AUTOMATED SLEEP STAGE DETECTION WITH A CLASSICAL AND A NEURAL LEARNING ALGORITHM – METHODOLOGICAL ASPECTS

For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detectio...

Full description

Saved in:
Bibliographic Details
Published inBiomedizinische Technik Vol. 47; no. s1a; pp. 318 - 320
Main Authors Schwaibold, M., Schöchlin, J., Bolz, A.
Format Journal Article
LanguageEnglish
Published Germany 2002
Subjects
Online AccessGet full text
ISSN0013-5585
1862-278X
DOI10.1515/bmte.2002.47.s1a.318

Cover

Abstract For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
AbstractList For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
Author Bolz, A.
Schöchlin, J.
Schwaibold, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Schwaibold
  fullname: Schwaibold, M.
– sequence: 2
  givenname: J.
  surname: Schöchlin
  fullname: Schöchlin, J.
– sequence: 3
  givenname: A.
  surname: Bolz
  fullname: Bolz, A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12451852$$D View this record in MEDLINE/PubMed
BookMark eNp9kbFu2zAURYkgQeKk_YOi4NROUkhKFKVuhM3aBmQpsGS0G0HJj4Ba20pEeejWf-gf9ktKw26HDpkeLnDuHd65R9eH_gAIvaMkpJzyx2Y_QsgIYWEsQkdNGNH0Ck1omrCAifTrNZoQQqOA85TfoXvnvhESc56RW3RHWcxpytkEfZebulzJWs1wlSv1hKtazhWeqVpN62VZ4C_LeoElnuayqpZTmWNZzHwu1GbtQ67kulgWcyzzebn26Ar__vkLr1S9KGdlXs7PlerJr1Vv0I01OwdvL_cBbT6reroILlzQMk7GIDOwBSFaHlmImAGT2oREbRZlxlATN03DwW5FYhhkEFtqeWIyaFOwyZY31EYP6ON593noX47gRr3vXAu7nTlAf3Ra8EgwSmnsyQ-vk0xQ_1DiwfcX8NjsYaufh25vhh_67yM98OkMtEPv3ABWt91oxq4_jIPpdpoSfbKmT9b0yZqOhfbWtLfmy_F_5X_7r9X-AM_qlgk
CitedBy_id crossref_primary_10_1016_j_asoc_2009_02_003
crossref_primary_10_1016_j_bspc_2007_05_005
crossref_primary_10_1007_s41105_018_0175_5
crossref_primary_10_1016_j_compbiomed_2011_04_001
crossref_primary_10_1016_j_jneumeth_2008_07_017
Cites_doi 10.1053/smrv.1999.0087
10.1093/sleep/23.7.1e
10.1515/bmte.2001.46.5.129
10.3233/THC-1997-5403
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TB
7U5
8FD
FR3
L7M
DOI 10.1515/bmte.2002.47.s1a.318
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1862-278X
EndPage 320
ExternalDocumentID 12451852
10_1515_bmte_2002_47_s1a_318
Genre Journal Article
Comparative Study
GroupedDBID -~0
0R~
0~D
23N
4.4
53G
5GY
9-L
AAAEU
AAAVF
AABBZ
AACIX
AAGVJ
AALGR
AAONY
AAOQK
AAOTM
AAOWA
AAPJK
AAQCX
AARRE
AASQH
AAWFC
AAXCG
AAYXX
ABDRH
ABFKT
ABFQV
ABJNI
ABMIY
ABPLS
ABRDF
ABRQL
ABUBZ
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACMKP
ACPMA
ACRPL
ACUND
ACXLN
ACYCL
ACZBO
ADALX
ADDWE
ADEQT
ADGQD
ADGYE
ADNMO
ADNPR
ADUQZ
AECWL
AEGVQ
AEICA
AEJTT
AEKEB
AERZL
AEXIE
AFAUI
AFBAA
AFBDD
AFCXV
AFGDO
AFSHE
AFYRI
AGBEV
AGGNV
AGQPQ
AGQYU
AHGSO
AHOVO
AHVWV
AHXUK
AI.
AIERV
AIKXB
AIWOI
AJHHK
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
BAKPI
BCIFA
BWHEM
CAG
CGQUA
CITATION
COF
CS3
DA2
DSRVY
DU5
EBS
EJD
EMOBN
F5P
FEDTE
FSTRU
HVGLF
HZ~
IL9
IY9
KDIRW
LVMAB
O9-
P2P
QD8
RDG
SA.
SLJYH
UK5
VH1
WTRAM
~Z8
ABVMU
ALYBR
CGR
CUY
CVF
DBYYV
ECM
EIF
NPM
7X8
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c250t-9aede77c53fe32aea8f603c939aa1a4bbb5efd76a2e9e4f1f56a9ec8ef6d5b1f3
ISSN 0013-5585
IngestDate Thu Oct 02 07:03:03 EDT 2025
Wed Oct 01 12:23:49 EDT 2025
Wed Feb 19 01:28:54 EST 2025
Thu Apr 24 23:04:51 EDT 2025
Wed Oct 01 04:16:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue s1a
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c250t-9aede77c53fe32aea8f603c939aa1a4bbb5efd76a2e9e4f1f56a9ec8ef6d5b1f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 12451852
PQID 72711860
PQPubID 23479
PageCount 3
ParticipantIDs proquest_miscellaneous_753721114
proquest_miscellaneous_72711860
