Brain Computer Interface-Based Signal Processing Techniques for Feature Extraction and Classification of Motor Imagery Using EEG: A Literature Review

A communication path for people having severe neural disorders is provided by Brain Computer Interaction. The Brain–Computer Interface in an electroencephalogram is an important and challenging one for managing non-stationary EEG signals. EEG signals are more vulnerable to noise and artifacts. The M...

Full description

Saved in:
Bibliographic Details
Published inBiomedical materials & devices (New York, N.Y.) Vol. 2; no. 2; pp. 601 - 613
Main Authors Jaipriya, D., Sriharipriya, K. C.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2024
Subjects
Online AccessGet full text
ISSN2731-4812
2731-4820
2731-4820
DOI10.1007/s44174-023-00082-z

Cover

Abstract A communication path for people having severe neural disorders is provided by Brain Computer Interaction. The Brain–Computer Interface in an electroencephalogram is an important and challenging one for managing non-stationary EEG signals. EEG signals are more vulnerable to noise and artifacts. The Motor Imagery-based Brain–Computer Interface is used as a communication channel for people with neural disorders who have no muscular activity. For a well-established and accurate BCI system, two important steps have been used in MI-BCI, such as feature extraction and feature classification. Spectral methods and spatial methods are used for the feature extraction methods. The classifiers translate the features into the device commands. Linear Discriminant Analysis is the most widely used classification algorithm. So far, Support Vector Machine has been used as a classification method. In recent studies, Deep Neural Networks and Convolutional Neural Networks have been used. In this study, the feature extraction approaches as well as the signal classification methods for the motor imagery brain computer interface are thoroughly reviewed and presented.
AbstractList A communication path for people having severe neural disorders is provided by Brain Computer Interaction. The Brain–Computer Interface in an electroencephalogram is an important and challenging one for managing non-stationary EEG signals. EEG signals are more vulnerable to noise and artifacts. The Motor Imagery-based Brain–Computer Interface is used as a communication channel for people with neural disorders who have no muscular activity. For a well-established and accurate BCI system, two important steps have been used in MI-BCI, such as feature extraction and feature classification. Spectral methods and spatial methods are used for the feature extraction methods. The classifiers translate the features into the device commands. Linear Discriminant Analysis is the most widely used classification algorithm. So far, Support Vector Machine has been used as a classification method. In recent studies, Deep Neural Networks and Convolutional Neural Networks have been used. In this study, the feature extraction approaches as well as the signal classification methods for the motor imagery brain computer interface are thoroughly reviewed and presented.
Author Jaipriya, D.
Sriharipriya, K. C.
Author_xml – sequence: 1
  givenname: D.
  surname: Jaipriya
  fullname: Jaipriya, D.
  organization: Vellore Institute of Technology
– sequence: 2
  givenname: K. C.
  surname: Sriharipriya
  fullname: Sriharipriya, K. C.
  email: sriharipriya.kc@vit.ac.in
  organization: Vellore Institute of Technology
BookMark eNqNkcFOAyEURYnRxKr9AVf8wCgD1M64q02tTWo02q4nT-ZRMVOoMKO2_-H_itPGhQvjBgi55z5yOCL71lkk5DRlZylj_fMgZdqXCeMiYYxlPNnskQ7vizSRGWf7P-eUH5JuCC8xJARnmWAd8nnlwVg6dMtVU6OnExtXDQqTKwhY0kezsFDRe-8UhmDsgs5QPVvz2mCg2nl6jVA3Hunoo_agauMsBVvSYQUxro2C9sppeuvqGJ8sYYF-Tedt12g0vqQDOjVx6LbmAd8Mvp-QAw1VwO5uPybz69FseJNM78aT4WCaKN5jm4RzpTHjOnvSkDIu1QVyLTLVlxey7OVPOWY94BJRK5Ag8zKXueJcqB6UEnQpjonY9jZ2Bet3qKpi5c0S_LpIWfEtt9jKLaLcopVbbCLFt5TyLgSP-n9Q9gtSpm7lRG-m-hvdvTLEOTbqK15c4-O3hL-oLwhNpDY
CitedBy_id crossref_primary_10_1007_s11042_024_19885_3
crossref_primary_10_3390_s25051471
crossref_primary_10_1080_10255842_2023_2301421
crossref_primary_10_1007_s12553_024_00822_1
crossref_primary_10_1016_j_chbr_2024_100508
crossref_primary_10_1038_s41598_023_46643_6
crossref_primary_10_1109_ACCESS_2023_3346674
crossref_primary_10_1007_s12021_024_09685_3
crossref_primary_10_1109_ACCESS_2025_3532515
Cites_doi 10.1109/TNSRE.2011.2169991
10.1088/1741-2560/10/4/046003
10.1109/ACCESS.2018.2877452
10.1016/j.neucom.2015.03.041
10.1093/neuros/nyz286
10.1109/TPAMI.2014.2330598
10.1007/978-981-13-0908-3
10.1109/TBME.2010.2051440
10.1088/1741-2560/9/2/026013
10.1109/JSEN.2019.2899645
10.1061/(ASCE)CP.1943-5487.0000719
10.1016/j.neucom.2016.10.024
10.1016/j.bspc.2018.04.002
10.1109/TNSRE.2021.3132162
10.1109/TNSRE.2020.3001990
10.1016/j.compbiomed.2022.105288
10.1016/j.aej.2021.10.034
10.1109/TNNLS.2018.2789927
10.1016/j.bspc.2021.102550
10.1109/ACCESS.2019.2962740
10.1109/ACCESS.2019.2903235
10.1016/j.smhl.2018.07.006
10.1016/j.measurement.2007.07.007
10.1016/j.ins.2012.05.012
10.1186/1743-0003-10-109
10.1016/j.medengphy.2006.01.009
10.1109/TNSRE.2016.2601240
10.1109/TBME.2006.883649
10.1109/TBME.2009.2026181
10.1109/JBHI.2020.2967128
10.1109/ACCESS.2016.2607778
10.1016/j.neucli.2016.07.002
10.1186/s12911-015-0227-6
10.3390/app12115762
10.1109/TBME.2005.851521
10.1007/s10916-018-0931-8
10.1109/ACCESS.2018.2889093
10.1088/1741-2560/4/2/R01
10.1016/j.bspc.2021.102584
10.1038/nn947
10.1177/107385849900500211
10.1109/RBME.2013.2290621
10.1109/TNSRE.2022.3211881
10.1088/1741-2560/2/4/L02
10.1109/5.939829
10.1097/00000542-199810000-00023
10.1016/S1388-2457(98)00038-8
10.1109/ICSPCC.2017.8242581
10.1109/ISS1.2017.8389309
10.1145/2030092.2030099
10.1109/APWC-on-CSE.2016.017
10.1109/ICPR.2010.34
10.1038/s41598-019-56847-4
10.1109/IJCNN.2015.7280754
10.1109/BioCAS.2016.7833732
10.1088/1742-6596/1651/1/012151
10.1109/ICICICT1.2017.8342691
10.1155/2014/730218
10.1109/ICCES.2013.6707191
10.1109/CEC.2010.5586383
10.1007/978-3-642-11721-3_15
10.1109/TENCONSpring.2014.6863026
10.1109/SMC.2017.8122967
10.1109/IWW-BCI.2018.8311535
10.1109/BigData.2017.8258112
10.1109/CISP.2010.5647534
10.1109/IJCNN.2014.6889535
10.1109/TCDS.2022.3194603
10.1109/EMBC.2012.6346279
10.1109/CONIELECOMP.2012.6189920
10.1109/ICICTA.2010.819
10.1109/ICASSP.2010.5495183
10.1109/ICOIN.2018.8343254
10.1109/EUSIPCO.2015.7362882
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s44174-023-00082-z
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2731-4820
EndPage 613
ExternalDocumentID 10.1007/s44174-023-00082-z
10_1007_s44174_023_00082_z
GroupedDBID 0R~
406
AACDK
AAFHI
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABJNI
ACAOD
ACDTI
ACPIV
ACYDH
ACZOJ
AEFQL
AEMSY
AESKC
AFBBN
AGMZJ
AGQEE
AIAKS
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMYLF
DPUIP
EBLON
EBS
FIGPU
IWAJR
JZLTJ
LLZTM
NQJWS
PT4
ROL
RSV
S70
SJYHP
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABTKH
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c250z-22cfe82f8bfa1024c6e2f38c7464d59b9e85a24eefca4a49d949c223c5ad4afd3
IEDL.DBID UNPAY
ISSN 2731-4812
2731-4820
IngestDate Wed Oct 01 16:02:52 EDT 2025
Wed Oct 01 04:00:58 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Fri Feb 21 02:41:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords EEG signal extraction
BCI classification techniques
Brain computer interface
Motor imagery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c250z-22cfe82f8bfa1024c6e2f38c7464d59b9e85a24eefca4a49d949c223c5ad4afd3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s44174-023-00082-z.pdf
PageCount 13
ParticipantIDs unpaywall_primary_10_1007_s44174_023_00082_z
crossref_primary_10_1007_s44174_023_00082_z
crossref_citationtrail_10_1007_s44174_023_00082_z
springer_journals_10_1007_s44174_023_00082_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Biomedical materials & devices (New York, N.Y.)
PublicationTitleAbbrev Biomedical Materials & Devices
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References Sakhavi, Guan, Yan (CR39) 2018; 29
Lu, Li, Ren, Miao (CR70) 2016; 25
CR38
CR37
Aler, Galván, Valls (CR42) 2012; 215
CR34
Schlögl, Lee, Bischof, Pfurtscheller (CR13) 2005; 2
CR33
Ding, Shan, Fang, Wang, Sun, Li (CR83) 2021; 29
Qin, Li (CR12) 2018; 9
CR31
CR75
CR73
CR72
CR71
Dornhege, Blankertz, Krauledat, Losch, Curio, Muller (CR58) 2006; 53
Cano-Izquierdo, Ibarrola, Almonacid (CR32) 2011; 20
Mijović, De Vos, Gligorijević, Taelman, Van Huffel (CR51) 2010; 57
Chen, Wang, Sun, Li, Grebogi, Gao (CR4) 2022; 30
Mohammadi, Al-Azab, Raahemi, Richards, Jaworska, Smith, de la Salle, Blier, Knott (CR81) 2015; 15
Yan, Men, Yang, Jiang (CR28) 2016; 4
Donoghue, Mijail, Serruya, Hatsopoulos, Matthew (CR41) 2002; 416
Yang, Yan, Yan, Ting (CR56) 2007; 29
CR9
CR49
Im (CR45) 2018
Islam, Rastegarnia, Yang (CR18) 2016; 46
CR85
CR84
CR82
Müller-Gerking, Pfurtscheller, Flyvbjerg (CR55) 1999; 110
Li, Han, Duan (CR36) 2019; 8
Khademi, Ebrahimi, Kordy (CR1) 2022; 143
Ramadan, Vasilakos (CR5) 2017; 223
Albera, Kachenoura, Comon, Karfoul, Wendling, Senhadji, Merlet (CR50) 2012; 60
Aljuaid, Salem (CR68) 2019; 12
CR19
Lemm, Blankertz, Curio, Muller (CR57) 2005; 52
Ayaz (CR74) 2014; 16
CR16
Agarwal, Shah, Kumar (CR35) 2015; 166
Donoghue (CR40) 2002; 5
CR59
CR14
Martini, Oermann, Opie, Panov, Oxley, Yaeger (CR15) 2020; 86
CR10
CR54
Yang, Yao, Wang (CR86) 2018; 6
CR53
Göksu (CR11) 2018; 44
Geng, Li, Chen, Ping, Yan, Yue (CR2) 2022; 61
Pfurtscheller, Neuper (CR20) 2001; 89
Suleiman, Fatehi (CR44) 2007
Jebelli, Hwang, Lee (CR8) 2018; 32
Samek, Kawanabe, Müller (CR64) 2013; 7
Kirar, Agrawal (CR30) 2018; 42
Wang, Veluvolu, Lee (CR47) 2013; 10
Birbaumer (CR43) 1999; 5
Wu, Chen, Gao, Li, Brown, Gao (CR65) 2014; 37
Malan, Sharma (CR79) 2021; 67
Malik, Fatema, Iqbal (CR80) 2021
Pawuś, Paszkiel (CR3) 2022; 12
LaFleur, Cassady, Doud, Shades, Rogin, He (CR46) 2013; 10
CR29
Ting, Guo-Zheng, Bang-Hua, Hong (CR48) 2008; 41
Chaudhary, Taran, Bajaj, Sengur (CR78) 2019; 19
CR27
CR26
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (CR67) 2007; 4
Wan, Zhang, Ramkumar, Deny, Emayavaramban, Siva Ramkumar, Hussein (CR17) 2019; 7
CR25
CR69
CR24
Xu, Zhang, Song, Changcheng, Li, Zhang, Guozheng, Li, Zeng (CR52) 2018; 7
He (CR76) 2020; 10
CR22
CR66
CR21
Ren, Wang, Zeng-Guang Hou, Liang, Shi (CR23) 2020; 28
CR62
Thomas, Guan, Lau, Prasad Vinod, Ang (CR60) 2009; 56
CR61
Mirzaei, Ghasemi (CR77) 2021; 68
Zhang, Chen, Jian, Yao (CR87) 2020; 24
Sanei, Chambers (CR6) 2013
Samek, Vidaurre, Müller, Kawanabe (CR63) 2012; 9
Rampil (CR7) 1998; 89
82_CR61
J Müller-Gerking (82_CR55) 1999; 110
W Samek (82_CR64) 2013; 7
M Mohammadi (82_CR81) 2015; 15
J-M Cano-Izquierdo (82_CR32) 2011; 20
E Ayaz (82_CR74) 2014; 16
F Lotte (82_CR67) 2007; 4
82_CR27
82_CR26
K LaFleur (82_CR46) 2013; 10
82_CR29
M-A Li (82_CR36) 2019; 8
KP Thomas (82_CR60) 2009; 56
G Pfurtscheller (82_CR20) 2001; 89
X Wan (82_CR17) 2019; 7
82_CR9
82_CR62
82_CR21
S Chaudhary (82_CR78) 2019; 19
P Chen (82_CR4) 2022; 30
82_CR22
82_CR66
82_CR25
82_CR69
82_CR24
SK Agarwal (82_CR35) 2015; 166
A-B Suleiman (82_CR44) 2007
B Mijović (82_CR51) 2010; 57
G Dornhege (82_CR58) 2006; 53
82_CR72
82_CR71
ML Martini (82_CR15) 2020; 86
N Birbaumer (82_CR43) 1999; 5
W Samek (82_CR63) 2012; 9
Z Qin (82_CR12) 2018; 9
H Jebelli (82_CR8) 2018; 32
82_CR38
82_CR37
82_CR73
C-H Im (82_CR45) 2018
82_CR31
82_CR75
Z He (82_CR76) 2020; 10
S Sanei (82_CR6) 2013
82_CR34
82_CR33
A Aljuaid (82_CR68) 2019; 12
R Aler (82_CR42) 2012; 215
H Malik (82_CR80) 2021
NS Malan (82_CR79) 2021; 67
J Yang (82_CR86) 2018; 6
Z Khademi (82_CR1) 2022; 143
82_CR82
JP Donoghue (82_CR40) 2002; 5
Wu Ting (82_CR48) 2008; 41
82_CR49
B Xu (82_CR52) 2018; 7
RA Ramadan (82_CR5) 2017; 223
S Ren (82_CR23) 2020; 28
S Lemm (82_CR57) 2005; 52
82_CR85
D Zhang (82_CR87) 2020; 24
S Sakhavi (82_CR39) 2018; 29
82_CR84
JP Donoghue (82_CR41) 2002; 416
JS Kirar (82_CR30) 2018; 42
MK Islam (82_CR18) 2016; 46
Y Wang (82_CR47) 2013; 10
D Pawuś (82_CR3) 2022; 12
F Yan (82_CR28) 2016; 4
X Geng (82_CR2) 2022; 61
B-H Yang (82_CR56) 2007; 29
W Ding (82_CR83) 2021; 29
H Göksu (82_CR11) 2018; 44
Na Lu (82_CR70) 2016; 25
82_CR16
82_CR59
IJ Rampil (82_CR7) 1998; 89
S Mirzaei (82_CR77) 2021; 68
A Schlögl (82_CR13) 2005; 2
82_CR19
W Wu (82_CR65) 2014; 37
L Albera (82_CR50) 2012; 60
82_CR10
82_CR54
82_CR53
82_CR14
References_xml – ident: CR22
– volume: 20
  start-page: 2
  issue: 1
  year: 2011
  end-page: 7
  ident: CR32
  article-title: Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2169991
– volume: 10
  start-page: 046003
  issue: 4
  year: 2013
  ident: CR46
  article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046003
– volume: 6
  start-page: 79050
  year: 2018
  end-page: 79059
  ident: CR86
  article-title: Deep fusion feature learning network for MI-EEG classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877452
– ident: CR49
– volume: 166
  start-page: 397
  year: 2015
  end-page: 403
  ident: CR35
  article-title: Classification of mental tasks from EEG data using backtracking search optimization based neural classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.041
– ident: CR16
– volume: 86
  start-page: E108
  issue: 2
  year: 2020
  end-page: E117
  ident: CR15
  article-title: Sensor modalities for brain-computer interface technology: a comprehensive literature review
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyz286
– volume: 37
  start-page: 639
  issue: 3
  year: 2014
  end-page: 653
  ident: CR65
  article-title: Probabilistic common spatial patterns for multichannel EEG analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2330598
– year: 2018
  ident: CR45
  publication-title: Computational EEG Analysis
  doi: 10.1007/978-981-13-0908-3
– volume: 57
  start-page: 2188
  issue: 9
  year: 2010
  end-page: 2196
  ident: CR51
  article-title: Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2051440
– volume: 9
  start-page: 026013
  issue: 2
  year: 2012
  ident: CR63
  article-title: Stationary common spatial patterns for brain–computer interfacing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/2/026013
– volume: 19
  start-page: 4494
  issue: 12
  year: 2019
  end-page: 4500
  ident: CR78
  article-title: Convolutional neural network-based approach towards motor imagery tasks EEG signals classification
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2899645
– ident: CR29
– ident: CR54
– ident: CR61
– volume: 32
  start-page: 04017070
  issue: 1
  year: 2018
  ident: CR8
  article-title: EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000719
– volume: 223
  start-page: 26
  year: 2017
  end-page: 44
  ident: CR5
  article-title: Brain computer interface: control signals review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.024
– ident: CR84
– volume: 44
  start-page: 101
  year: 2018
  end-page: 109
  ident: CR11
  article-title: BCI oriented EEG analysis using log energy entropy of wavelet packets
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.04.002
– volume: 29
  start-page: 2615
  year: 2021
  end-page: 2624
  ident: CR83
  article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3132162
– ident: CR25
– volume: 60
  start-page: 407
  issue: 3
  year: 2012
  end-page: 418
  ident: CR50
  article-title: ICA-based EEG denoising: a comparative analysis of fifteen methods
  publication-title: Bull. Pol. Acad. Sci.
– volume: 28
  start-page: 1846
  issue: 8
  year: 2020
  end-page: 1855
  ident: CR23
  article-title: Enhanced motor imagery based brain-computer interface via FES and VR for lower limbs
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3001990
– ident: CR21
– ident: CR71
– ident: CR19
– volume: 143
  start-page: 105288
  year: 2022
  ident: CR1
  article-title: A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105288
– volume: 61
  start-page: 4807
  issue: 6
  year: 2022
  end-page: 4820
  ident: CR2
  article-title: An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.10.034
– ident: CR75
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  end-page: 5629
  ident: CR39
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2789927
– volume: 67
  start-page: 102550
  year: 2021
  ident: CR79
  article-title: Time window and frequency band optimization using regularized neighbourhood component analysis for multi-view motor imagery EEG classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102550
– volume: 8
  start-page: 3197
  year: 2019
  end-page: 3211
  ident: CR36
  article-title: A novel MI-EEG imaging with the location information of electrodes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962740
– ident: CR9
– volume: 7
  start-page: 36380
  year: 2019
  end-page: 36387
  ident: CR17
  article-title: A review on electroencephalogram-based brain computer interface for elderly disabled
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903235
– volume: 16
  start-page: 2130
  issue: 5
  year: 2014
  end-page: 2138
  ident: CR74
  article-title: Autoregressive modeling approach of vibration data for bearing fault diagnosis in electric motors
  publication-title: J. Vibroeng.
– volume: 9
  start-page: 115
  year: 2018
  end-page: 128
  ident: CR12
  article-title: High rate BCI with portable devices based on EEG
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2018.07.006
– ident: CR85
– volume: 41
  start-page: 618
  issue: 6
  year: 2008
  end-page: 625
  ident: CR48
  article-title: EEG feature extraction based on wavelet packet decomposition for brain computer interface
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.07.007
– volume: 215
  start-page: 53
  year: 2012
  end-page: 66
  ident: CR42
  article-title: Applying evolution strategies to preprocessing EEG signals for brain–computer interfaces
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.05.012
– ident: CR26
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  end-page: 16
  ident: CR47
  article-title: Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-109
– volume: 29
  start-page: 48
  issue: 1
  year: 2007
  end-page: 53
  ident: CR56
  article-title: Adaptive subject-based feature extraction in brain–computer interfaces using wavelet packet best basis decomposition
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.01.009
– ident: CR66
– ident: CR72
– ident: CR14
– ident: CR37
– ident: CR53
– volume: 12
  start-page: 385
  year: 2019
  end-page: 404
  ident: CR68
  article-title: A survey of electroencephalogram-based brain computer interface applications
  publication-title: Int. J. Eng. Res. Technol.
– volume: 25
  start-page: 566
  issue: 6
  year: 2016
  end-page: 576
  ident: CR70
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2601240
– ident: CR10
– volume: 53
  start-page: 2274
  issue: 11
  year: 2006
  end-page: 2281
  ident: CR58
  article-title: Combined optimization of spatial and temporal filters for improving brain-computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.883649
– volume: 56
  start-page: 2730
  issue: 11
  year: 2009
  end-page: 2733
  ident: CR60
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2026181
– volume: 24
  start-page: 2570
  issue: 9
  year: 2020
  end-page: 2579
  ident: CR87
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2967128
– ident: CR33
– ident: CR82
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 21
  ident: CR76
  article-title: The control mechanisms of heart rate dynamics in a new heart rate nonlinear time series model
  publication-title: Sci. Rep.
– volume: 416
  start-page: 14
  year: 2002
  ident: CR41
  article-title: Brain-machine interface: instant neural control of a movement signal
  publication-title: Nature
– volume: 4
  start-page: 5258
  year: 2016
  end-page: 5267
  ident: CR28
  article-title: An improved ranking-based feature enhancement approach for robust speaker recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2607778
– volume: 46
  start-page: 287
  issue: 4–5
  year: 2016
  end-page: 305
  ident: CR18
  article-title: Methods for artifact detection and removal from scalp EEG: a review
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2016.07.002
– volume: 15
  start-page: 1
  issue: 1
  year: 2015
  end-page: 14
  ident: CR81
  article-title: Data mining EEG signals in depression for their diagnostic value
  publication-title: BMC Med. Inform. Decis. Making
  doi: 10.1186/s12911-015-0227-6
– volume: 12
  start-page: 5762
  issue: 11
  year: 2022
  ident: CR3
  article-title: Application of EEG signals integration to proprietary classification algorithms in the implementation of mobile robot control with the use of motor imagery supported by EMG measurements
  publication-title: Appl. Sci.
  doi: 10.3390/app12115762
– ident: CR27
– volume: 52
  start-page: 1541
  issue: 9
  year: 2005
  end-page: 1548
  ident: CR57
  article-title: Spatio-spectral filters for improving the classification of single trial EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851521
– volume: 42
  start-page: 1
  issue: 5
  year: 2018
  end-page: 15
  ident: CR30
  article-title: Relevant feature selection from a combination of spectral-temporal and spatial features for classification of motor imagery EEG
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0931-8
– ident: CR69
– volume: 7
  start-page: 6084
  year: 2018
  end-page: 6093
  ident: CR52
  article-title: Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889093
– volume: 4
  start-page: R1
  issue: 2
  year: 2007
  ident: CR67
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– ident: CR73
– volume: 68
  start-page: 102584
  year: 2021
  ident: CR77
  article-title: EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102584
– ident: CR38
– year: 2021
  ident: CR80
  publication-title: Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications
– year: 2013
  ident: CR6
  publication-title: EEG Signal Processing
– ident: CR31
– volume: 5
  start-page: 1085
  issue: 11
  year: 2002
  end-page: 1088
  ident: CR40
  article-title: Connecting cortex to machines: recent advances in brain interfaces
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn947
– volume: 5
  start-page: 74
  issue: 2
  year: 1999
  end-page: 78
  ident: CR43
  article-title: Slow cortical potentials: plasticity, operant control, and behavioral effects
  publication-title: Neuroscientist
  doi: 10.1177/107385849900500211
– ident: CR34
– volume: 7
  start-page: 50
  year: 2013
  end-page: 72
  ident: CR64
  article-title: Divergence-based framework for common spatial patterns algorithms
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2013.2290621
– ident: CR59
– year: 2007
  ident: CR44
  publication-title: Features Extraction Techniques of EEG Signal for BCI Applications
– volume: 30
  start-page: 2866
  year: 2022
  end-page: 2875
  ident: CR4
  article-title: Transfer learning with optimal transportation and frequency mixup for EEG-based motor imagery recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3211881
– ident: CR62
– volume: 2
  start-page: L14
  issue: 4
  year: 2005
  ident: CR13
  article-title: Characterization of four-class motor imagery EEG data for the BCI-competition 2005
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/L02
– volume: 89
  start-page: 1123
  issue: 7
  year: 2001
  end-page: 1134
  ident: CR20
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– ident: CR24
– volume: 89
  start-page: 980
  issue: 4
  year: 1998
  end-page: 1002
  ident: CR7
  article-title: A primer for EEG signal processing in anesthesia
  publication-title: J. Am. Soc. Anesthesiol.
  doi: 10.1097/00000542-199810000-00023
– volume: 110
  start-page: 787
  issue: 5
  year: 1999
  end-page: 798
  ident: CR55
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(98)00038-8
– ident: 82_CR16
– volume: 56
  start-page: 2730
  issue: 11
  year: 2009
  ident: 82_CR60
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2026181
– volume: 4
  start-page: 5258
  year: 2016
  ident: 82_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2607778
– volume: 44
  start-page: 101
  year: 2018
  ident: 82_CR11
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.04.002
– volume: 7
  start-page: 36380
  year: 2019
  ident: 82_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903235
– ident: 82_CR37
  doi: 10.1109/ICSPCC.2017.8242581
– ident: 82_CR69
  doi: 10.1109/ISS1.2017.8389309
– ident: 82_CR10
  doi: 10.1145/2030092.2030099
– ident: 82_CR71
  doi: 10.1109/APWC-on-CSE.2016.017
– ident: 82_CR25
  doi: 10.1109/ICPR.2010.34
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 82_CR76
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– ident: 82_CR31
  doi: 10.1109/IJCNN.2015.7280754
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  ident: 82_CR39
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2789927
– volume: 29
  start-page: 48
  issue: 1
  year: 2007
  ident: 82_CR56
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.01.009
– volume: 110
  start-page: 787
  issue: 5
  year: 1999
  ident: 82_CR55
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(98)00038-8
– volume: 4
  start-page: R1
  issue: 2
  year: 2007
  ident: 82_CR67
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– volume: 89
  start-page: 980
  issue: 4
  year: 1998
  ident: 82_CR7
  publication-title: J. Am. Soc. Anesthesiol.
  doi: 10.1097/00000542-199810000-00023
– ident: 82_CR19
  doi: 10.1109/BioCAS.2016.7833732
– ident: 82_CR82
  doi: 10.1088/1742-6596/1651/1/012151
– volume: 67
  start-page: 102550
  year: 2021
  ident: 82_CR79
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102550
– ident: 82_CR33
  doi: 10.1109/ICICICT1.2017.8342691
– volume: 7
  start-page: 50
  year: 2013
  ident: 82_CR64
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2013.2290621
– volume-title: Features Extraction Techniques of EEG Signal for BCI Applications
  year: 2007
  ident: 82_CR44
– ident: 82_CR61
– ident: 82_CR22
  doi: 10.1155/2014/730218
– volume: 9
  start-page: 026013
  issue: 2
  year: 2012
  ident: 82_CR63
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/2/026013
– volume: 7
  start-page: 6084
  year: 2018
  ident: 82_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889093
– volume: 52
  start-page: 1541
  issue: 9
  year: 2005
  ident: 82_CR57
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851521
– ident: 82_CR9
  doi: 10.1109/ICCES.2013.6707191
– volume: 9
  start-page: 115
  year: 2018
  ident: 82_CR12
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2018.07.006
– volume: 29
  start-page: 2615
  year: 2021
  ident: 82_CR83
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3132162
– ident: 82_CR75
– ident: 82_CR85
  doi: 10.1109/CEC.2010.5586383
– ident: 82_CR29
  doi: 10.1007/978-3-642-11721-3_15
– volume: 12
  start-page: 5762
  issue: 11
  year: 2022
  ident: 82_CR3
  publication-title: Appl. Sci.
  doi: 10.3390/app12115762
– volume: 37
  start-page: 639
  issue: 3
  year: 2014
  ident: 82_CR65
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2330598
– volume: 61
  start-page: 4807
  issue: 6
  year: 2022
  ident: 82_CR2
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.10.034
– volume: 5
  start-page: 74
  issue: 2
  year: 1999
  ident: 82_CR43
  publication-title: Neuroscientist
  doi: 10.1177/107385849900500211
– volume-title: Computational EEG Analysis
  year: 2018
  ident: 82_CR45
  doi: 10.1007/978-981-13-0908-3
– volume: 19
  start-page: 4494
  issue: 12
  year: 2019
  ident: 82_CR78
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2899645
– ident: 82_CR34
  doi: 10.1109/TENCONSpring.2014.6863026
– volume-title: EEG Signal Processing
  year: 2013
  ident: 82_CR6
– volume: 2
  start-page: L14
  issue: 4
  year: 2005
  ident: 82_CR13
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/L02
– volume: 16
  start-page: 2130
  issue: 5
  year: 2014
  ident: 82_CR74
  publication-title: J. Vibroeng.
– volume: 46
  start-page: 287
  issue: 4–5
  year: 2016
  ident: 82_CR18
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2016.07.002
– volume: 416
  start-page: 14
  year: 2002
  ident: 82_CR41
  publication-title: Nature
– volume: 53
  start-page: 2274
  issue: 11
  year: 2006
  ident: 82_CR58
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.883649
– volume: 215
  start-page: 53
  year: 2012
  ident: 82_CR42
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.05.012
– volume: 68
  start-page: 102584
  year: 2021
  ident: 82_CR77
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102584
– ident: 82_CR54
  doi: 10.1109/SMC.2017.8122967
– ident: 82_CR62
– volume: 5
  start-page: 1085
  issue: 11
  year: 2002
  ident: 82_CR40
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn947
– volume: 10
  start-page: 046003
  issue: 4
  year: 2013
  ident: 82_CR46
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046003
– ident: 82_CR27
  doi: 10.1109/IWW-BCI.2018.8311535
– volume: 30
  start-page: 2866
  year: 2022
  ident: 82_CR4
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3211881
– ident: 82_CR73
  doi: 10.1109/BigData.2017.8258112
– volume: 143
  start-page: 105288
  year: 2022
  ident: 82_CR1
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105288
– volume: 32
  start-page: 04017070
  issue: 1
  year: 2018
  ident: 82_CR8
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000719
– ident: 82_CR49
  doi: 10.1109/CISP.2010.5647534
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 82_CR47
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-109
– ident: 82_CR53
– ident: 82_CR66
  doi: 10.1109/IJCNN.2014.6889535
– volume: 8
  start-page: 3197
  year: 2019
  ident: 82_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962740
– volume: 86
  start-page: E108
  issue: 2
  year: 2020
  ident: 82_CR15
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyz286
– volume: 42
  start-page: 1
  issue: 5
  year: 2018
  ident: 82_CR30
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0931-8
– volume: 15
  start-page: 1
  issue: 1
  year: 2015
  ident: 82_CR81
  publication-title: BMC Med. Inform. Decis. Making
  doi: 10.1186/s12911-015-0227-6
– volume-title: Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications
  year: 2021
  ident: 82_CR80
– volume: 223
  start-page: 26
  year: 2017
  ident: 82_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.024
– volume: 12
  start-page: 385
  year: 2019
  ident: 82_CR68
  publication-title: Int. J. Eng. Res. Technol.
– volume: 166
  start-page: 397
  year: 2015
  ident: 82_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.041
– ident: 82_CR59
– ident: 82_CR84
  doi: 10.1109/TCDS.2022.3194603
– volume: 20
  start-page: 2
  issue: 1
  year: 2011
  ident: 82_CR32
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2169991
– volume: 28
  start-page: 1846
  issue: 8
  year: 2020
  ident: 82_CR23
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3001990
– volume: 6
  start-page: 79050
  year: 2018
  ident: 82_CR86
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877452
– ident: 82_CR14
  doi: 10.1109/EMBC.2012.6346279
– ident: 82_CR21
  doi: 10.1109/CONIELECOMP.2012.6189920
– volume: 57
  start-page: 2188
  issue: 9
  year: 2010
  ident: 82_CR51
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2051440
– volume: 24
  start-page: 2570
  issue: 9
  year: 2020
  ident: 82_CR87
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2967128
– ident: 82_CR26
  doi: 10.1109/ICICTA.2010.819
– volume: 89
  start-page: 1123
  issue: 7
  year: 2001
  ident: 82_CR20
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 41
  start-page: 618
  issue: 6
  year: 2008
  ident: 82_CR48
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.07.007
– volume: 25
  start-page: 566
  issue: 6
  year: 2016
  ident: 82_CR70
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2601240
– ident: 82_CR24
  doi: 10.1109/ICASSP.2010.5495183
– ident: 82_CR72
  doi: 10.1109/ICOIN.2018.8343254
– volume: 60
  start-page: 407
  issue: 3
  year: 2012
  ident: 82_CR50
  publication-title: Bull. Pol. Acad. Sci.
– ident: 82_CR38
  doi: 10.1109/EUSIPCO.2015.7362882
SSID ssj0003320830
Score 2.3779306
SecondaryResourceType review_article
Snippet A communication path for people having severe neural disorders is provided by Brain Computer Interaction. The Brain–Computer Interface in an...
SourceID unpaywall
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Biomaterials
Biomedical Engineering/Biotechnology
Chemistry and Materials Science
Materials Engineering
Materials Science
Review
Title Brain Computer Interface-Based Signal Processing Techniques for Feature Extraction and Classification of Motor Imagery Using EEG: A Literature Review
URI https://link.springer.com/article/10.1007/s44174-023-00082-z
https://link.springer.com/content/pdf/10.1007/s44174-023-00082-z.pdf
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2731-4820
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003320830
  issn: 2731-4820
  databaseCode: AFBBN
  dateStart: 20230301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V5IB6oDxFEa3mwA02jdfrF7cEEgqiERKNVE7Weh8VIjhR6gia_9H_29n1QwWhCsTNkmfX69ldz7eemW8AXgRRkRCqGDI6XVkmjKUtlXLFgiIyepg5wnDn0T2Zxcdz8eEsOtuBt20ujI92b12SdU6DY2kqq6OVtkdd4psrnCUY2RvmjRjbDuj2HejHESHyHvTns0-jL66uXBLSESn1Ts_mmg-b3Jk_d_SrfWpHsgt3N-VKXv6Qi8UN-zPdA9OOvA47-TbYVMVAbX8jdfzfV7sP9xqAiqN6RT2AHVM-hN0btIWP4Grs6kpgWxAC_V9FK5VhY7KJGj9_PXddNDkI1ARPW6bYCySQjA53btYGJz-rdZ1YgbLU6At0utAlv1pwafFkWZH4---OaOMSfXgDTibvXuMIP3Z80Fj7Nx7DfDo5fXPMmvIOTBHu2jLOlTUpt2lhJcEcoWLDbZiqRMRCR1mRmTSSXBhjlRRSZDoTmSI0oyKphbQ6fAK9clmap4BJXKikSHQSBFKENso4z3gQGh3qmB6Q7EPQTmquGu5zV4JjkXeszV7tOak992rPt_vwsmuzqpk_bpV-1U5t3nwFLm4X79bTX_T-7N_En0OvWm_MAcGlqjiE_mg6Hs8Om11xDR3OEEM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5VBxaAttBahUc-DWetk4zqu3hS4FVBBSWYmeIsePqmKbXS1ZUfZ_8H8ZOw_RqkKteouUseOM7cznzMw3ALtBVCSEKgaMTleWCWNpS6VcsaCIjB5kjjDceXRPz-KjsTi5jC5X4GObC-Oj3VuXZJ3T4Fiaympvpu1el_jmCmcJRvaGeSPGln26_QRW44gQeQ9Wx2fnw6-urlwS0hEp9U7P5poPmtyZP3f0q31qR7IGTxflTN7eyMnkgf05fA6mHXkddnLVX1RFXy1_I3X831d7Ac8agIrDekWtw4opN2DtAW3hS7jbd3UlsC0Igf6vopXKsH2yiRq_fP_mumhyEKgJXrRMsddIIBkd7lzMDY5-VvM6sQJlqdEX6HShS3614NTi6bQi8eMfjmjjFn14A45Gnz7gED93fNBY-zdewfhwdHFwxJryDkwR7loyzpU1KbdpYSXBHKFiw22YqkTEQkdZkZk0klwYY5UUUmQ6E5kiNKMiqYW0OnwNvXJamk3AJC5UUiQ6CQIpQhtlnGc8CI0OdUwPSLYgaCc1Vw33uSvBMck71mav9pzUnnu158steNe1mdXMH49Kv2-nNm--AtePi3fr6S963_438TfQq-YLs0NwqSreNrvhHqQkDsc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Computer+Interface-Based+Signal+Processing+Techniques+for+Feature+Extraction+and+Classification+of+Motor+Imagery+Using+EEG%3A+A+Literature+Review&rft.jtitle=Biomedical+materials+%26+devices+%28New+York%2C+N.Y.%29&rft.au=Jaipriya%2C+D.&rft.au=Sriharipriya%2C+K.+C.&rft.date=2024-09-01&rft.pub=Springer+US&rft.issn=2731-4812&rft.eissn=2731-4820&rft.volume=2&rft.issue=2&rft.spage=601&rft.epage=613&rft_id=info:doi/10.1007%2Fs44174-023-00082-z&rft.externalDocID=10_1007_s44174_023_00082_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-4812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-4812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-4812&client=summon