطيسي (RF-MRNLAS) و الأخرى تعتمد على القدرة المرتدة (RP-MRNLAS) تعد طريقة التدفق المرجعي المعتمد على القدرة المفاعلية (RP-MRNLAS) بسيطة وخالية من المعادلات التكاملية بالمقارنة مع الأساليب القائمة على التدفق و قد استفيد من هذه الميزات في البحث لابتكار طريقة ال (RP-MRNLAS) على نطاق واسع كما تمت مقارنة طريقة المقترحة من حيث دقتها و مشاكل انجراف تكامله مع طريق ال RF-MRNLAS لنفس النظام و التحقق من صحتها باستخدام برنامج ال Matlab / Simulink من هذا البحث يتضح تفوق تقنيات ال PR-MRNLAS. |
| Author | Sedhuraman, K. Muthuramalingam, A. Himavathi, S. |
| Author_xml | – sequence: 1 fullname: Sedhuraman, K. – sequence: 2 fullname: Himavathi, S. – sequence: 3 fullname: Muthuramalingam, A. |
| BookMark | eNqNkc9KJDEQh8PiwrrqIwh5gXaT6vyxj4voriAIouemJqlID5mkSXqUOfnqZmd2ZY-eUknV91Hk950dpZyIsXMpLkCBED-WNZWLlxyHqVaYZ2k7MF_YsbRgOmMVHP2rhRi-sbNa10IIAGVUD8fs7YHQLdML8Tm_UuErrOT5JnuKvFCgQskRT7QtGHkkLGlKzxw9znuo7upCGx5y4XWmRlJdpg0uU058SrxSqrl0kWptV791-8YmL23elyaop-xrwFjp7O95wp5urh-vfnd3979ur37edQ60NJ1FXCEoLVZaE6D1GDAMUgtJwq56CGA1SCsBBwrKWKkHpyzh4HsiBb4_YbcHr8-4HufSliy7MeM07h9yeR6xLJOLNILxTl0KaS7FoAbhsddWGArakdVE0Fzm4NqmGXevGOOHUIpxn8r4J5Xx_1SatoH6ALqSa23f-2nu_MBRG6aAH1gvrNayfwe6tKVp |
| ContentType | Journal Article |
| Contributor | Himavathi, S Muthuramalingam, A |
| Contributor_xml | – sequence: 1 fullname: Himavathi, S – sequence: 2 fullname: Muthuramalingam, A |
| DBID | ADJCN AHFXO AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.24200/tjer.vol9iss2pp17-26 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | نموذج مرجعي معتمد على الطاقة التفاعلية لنظام تعلم عصبي متكيف لتقدير سرعة المحركات التأثيرية بدون مجسات |
| EISSN | 1726-6742 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_26dc48016809490da35706ef5ce75ee2 10.24200/tjer.vol9iss2pp17-26 10_24200_tjer_vol9iss2pp17_26 307551 |
| GroupedDBID | ABDBF ACUHS ADBBV ADJCN AFWDF AHFXO ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ IPNFZ RIG AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2516-7aaba2450b55e2a7dafaf91501e07b32f27521712a9ef467159c47ea9d3ee42d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1726-6009 1726-6742 |
| IngestDate | Fri Oct 03 12:44:52 EDT 2025 Tue Aug 19 17:10:59 EDT 2025 Wed Oct 01 06:06:28 EDT 2025 Thu Sep 25 15:07:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| LCCallNum_Ident | TK |
| Language | English |
| License | http://creativecommons.org/licenses/by-nd/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2516-7aaba2450b55e2a7dafaf91501e07b32f27521712a9ef467159c47ea9d3ee42d3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.squ.edu.om/index.php/tjer/article/download/112/124 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_26dc48016809490da35706ef5ce75ee2 unpaywall_primary_10_24200_tjer_vol9iss2pp17_26 crossref_primary_10_24200_tjer_vol9iss2pp17_26 emarefa_primary_307551 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-01 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Muscat, Oman |
| PublicationPlace_xml | – name: Muscat, Oman |
| PublicationTitle | The journal of engineering research (Print) |
| PublicationYear | 2012 |
| Publisher | Sultan Qaboos University, College of Engineering Sultan Qaboos University |
| Publisher_xml | – name: Sultan Qaboos University, College of Engineering – name: Sultan Qaboos University |
| SSID | ssj0002246432 |
| Score | 1.8644459 |
| Snippet | In this paper, a novel reactive power based model reference neural learning adaptive system (RP-MRNLAS) is proposed. The model reference adaptive system (MRAS)... |
| SourceID | doaj unpaywall crossref emarefa |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Automatic control Electric motors, Induction induction motor, speed estimator, mras, neural network, back propagation algorithm, reactive power Reactive power (Electrical engineering) الحوسبة |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhl7SHkjQN3XyhQ67qamVZso6bjyUUEkI-IDczlsaly-KYZZeSU_96RrK7-JYecrSxhawnzXuDpTeMnVXeYg2FE9a7IHRmJ6LwSovCWK-tChmmWoc3t-b6Sf98zp8Hpb7inrDOHrgbuLEywUeLE1NQIuJkgCy30mCde7Q5Yoq-snCDZGqeTF00UW361WmVEcTqrju-Q4wk5Xg1x2Vc_o4-TrUtBeporjAgpuTfnw7pAl0Tae2smxZe_8BiMaCf2S770utGPu36u8e2sPnKPg_cBPfZ33uEFL34XSx9xiNBBR6LnS34xk-WRzcOaqj3Vf3FpwHa9FLnXc5JxPKHljiNX9Hq7w428t8Nf6B892UpFhQZeaz3kc5DUOuUs_PLZTSv_caeZlePF9eir68gPKkaIyxABUrnsspzVGAD1FA7UogTlLbKVK0skbudKHBYU0Al5UP4IThCEDXheMC2m5cGvzMuwbsJOlsFX2jUFqRFmQVSM1iZKsgR-_FvcMu2s9EoKf1IaJQRjXKIRqnMiJ1HCDYPRxfsdIPmRtnPjfK9uTFiBz2Am3YopJFGHLHxBs__68_hR_TniH0ivaW63TDHbHu1XOMJaZpVdZqm7xsbAvUG priority: 102 providerName: Directory of Open Access Journals |
| Title | Reactive power based model reference neural learning adaptive system for speed estimation in sensor-less induction motor drives |
| URI | https://search.emarefa.net/detail/BIM-307551 https://journals.squ.edu.om/index.php/tjer/article/download/112/124 https://doaj.org/article/26dc48016809490da35706ef5ce75ee2 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1726-6742 dateEnd: 20201231 omitProxy: true ssIdentifier: ssj0002246432 issn: 1726-6742 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF64F2xPCofuHrjdR6Oj0tpVSFRVZSVyily7ElVWGVDmlUFF_46YycbrTiBuCXR2Io9k5lvIs83AG9Lq7AyuebKaseTWM15bmXC80zZREkXY-h1-PE8O1smH67Sqz043tbCDDt4O7v93hfekq8OvIGeLCLqvmIbDVsaOc8mvzYuIsgQUZi6B_tZSoB8AvvL84vFl1AKKTNOIV2P15QJ9nU8FJqECBN6P6BplbJpyGN7loWdCBWI_EO1rqF7il73N3VjftyZ1WonDp0-ArddQX_85Nts05Uz-_MPcsf_XOJjeDjgVLboRZ7AHtZP4WCHvfAZ_PqEJnhLduFbrTEfEB3zzdVWbOSvZZ79gyYaeFyv2cKZJgzqudIZgWZ22VAMZSfkbfpCSnZTs0vKr9ctX5EnZr6_SKi_oNk7kn_ferLc57A8Pfl8fMaHfg7cEorKuDKmNDJJRZmmKI1ypjKVJkQ6R6HKWFZSEZhQc2k0VuTACWmRvaDRZDGYkN0cwqRe1_gCmDBWz1Gr0tk8wUQZoVDEjtATllnpxBRmWx0WTU_bUVC6E5Re-C0udpVeyGwK77ymR2HPuh0erNvrYlAHiTnr6XaynJJiLZyJUyUyrFKLKkWUUzgc7GSch1woYdIpRKPZ_N37vPznEa_gAYE52R-1eQ2Trt3gGwJMXXkUfjQcDZ_Fb-mWG-4 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4lGfFlod84JqN10ns-LiUVhUSVUVZqZwix55U0FU2TbNCcOGvM3ay0YoTiFsSTUaxZzLzjeT5BuBtaRVWJteRstpFaaLmUW5FGuVS2VQJl2CYdfjxXJ4t0w9X2dUeHG97YYYdvJvd3faNtxSrA2-gJ4uIu2_YxsOWxs6zya-NiwkyxJSm7sG-zAiQT2B_eX6x-BJaIYWMKKXr8Zoqwb6Ph1IT50GhjwOaVimahiK2Z1nYyVCByD906xq6p-x1f1M35sd3s1rt5KHTR-C2K-iPn9zMNl05sz__IHf8zyU-hoMBp7JFL_IE9rB-Cg932Aufwa9PaEK0ZBd-1BrzCdExP1xtxUb-WubZP0jRwON6zRbONOGlniudEWhmlw3lUHZC0aZvpGRfa3ZJ9fW6jVYUiZmfLxL6L0h7R_LvW0-W-xyWpyefj8-iYZ5DZAlFyUgZUxqRZrzMMhRGOVOZShMinSNXZSIqoQhMqLkwGisK4IS0yF_QaPIYTMlvDmFSr2t8AYwbq-eoVelsnmKqDFfIE0foCUtZOj6F2daGRdPTdhRU7gSjF36Li12jF0JO4Z239CjsWbfDg3V7XQzmIDFnPd2OzKko1tyZJFNcYpVZVBmimMLh4CejHgqhhEmnEI9u83ffc_TPb7yEBwTmRH_U5hVMunaDrwkwdeWb4Yf4DUfNGvk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Power+based+Model+Reference+Neural+Learning+Adaptive+System+for+Speed+Estimation+in+Sensor-less+Induction+Motor+Drives&rft.jtitle=The+journal+of+engineering+research+%28Print%29&rft.au=Sedhuraman%2C+K&rft.au=Himavathi%2C+S&rft.au=Muthuramalingam%2C+A&rft.date=2012-12-01&rft.issn=1726-6009&rft.eissn=1726-6742&rft.volume=9&rft.issue=2&rft.spage=17&rft_id=info:doi/10.24200%2Ftjer.vol9iss2pp17-26&rft.externalDBID=n%2Fa&rft.externalDocID=10_24200_tjer_vol9iss2pp17_26 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-6009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-6009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-6009&client=summon |