pubmed_primary_12451852
crossref_citationtrail_10_1515_bmte_2002_47_s1a_318
crossref_primary_10_1515_bmte_2002_47_s1a_318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-00-00
20020101
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 2002-00-00
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Biomedizinische Technik
PublicationTitleAlternate Biomed Tech (Berl)
PublicationYear 2002
References Norman R.G. (p_4) 2000; 23
Bloch K.E. (p_2) 1997; 5
p_3
Schwaibold M. (p_5) 2001; 46
References_xml – ident: p_3
  doi: 10.1053/smrv.1999.0087
– volume: 23
  start-page: 901
  year: 2000
  ident: p_4
  publication-title: Sleep
  doi: 10.1093/sleep/23.7.1e
– volume: 46
  start-page: 129
  year: 2001
  ident: p_5
  publication-title: Biomedizinische Technik
  doi: 10.1515/bmte.2001.46.5.129
– volume: 5
  start-page: 285
  year: 1997
  ident: p_2
  publication-title: Technol And Health Care
  doi: 10.3233/THC-1997-5403
SSID ssj0045590
Score 1.5706508
Snippet For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 318
SubjectTerms Algorithms
Artificial Intelligence
Automated
Biomedical engineering
Diagnosis, Computer-Assisted - instrumentation
Fuzzy Logic
Humans
Learning
Neural Networks (Computer)
Polysomnography - instrumentation
Signal Processing, Computer-Assisted - instrumentation
Sleep
Sleep Stages - physiology
Title AUTOMATED SLEEP STAGE DETECTION WITH A CLASSICAL AND A NEURAL LEARNING ALGORITHM – METHODOLOGICAL ASPECTS
URI https://www.ncbi.nlm.nih.gov/pubmed/12451852
https://www.proquest.com/docview/72711860
https://www.proquest.com/docview/753721114
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAZK
  databaseName: De Gruyter Complete Journal Package 2023
  customDbUrl:
  eissn: 1862-278X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045590
  issn: 0013-5585
  databaseCode: AGBEV
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
– providerCode: PRVAZK
  databaseName: Walter De Gruyter: Open Access Journals
  customDbUrl:
  eissn: 1862-278X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045590
  issn: 0013-5585
  databaseCode: AHGSO
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxJvy9IFbldDEcdIcUxq2WvWx6gPtLXJcW7tiaVe7rZD2xJ0j_5BfwoyTmBR2geUSxY4zdTtfxzNjzwwhb2DJU2BKC8dXcewETISO0Jo7XCoMq2KggaMfcjQOB4vg4IgfNRpfa6eWtpvclZdXxpX8D1ehD_iKUbI34KwlCh1wD_yFK3AYrv_EY5jGZJSA7GnPhml6COod7g_103lqjoaAdT4fYNz5MAGZaZI4jvvQHqeLKTSGaTIdo7MqGe5PpjB01K6OPrD2KJ0PJn1bKiGZHQLN2c4WsAncP7nE3CQSKwSZbLA28Gcmjz-Lk6oo9cit9ePmfC-Ux2Wt-AP7rLc-Nf7sxN1xRtQ9k1gmgvOi_o6rCmkK5pLjR6Z2sBW3RYLNElYXnqhJT1aK4mIhZiZK7ncZz006jPxTkeXUd4PIBTKufbmeUvuXpc4eQETTB-hkSAUrcfpZgJmbRQZUbpE9H507TbKX7PfSD9XCHoDx1akKYuA3LSMxgc7bq2azq-lcY74YNWZ-j9wt7Q-aFGC6Txpq9YDcqWWlfEg-WlhRAytqYEUtrCjCiibUwooCrKBdwIpWsKIWVvT7l290F1C0BNQjsnifzt8NnLLfkaAsb5xYqKWKIsmZVswXSnR12GEyZrEQngjyPOdKL6NQwH9fBdrTPBSxkl2lwyXPPc0ek-ZqvVJPCeWBFIEI81ijTu51Y93NYf3QjAm2DCPRIqz6_TJZJqzHuimn2Z-41yKOfeusSNjyl_GvK9ZkIFlxu0ys1Hp7kYFmD7MKOy1CrxvBGTpQvKBFnhRM_fmRfsAxL8GzG07nOblt6g0ZJ98L0tycb9VLUHs3-asSjj8ANFKZog
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AUTOMATED+SLEEP+STAGE+DETECTION+WITH+A+CLASSICAL+AND+A+NEURAL+LEARNING+ALGORITHM+%E2%80%93+METHODOLOGICAL+ASPECTS&rft.jtitle=Biomedizinische+Technik&rft.au=Schwaibold%2C+M.&rft.au=Sch%C3%B6chlin%2C+J.&rft.au=Bolz%2C+A.&rft.date=2002&rft.issn=0013-5585&rft.eissn=1862-278X&rft.volume=47&rft.issue=s1a&rft.spage=318&rft.epage=320&rft_id=info:doi/10.1515%2Fbmte.2002.47.s1a.318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bmte_2002_47_s1a_318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon