AUTOMATED SLEEP STAGE DETECTION WITH A CLASSICAL AND A NEURAL LEARNING ALGORITHM – METHODOLOGICAL ASPECTS
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detectio...
Saved in:
| Published in | Biomedizinische Technik Vol. 47; no. s1a; pp. 318 - 320 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
2002
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0013-5585 1862-278X |
| DOI | 10.1515/bmte.2002.47.s1a.318 |
Cover
| Abstract | For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information. |
|---|---|
| AbstractList | For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information. For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information. |
| Author | Bolz, A. Schöchlin, J. Schwaibold, M. |
| Author_xml | – sequence: 1 givenname: M. surname: Schwaibold fullname: Schwaibold, M. – sequence: 2 givenname: J. surname: Schöchlin fullname: Schöchlin, J. – sequence: 3 givenname: A. surname: Bolz fullname: Bolz, A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12451852$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kbFu2zAURYkgQeKk_YOi4NROUkhKFKVuhM3aBmQpsGS0G0HJj4Ba20pEeejWf-gf9ktKw26HDpkeLnDuHd65R9eH_gAIvaMkpJzyx2Y_QsgIYWEsQkdNGNH0Ck1omrCAifTrNZoQQqOA85TfoXvnvhESc56RW3RHWcxpytkEfZebulzJWs1wlSv1hKtazhWeqVpN62VZ4C_LeoElnuayqpZTmWNZzHwu1GbtQ67kulgWcyzzebn26Ar__vkLr1S9KGdlXs7PlerJr1Vv0I01OwdvL_cBbT6reroILlzQMk7GIDOwBSFaHlmImAGT2oREbRZlxlATN03DwW5FYhhkEFtqeWIyaFOwyZY31EYP6ON593noX47gRr3vXAu7nTlAf3Ra8EgwSmnsyQ-vk0xQ_1DiwfcX8NjsYaufh25vhh_67yM98OkMtEPv3ABWt91oxq4_jIPpdpoSfbKmT9b0yZqOhfbWtLfmy_F_5X_7r9X-AM_qlgk |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2009_02_003 crossref_primary_10_1016_j_bspc_2007_05_005 crossref_primary_10_1007_s41105_018_0175_5 crossref_primary_10_1016_j_compbiomed_2011_04_001 crossref_primary_10_1016_j_jneumeth_2008_07_017 |
| Cites_doi | 10.1053/smrv.1999.0087 10.1093/sleep/23.7.1e 10.1515/bmte.2001.46.5.129 10.3233/THC-1997-5403 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TB 7U5 8FD FR3 L7M |
| DOI | 10.1515/bmte.2002.47.s1a.318 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1862-278X |
| EndPage | 320 |
| ExternalDocumentID | 12451852 10_1515_bmte_2002_47_s1a_318 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | -~0 0R~ 0~D 23N 4.4 53G 5GY 9-L AAAEU AAAVF AABBZ AACIX AAGVJ AALGR AAONY AAOQK AAOTM AAOWA AAPJK AAQCX AARRE AASQH AAWFC AAXCG AAYXX ABDRH ABFKT ABFQV ABJNI ABMIY ABPLS ABRDF ABRQL ABUBZ ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACMKP ACPMA ACRPL ACUND ACXLN ACYCL ACZBO ADALX ADDWE ADEQT ADGQD ADGYE ADNMO ADNPR ADUQZ AECWL AEGVQ AEICA AEJTT AEKEB AERZL AEXIE AFAUI AFBAA AFBDD AFCXV AFGDO AFSHE AFYRI AGBEV AGGNV AGQPQ AGQYU AHGSO AHOVO AHVWV AHXUK AI. AIERV AIKXB AIWOI AJHHK AKXKS ALMA_UNASSIGNED_HOLDINGS ASPBG ASYPN AVWKF AZFZN AZMOX BAKPI BCIFA BWHEM CAG CGQUA CITATION COF CS3 DA2 DSRVY DU5 EBS EJD EMOBN F5P FEDTE FSTRU HVGLF HZ~ IL9 IY9 KDIRW LVMAB O9- P2P QD8 RDG SA. SLJYH UK5 VH1 WTRAM ~Z8 ABVMU ALYBR CGR CUY CVF DBYYV ECM EIF NPM 7X8 7TB 7U5 8FD FR3 L7M |
| ID | FETCH-LOGICAL-c250t-9aede77c53fe32aea8f603c939aa1a4bbb5efd76a2e9e4f1f56a9ec8ef6d5b1f3 |
| ISSN | 0013-5585 |
| IngestDate | Thu Oct 02 07:03:03 EDT 2025 Wed Oct 01 12:23:49 EDT 2025 Wed Feb 19 01:28:54 EST 2025 Thu Apr 24 23:04:51 EDT 2025 Wed Oct 01 04:16:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | s1a |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c250t-9aede77c53fe32aea8f603c939aa1a4bbb5efd76a2e9e4f1f56a9ec8ef6d5b1f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 12451852 |
| PQID | 72711860 |
| PQPubID | 23479 |
| PageCount | 3 |
| ParticipantIDs | proquest_miscellaneous_753721114 proquest_miscellaneous_72711860 pubmed_primary_12451852 crossref_citationtrail_10_1515_bmte_2002_47_s1a_318 crossref_primary_10_1515_bmte_2002_47_s1a_318 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2002-00-00 20020101 |
| PublicationDateYYYYMMDD | 2002-01-01 |
| PublicationDate_xml | – year: 2002 text: 2002-00-00 |
| PublicationDecade | 2000 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Biomedizinische Technik |
| PublicationTitleAlternate | Biomed Tech (Berl) |
| PublicationYear | 2002 |
| References | Norman R.G. (p_4) 2000; 23 Bloch K.E. (p_2) 1997; 5 p_3 Schwaibold M. (p_5) 2001; 46 |
| References_xml | – ident: p_3 doi: 10.1053/smrv.1999.0087 – volume: 23 start-page: 901 year: 2000 ident: p_4 publication-title: Sleep doi: 10.1093/sleep/23.7.1e – volume: 46 start-page: 129 year: 2001 ident: p_5 publication-title: Biomedizinische Technik doi: 10.1515/bmte.2001.46.5.129 – volume: 5 start-page: 285 year: 1997 ident: p_2 publication-title: Technol And Health Care doi: 10.3233/THC-1997-5403 |
| SSID | ssj0045590 |
| Score | 1.5706508 |
| Snippet | For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 318 |
| SubjectTerms | Algorithms Artificial Intelligence Automated Biomedical engineering Diagnosis, Computer-Assisted - instrumentation Fuzzy Logic Humans Learning Neural Networks (Computer) Polysomnography - instrumentation Signal Processing, Computer-Assisted - instrumentation Sleep Sleep Stages - physiology |
| Title | AUTOMATED SLEEP STAGE DETECTION WITH A CLASSICAL AND A NEURAL LEARNING ALGORITHM – METHODOLOGICAL ASPECTS |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/12451852 https://www.proquest.com/docview/72711860 https://www.proquest.com/docview/753721114 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Complete Journal Package 2023 customDbUrl: eissn: 1862-278X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045590 issn: 0013-5585 databaseCode: AGBEV dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter – providerCode: PRVAZK databaseName: Walter De Gruyter: Open Access Journals customDbUrl: eissn: 1862-278X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045590 issn: 0013-5585 databaseCode: AHGSO dateStart: 19560101 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxJvy9IFbldDEcdIcUxq2WvWx6gPtLXJcW7tiaVe7rZD2xJ0j_5BfwoyTmBR2geUSxY4zdTtfxzNjzwwhb2DJU2BKC8dXcewETISO0Jo7XCoMq2KggaMfcjQOB4vg4IgfNRpfa6eWtpvclZdXxpX8D1ehD_iKUbI34KwlCh1wD_yFK3AYrv_EY5jGZJSA7GnPhml6COod7g_103lqjoaAdT4fYNz5MAGZaZI4jvvQHqeLKTSGaTIdo7MqGe5PpjB01K6OPrD2KJ0PJn1bKiGZHQLN2c4WsAncP7nE3CQSKwSZbLA28Gcmjz-Lk6oo9cit9ePmfC-Ux2Wt-AP7rLc-Nf7sxN1xRtQ9k1gmgvOi_o6rCmkK5pLjR6Z2sBW3RYLNElYXnqhJT1aK4mIhZiZK7ncZz006jPxTkeXUd4PIBTKufbmeUvuXpc4eQETTB-hkSAUrcfpZgJmbRQZUbpE9H507TbKX7PfSD9XCHoDx1akKYuA3LSMxgc7bq2azq-lcY74YNWZ-j9wt7Q-aFGC6Txpq9YDcqWWlfEg-WlhRAytqYEUtrCjCiibUwooCrKBdwIpWsKIWVvT7l290F1C0BNQjsnifzt8NnLLfkaAsb5xYqKWKIsmZVswXSnR12GEyZrEQngjyPOdKL6NQwH9fBdrTPBSxkl2lwyXPPc0ek-ZqvVJPCeWBFIEI81ijTu51Y93NYf3QjAm2DCPRIqz6_TJZJqzHuimn2Z-41yKOfeusSNjyl_GvK9ZkIFlxu0ys1Hp7kYFmD7MKOy1CrxvBGTpQvKBFnhRM_fmRfsAxL8GzG07nOblt6g0ZJ98L0tycb9VLUHs3-asSjj8ANFKZog |
| linkProvider | Walter de Gruyter |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AUTOMATED+SLEEP+STAGE+DETECTION+WITH+A+CLASSICAL+AND+A+NEURAL+LEARNING+ALGORITHM+%E2%80%93+METHODOLOGICAL+ASPECTS&rft.jtitle=Biomedizinische+Technik&rft.au=Schwaibold%2C+M.&rft.au=Sch%C3%B6chlin%2C+J.&rft.au=Bolz%2C+A.&rft.date=2002&rft.issn=0013-5585&rft.eissn=1862-278X&rft.volume=47&rft.issue=s1a&rft.spage=318&rft.epage=320&rft_id=info:doi/10.1515%2Fbmte.2002.47.s1a.318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bmte_2002_47_s1a_318 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon |