Quasi-periodic Solutions for Nonlinear Schrodinger Equations with Legendre Potential
In this paper, the nonlinear Schrödinger equations with Legendre potential iut − uxx + VL (x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions is considered, where V L ( x ) = − 1 2 − 1 4 tan 2 x , x ∈ (−π/2, π/2). It is proved that for each given positive constant m > 0, the above...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 24; no. 3; pp. 663 - 679 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China
01.06.2020
|
Online Access | Get full text |
ISSN | 1027-5487 2224-6851 2224-6851 |
DOI | 10.11650/tjm/190707 |
Cover
Abstract | In this paper, the nonlinear Schrödinger equations with Legendre potential iut
− uxx
+ VL
(x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions is considered, where
V
L
(
x
)
=
−
1
2
−
1
4
tan
2
x
, x ∈ (−π/2, π/2). It is proved that for each given positive constant m > 0, the above equation admits lots of quasi-periodic solutions with two frequencies. The proof is based on a partial Birkhoff normal form technique and an infinite-dimensional Kolmogorov-Arnold-Moser theory. |
---|---|
AbstractList | In this paper, the nonlinear Schrödinger equations with Legendre potential iut
− uxx
+ VL
(x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions is considered, where
V
L
(
x
)
=
−
1
2
−
1
4
tan
2
x
, x ∈ (−π/2, π/2). It is proved that for each given positive constant m > 0, the above equation admits lots of quasi-periodic solutions with two frequencies. The proof is based on a partial Birkhoff normal form technique and an infinite-dimensional Kolmogorov-Arnold-Moser theory. |
Author | Yan, Dongfeng Shi, Guanghua |
Author_xml | – sequence: 1 givenname: Guanghua surname: Shi fullname: Shi, Guanghua – sequence: 2 givenname: Dongfeng surname: Yan fullname: Yan, Dongfeng |
BookMark | eNqF0EtPAjEYheHGYCKgK9cms9eRXqaXWRoCakK8BFxPPoYWSoYW204I_150jFtXZ_PkLN4B6jnvNELXBN8TIjgepe1uREossTxDfUppkQvFSQ_1CaYy54WSF2gQ4xZjqgQRfbR4byHafK-D9StbZ3PftMl6FzPjQ_biXWOdhpDN6004AbfWIZt8ttCZg02bbKbX2q2Czt580i5ZaC7RuYEm6qvfHaKP6WQxfspnr4_P44dZXlOOU75kopAUqCZEKiZJWRilqIG6AAbK1LSggutyJQxIgg2heFlzgG8MinHGhuiu-23dHo4HaJpqH-wOwrEiuPopUp2KVF2RE7_teB18jEGbf_RNp7cx-fBHqShlgTFjX_4JbnE |
Cites_doi | 10.1007/978-3-662-08054-2 10.1002/cpa.20314 10.1007/s00208-013-1001-7 10.1016/j.jde.2015.04.025 10.1016/j.jde.2005.12.012 10.1155/S1073792894000516 10.1070/IM1989v032n01ABEH000733 10.3934/dcds.2006.16.615 10.1007/s00222-018-0812-2 10.24033/asens.2190 10.1007/s002200050824 10.1016/j.jfa.2004.10.019 10.1007/bf02104499 10.1016/j.jde.2011.10.006 10.4310/DPDE.2019.v16.n1.a2 10.3934/dcds.2017079 10.1088/0951-7715/24/4/010 |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTOC UNPAY |
DOI | 10.11650/tjm/190707 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2224-6851 |
EndPage | 679 |
ExternalDocumentID | 10.11650/tjm/190707 10_11650_tjm_190707 26974003 |
GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION ADTOC C1A TR2 UNPAY |
ID | FETCH-LOGICAL-c250t-b36472a2e117837194f882fac4a3a8fc24265e9d6fa710f120bc5aa1783a83533 |
IEDL.DBID | UNPAY |
ISSN | 1027-5487 2224-6851 |
IngestDate | Tue Aug 19 19:03:46 EDT 2025 Tue Jul 01 02:33:57 EDT 2025 Thu Jul 03 22:17:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c250t-b36472a2e117837194f882fac4a3a8fc24265e9d6fa710f120bc5aa1783a83533 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.11650/tjm/190707 |
PageCount | 17 |
ParticipantIDs | unpaywall_primary_10_11650_tjm_190707 crossref_primary_10_11650_tjm_190707 jstor_primary_26974003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200601 2020-6-1 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200601 day: 1 |
PublicationDecade | 2020 |
PublicationTitle | Taiwanese journal of mathematics |
PublicationYear | 2020 |
Publisher | Mathematical Society of the Republic of China |
Publisher_xml | – name: Mathematical Society of the Republic of China |
References | 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 12 doi: 10.1007/978-3-662-08054-2 – ident: 18 – ident: 19 doi: 10.1002/cpa.20314 – ident: 2 doi: 10.1007/s00208-013-1001-7 – ident: 10 doi: 10.1016/j.jde.2015.04.025 – ident: 27 doi: 10.1016/j.jde.2005.12.012 – ident: 4 doi: 10.1155/S1073792894000516 – ident: 16 – ident: 14 doi: 10.1070/IM1989v032n01ABEH000733 – ident: 24 – ident: 26 doi: 10.3934/dcds.2006.16.615 – ident: 1 doi: 10.1007/s00222-018-0812-2 – ident: 3 doi: 10.24033/asens.2190 – ident: 8 doi: 10.1007/s002200050824 – ident: 20 – ident: 6 doi: 10.1016/j.jfa.2004.10.019 – ident: 22 – ident: 17 – ident: 5 – ident: 25 doi: 10.1007/bf02104499 – ident: 11 doi: 10.1016/j.jde.2011.10.006 – ident: 9 doi: 10.4310/DPDE.2019.v16.n1.a2 – ident: 13 – ident: 15 – ident: 7 doi: 10.3934/dcds.2017079 – ident: 28 doi: 10.1088/0951-7715/24/4/010 – ident: 21 – ident: 23 |
SSID | ssj0028616 |
Score | 2.204577 |
Snippet | In this paper, the nonlinear Schrödinger equations with Legendre potential iut
− uxx
+ VL
(x)u + mu + secx · |u|²u = 0 subject to certain boundary conditions... |
SourceID | unpaywall crossref jstor |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 663 |
Title | Quasi-periodic Solutions for Nonlinear Schrodinger Equations with Legendre Potential |
URI | https://www.jstor.org/stable/26974003 https://doi.org/10.11650/tjm/190707 |
UnpaywallVersion | publishedVersion |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEGU databaseName: Project Euclid Open Access Journals customDbUrl: eissn: 2224-6851 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028616 issn: 1027-5487 databaseCode: RBV dateStart: 19970101 isFulltext: true titleUrlDefault: https://projecteuclid.org/Search providerName: Project Euclid |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHowH30aMkibiscAubGGPqBBihPjC6InM9hFRBIQlRn-Yf8A_5nQXCHJQ77ObZjrp981M5ytAxlDQllUBOaGBy4ueR-egUYobFAItw1aenUZuNEW9VTy_9-4TcDSdhZnv3zvEHnLh00uOQKtkJ8aXhe0iJWG51bysPER9TLfELee2T8gRGHFBBGIyhbfw9Q_cia8ersLKuDfA9zfsdudApbYOZ9PlxHdJnrPjMMjKjwWlxj_WuwFrE1LJKnEUbEJC97ZgtTFTZB1tQ-tqjKMOt7rGfdWRbFYOY8RaWTMWzMAhu5GPw69PFRX7WPU1FgIfMVuuZReaok0NNbvsh_aSEXZ3oFWr3p7W-eRJBS6J64Q8iOTi0dWOU6LU1PGLhii2QVnEApaNtIDtaV8Jg0Q9jOPmA-khWmMkrlYo7EKy1-_pPWAahecajZFAj5B5FL7OB4Ev3bzvYkmlIDN1eHsQK2e0o4yDvNQmL7VjL6VgN9qMmY0rKMWhsyYFx7Pd-e0H-_-0O4BkOBzrQ-IQYZCGpeuTu_Qkkr4BF9_FFg |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0QOBgOfhMxapqIxwK7sIU9EoUQIwSjJHgis_2IKALCEqM_zD_gH3O6CwQ5qPfZTTOd9L2Z6bwC5AwFbVWVkBMauLzseXQOGqW4QSHQMmzl2WnkVls0u-XrntdLwPlyFma9f-8QeyiETy8FAq2KnRhPCdtFSkKq2-7UHqI-plvhlnPbJ-QIjLggArGYwtv4-gfuxFcP07A1H03w_Q2HwzVQaezA1XI58V2S5_w8DPLyY0Op8Y_17sL2glSyWhwFe5DQo31It1aKrLMD6N7OcTbgVtd4rAaSrcphjFgra8eCGThld_Jx-vWpomIfq7_GQuAzZsu17EZTtKmpZp1xaC8Z4fAQuo36_WWTL55U4JK4TsiDSC4eXe04FUpNHb9siGIblGUsYdVIC9ie9pUwSNTDOG4xkB6iNUbiaqVSBpKj8UgfAdMoPNdojAR6hCyi8HUxCHzpFn0XKyoLuaXD-5NYOaMfZRzkpT55qR97KQuZaDNWNq6gFIfOmixcrHbntx8c_9PuBJLhdK5PiUOEwdkihr4BforECw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-periodic+Solutions+for+Nonlinear+Schr%C3%B6dinger+Equations+with+Legendre+Potential&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Shi%2C+Guanghua&rft.au=Yan%2C+Dongfeng&rft.date=2020-06-01&rft.issn=1027-5487&rft.volume=24&rft.issue=3&rft_id=info:doi/10.11650%2Ftjm%2F190707&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_190707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |