Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI
Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological co...
Saved in:
| Published in | Multimedia tools and applications Vol. 80; no. 20; pp. 30557 - 30580 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.08.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-021-11133-2 |
Cover
| Abstract | Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological competencies. Although, manual segmentation of PCa on MRI is a tedious, operator-dependent and time consuming task. Therefore, Computer Aided Diagnosis (CAD) of PCa using mp-MRI images is highly desirable by employing computer-assisted segmentation approaches. In this paper, a method is proposed for segmentation of PCa based on level set with Particle Swarm Optimization (PSO) technique to address the limitations of existing techniques as PSO does not require any cost or objective function to be differentiable and it is easy to implement. The energy function is optimized with PSO based technique. The proposed approach is tested over three different mp-MRI modalities i.e., T2 weighted (T2w), Dynamic Contrast Enhanced (DCE) images and Apparent Diffusion Coefficient (ADC) Maps derived from Diffusion Weighted Images (DWI). The accuracy achieved by PSO based methodology is 7.6% greater than without PSO integration i.e., using Gradient descent with added computational overhead of 0.03 s. The experimental outcomes reveal that the proposed methodology shows better results in terms of considered evaluation metrics when compared with the existing techniques on the I2CVB dataset. The impact of the proposed methodology is that it has the ability for precise segmentation even with intensity inhomogeneity, which validates its applications in clinical treatments. Additionally, the proposed technique reduces the manual interference, which in turn minimizes the execution time. |
|---|---|
| AbstractList | Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological competencies. Although, manual segmentation of PCa on MRI is a tedious, operator-dependent and time consuming task. Therefore, Computer Aided Diagnosis (CAD) of PCa using mp-MRI images is highly desirable by employing computer-assisted segmentation approaches. In this paper, a method is proposed for segmentation of PCa based on level set with Particle Swarm Optimization (PSO) technique to address the limitations of existing techniques as PSO does not require any cost or objective function to be differentiable and it is easy to implement. The energy function is optimized with PSO based technique. The proposed approach is tested over three different mp-MRI modalities i.e., T2 weighted (T2w), Dynamic Contrast Enhanced (DCE) images and Apparent Diffusion Coefficient (ADC) Maps derived from Diffusion Weighted Images (DWI). The accuracy achieved by PSO based methodology is 7.6% greater than without PSO integration i.e., using Gradient descent with added computational overhead of 0.03 s. The experimental outcomes reveal that the proposed methodology shows better results in terms of considered evaluation metrics when compared with the existing techniques on the I2CVB dataset. The impact of the proposed methodology is that it has the ability for precise segmentation even with intensity inhomogeneity, which validates its applications in clinical treatments. Additionally, the proposed technique reduces the manual interference, which in turn minimizes the execution time. Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological competencies. Although, manual segmentation of PCa on MRI is a tedious, operator-dependent and time consuming task. Therefore, Computer Aided Diagnosis (CAD) of PCa using mp-MRI images is highly desirable by employing computer-assisted segmentation approaches. In this paper, a method is proposed for segmentation of PCa based on level set with Particle Swarm Optimization (PSO) technique to address the limitations of existing techniques as PSO does not require any cost or objective function to be differentiable and it is easy to implement. The energy function is optimized with PSO based technique. The proposed approach is tested over three different mp-MRI modalities i.e., T2 weighted (T2w), Dynamic Contrast Enhanced (DCE) images and Apparent Diffusion Coefficient (ADC) Maps derived from Diffusion Weighted Images (DWI). The accuracy achieved by PSO based methodology is 7.6% greater than without PSO integration i.e., using Gradient descent with added computational overhead of 0.03 s. The experimental outcomes reveal that the proposed methodology shows better results in terms of considered evaluation metrics when compared with the existing techniques on the I2CVB dataset. The impact of the proposed methodology is that it has the ability for precise segmentation even with intensity inhomogeneity, which validates its applications in clinical treatments. Additionally, the proposed technique reduces the manual interference, which in turn minimizes the execution time. |
| Author | Garg, Gaurav Juneja, Mamta |
| Author_xml | – sequence: 1 givenname: Gaurav surname: Garg fullname: Garg, Gaurav organization: Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University – sequence: 2 givenname: Mamta orcidid: 0000-0002-2611-9005 surname: Juneja fullname: Juneja, Mamta email: mamtajuneja@pu.ac.in organization: Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKuA62hOJnNbSvFSqCiiC1chZk5KSudikiL69EZHEFx0lQv_l__km5FJ13dIyCnwc-C8vAgAXArGBTAAyDImDsgU8jJjZSlgkvZZxVmZczgisxA2nEORCzklLw_aR2e2SMO79i3th-ha96mj6zv6qgM2NOC6xS6OV72lC90Z9NR1tN1to2OD9rrF6J2hg-9DCiK9e1wek0OrtwFPftc5eb6-elrcstX9zXJxuWJGyDoya2rbaC4KQKhqicLYUkvNq0KaxhoB1pisqXldFEZabDhWvJCYTggCQGZzcja-m8rfdhii2vQ736VKJfJSlFn6ep5SYkyZNGLwaNXgXav9hwKuvhWqUaFKCtWPQiUSVP2DjBs9RK_ddj-ajWhIPd0a_d9Ue6gvFEiIdg |
| CitedBy_id | crossref_primary_10_1007_s11042_023_16712_z crossref_primary_10_1155_2022_8559011 crossref_primary_10_1007_s11042_023_14367_4 crossref_primary_10_1016_j_bspc_2022_104213 crossref_primary_10_1016_j_cmpb_2022_107157 crossref_primary_10_1016_j_compeleceng_2022_108219 |
| Cites_doi | 10.1023/A:1014080923068 10.1007/978-3-030-32486-5_6 10.1016/j.patrec.2012.12.022 10.1117/12.2182772 10.1109/ICMLA.2016.0032 10.1007/s13369-018-3400-2 10.1109/ACCESS.2015.2502220 10.2214/AJR.10.6062 10.1109/ACCESS.2019.2916894 10.1056/NEJMoa0810084 10.1109/TIP.2008.2004611 10.1007/978-1-4614-7245-2_3 10.1007/s10278-018-0160-1 10.1023/A:1020874308076 10.1016/j.patcog.2011.11.019 10.1109/TIP.2008.2002304 10.1016/j.asoc.2020.106328 10.2174/1573405613666170123124652 10.1117/12.911061 10.1016/j.bspc.2011.09.003 10.1117/12.877844 10.1016/j.media.2017.08.006 10.1118/1.3521470 10.1023/A:1007979827043 10.1007/978-3-319-60964-5_27 10.1007/s10915-008-9220-x 10.1007/s11263-006-7533-5 10.1007/978-3-319-06593-9_13 10.2174/1573405613666170504145842 10.1148/radiol.13121454 10.1002/cncr.29874 10.1137/040615286 10.1016/j.media.2012.10.004 10.1097/MOU.0b013e32835481c2 10.1002/jmri.25983 10.1016/j.patcog.2009.10.010 10.2214/AJR.13.11046 10.1007/s11042-018-6487-2 10.1016/j.patrec.2019.11.017 10.1073/pnas.1505935112 10.1118/1.1593633 10.1117/12.2007927 10.1007/978-3-030-53980-1_107 10.1109/ICASSP.2015.7178105 10.1186/s40644-016-0068-2 10.1117/12.2043751 10.1109/83.902291 10.1117/12.2006336 10.1117/12.2007979 10.1109/EMBC.2014.6944342 10.1007/978-981-15-2071-6_17 10.3390/info8020049 10.1117/12.878312 10.1088/0031-9155/57/6/1527 10.3389/fonc.2017.00259 10.1117/12.877549 10.1002/jmri.23618 10.1186/s12880-015-0069-9 10.1016/j.eururo.2014.10.026 10.1109/TBME.2015.2485779 10.1002/jmri.25562 10.1007/978-981-13-8950-4_25 10.1109/ICCSP48568.2020.9182093 10.1007/BF00133570 10.1007/s10257-014-0239-2 10.1002/jmri.24487 10.1117/12.877231 10.1109/TIP.2010.2069690 10.21928/uhdjst.v4n1y2020.pp9-17 10.1109/83.661186 10.1088/1361-6560/aa7731 10.1016/j.compbiomed.2015.02.009 10.1109/34.841758 10.1142/S0218001420550113 10.1109/ICCV.1995.466871 10.1109/ICNN.1995.488968 10.1088/0031-9155/57/12/3833 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-021-11133-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Computer Science Database (NC LIVE) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 30580 |
| ExternalDocumentID | 10_1007_s11042_021_11133_2 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c249t-fc9fda0261e1894e2cf7a4a0864cdfc21fcc3d90966c4fed0e8064e66ce121143 |
| IEDL.DBID | AGYKE |
| ISSN | 1380-7501 |
| IngestDate | Fri Jul 25 04:32:46 EDT 2025 Thu Apr 24 22:59:26 EDT 2025 Wed Oct 01 04:51:14 EDT 2025 Fri Feb 21 02:48:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Multi-parametric Segmentation MRI Prostate Optimization Cancer |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-fc9fda0261e1894e2cf7a4a0864cdfc21fcc3d90966c4fed0e8064e66ce121143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2611-9005 |
| PQID | 2572731385 |
| PQPubID | 54626 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2572731385 crossref_primary_10_1007_s11042_021_11133_2 crossref_citationtrail_10_1007_s11042_021_11133_2 springer_journals_10_1007_s11042_021_11133_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210800 2021-08-00 20210801 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ViswanathSEBlochNBChappelowJCTothRRofskyNMGenegaEMLenkinskiREMadabhushiACentral gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imageryJ Magn Reson Imaging201236121322410.1002/jmri.23618 KassMWitkinATerzopoulosDSnakes: active contour modelsInt J Comput Vis1988143213310646.6810510.1007/BF00133570 Duda D, Kretowski M, Mathieu R, de Crevoisier R, Bezy-Wendling J (2014) Multi-image texture analysis in classification of prostatic tissues from MRI. Preliminary results. InInformation Technologies in Biomedicine, volume 3 (pp. 139-150). Springer, Cham ZhangLLimCPIntelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble modelsAppl Soft Comput20202010632810.1016/j.asoc.2020.106328 ParfaitSWalkerPMCréhangeGTizonXMiteranJClassification of prostate magnetic resonance spectra using support vector machineBiomed Signal Process Control20127549950810.1016/j.bspc.2011.09.003Sep 1 Litjens GJ, Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ (2011) Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630T). Intl Soc Opt Photonics Thamaraichelvi B (2020) PSO optimized pulse coupled neural network for segmenting MR brain image. In2020 international conference on communication and signal processing (ICCSP) (pp. 0731-0733). IEEE de RooijMHamoenEHFüttererJJBarentszJORoversMMAccuracy of multiparametric MRI for prostate cancer detection: a meta-analysisAm J Roentgenol2014202234335110.2214/AJR.13.11046 Liu Z, Jiang W, Lee KH, Lo YL, Ng YL, Dou Q, Vardhanabhuti V, Kwok KW (2019) A two-stage approach for automated prostate lesion detection and classification with mask R-CNN and weakly supervised deep neural network. InWorkshop on artificial intelligence in radiation therapy (pp. 43-51). Springer, Cham LeMHChenJWangLWangZLiuWChengKTYangXAutomated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networksPhys Med Biol201762166497651410.1088/1361-6560/aa7731 LemaîtreGMartíRFreixenetJVilanovaJCWalkerPMMeriaudeauFComputerAided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a reviewComput Biol Med20156083110.1016/j.compbiomed.2015.02.009 CremersDNonlinear dynamical shape priors for level set segmentationJ Sci Comput2008352–313214324299351203.6504210.1007/s10915-008-9220-x Viswanath S, Bloch BN, Chappelow J, Patel P, Rofsky N, Lenkinski R, Genega E, Madabhushi A (2011) Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): detecting prostate cancer on multi-parametric MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630U). Intl Soc Opt Photonics. SchröderFHHugossonJRoobolMJTammelaTLCiattoSNelenVKwiatkowskiMLujanMLiljaHZappaMDenisLJScreening and prostate-cancer mortality in a randomized European studyN Engl J Med2009360131320132810.1056/NEJMoa0810084 AlkadiRTaherFEl-BazAWerghiNA deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance imagesJ Digit Imaging201932579380710.1007/s10278-018-0160-1 GargGJunejaMA survey of prostate segmentation techniques in different imaging modalitiesCurr Med Imag2018141194610.2174/1573405613666170504145842 LanktonSTannenbaumALocalizing region-based active contoursIEEE Trans Image Process200817112029203925172851371.9421310.1109/TIP.2008.2004611 LiuSPengYA local region-based chan-vese model for image segmentationPattern Recogn2012457276927791236.6827510.1016/j.patcog.2011.11.019 ParagiosNDericheRGeodesic active contours and level sets for the detection and tracking of moving objectsIEEE Trans Pattern Anal Mach Intell200022326628010.1109/34.841758 Lemaitre G, Massich J, Martí R, Freixenet J, Vilanova JC, Walker PM, Sidibé D, Mériaudeau F (2015) A boosting approach for prostate cancer detection using multi-parametric MRI. InTwelfth international conference on quality control by artificial vision 2015 Apr 30 (Vol. 9534, p. 95340A). Intl Soc Opt Photonics VeseLAChanTFA multiphase level set framework for image segmentation using the Mumford and shah modelInt J Comput Vis2002502712931012.6878210.1023/A:1020874308076 RundoLMilitelloCRussoGGarufiAVitabileSGilardiMCMauriGAutomated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imagingInformation.2017824910.3390/info8020049 Algohary A, Viswanath S, Shiradkar R, Ghose S, Pahwa S, Moses D, Jambor I, Shnier R, Böhm M, Haynes AM, Brenner P (2018) Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging 22 AndersonDGoldenBWasilEZhangHPredicting prostate cancer risk using magnetic resonance imaging dataIseB201513459960810.1007/s10257-014-0239-2 TurkbeyBChoykePLMultiparametric MRI and prostate cancer diagnosis and risk stratificationCurr Opin Urol201222431031510.1097/MOU.0b013e32835481c2 WangLFYuZPanCA unified level set framework utilizing parameter priors for medical image segmentationSci China Inf Sci201255114 FilsonCPNatarajanSMargolisDJHuangJLieuPDoreyFJReiterREMarksLSProstate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsiesCancer.2016122688489210.1002/cncr.29874 TiwariPKurhanewiczJMadabhushiAMulti-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRSMed Image Anal201317221923510.1016/j.media.2012.10.004 Wang L, Pan C (2015) Explicit order model for region-based level set segmentation. InAcoustics, speech and signal processing (ICASSP), 2015 IEEE international conference on Apr 19 (pp. 927-931). IEEE. Lemaitre G. (n.d.) Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imaging (Doctoral dissertation, Ph. D. dissertation, Universitat de Girona and Université de Bourgogne). ValerioMDonaldsonIEmbertonMEhdaieBHadaschikBAMarksLSMozerPRastinehadARAhmedHUDetection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic reviewEur Urol201568181910.1016/j.eururo.2014.10.026 LiCKaoC-YGoreJCDingZMinimization of region-scalable fitting energy for image segmentationIEEE Trans Image Process200817101940194925172771371.9422510.1109/TIP.2008.2002304 SharifMAminJRazaMYasminMSatapathySCAn integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumorPattern Recogn Lett202012915015710.1016/j.patrec.2019.11.017 CremersDOsherSJSoattoSKernel density estimation and intrinsic alignment for shape priors in level set segmentationInt J Comput Vis200669333535110.1007/s11263-006-7533-5 GargGJunejaMA survey of denoising techniques for multi-parametric prostate MRIMultimed Tools Appl20197810126891272210.1007/s11042-018-6487-2 RamuduKBabuTRSegmentation of tissues from MRI biomedical images using kernel fuzzy PSO clustering based level set approachCurr Med Imag201814338940010.2174/1573405613666170123124652 SungYSKwonHJParkBWChoGLeeCKChoKSKimJKProstate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter mapsAm J Roentgenol201119751122112910.2214/AJR.10.6062 ChanTFVeseLAActive contours without edgesIEEE Trans Image Process2001102662771039.6877910.1109/83.902291 Cameron A, Modhafar A, Khalvati F, Lui D, Shafiee MJ, Wong A, Haider M (2014) Multiparametric MRI Prostate cancer analysis via a hybrid morphological-textural model. InEngineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE (pp. 3357-3360). IEEE Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Proceedings of IEEE international conference on neural networks. IV. Pp. 1942–1948 YangXLiuCWangZYangJLe MinHWangLChengKTCo-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRIMed Image Anal20174221222710.1016/j.media.2017.08.006 ZhangKHSongHHZhangLActive contours driven by local image fitting energyPattern Recogn2010434119912061192.6862410.1016/j.patcog.2009.10.010 Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: A new variational formulation,” in IEEE Conference on Computer Vision and Pattern Recogn, pp. 430–436 American Cancer Society. (2020) Facts & Figures 2020. American Cancer Society. Atlanta, Ga Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. IEEE Intl Conf Comput Vis:694–699 LopesRAyacheAMakniNPuechPVillersAMordonSBetrouniNProstate cancer characterization on MR images using fractal featuresMed Phys2011381839510.1118/1.3521470 Peng Y, Jiang Y, Antic T, Giger ML, Eggener S, Oto A (2013) A study of T 2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86701H). Intl Soc Opt Photonics. Kate V, Shukla P (2020) Image segmentation of breast Cancer histopathology images using PSO-based clustering technique. InSocial networking and computational intelligence (pp. 207-216). Springer, Singapore Parra NA, Pollack A, Chinea FM, Abramowitz MC, Marples B, Munera F, Castillo R, Kryvenko ON, Punnen S, Stoyanova R (2017) automatic Detection and Quantitative Dce-Mri scoring of Prostate cancer aggressiveness. Frontiers in oncology. 7 PengYJiangYYangCBrownJBAnticTSethiISchmid-TannwaldCGigerMLEggenerSEOtoAQuantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development studyRadiology.2013267378779610.1148/radiol.13121454 VosPCBarentszJOKarssemeijerNHuismanHJAutomatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysisPhys Med Biol20125761527154210.1088/0031-9155/57/6/1527 Wang L, Zwiggelaar R (2 11133_CR48 F Khalvati (11133_CR28) 2015; 15 M Valerio (11133_CR68) 2015; 68 D Anderson (11133_CR4) 2015; 13 SE Viswanath (11133_CR71) 2012; 36 C Xu (11133_CR77) 1998; 7 B Turkbey (11133_CR67) 2012; 22 K Ramudu (11133_CR57) 2018; 14 YS Sung (11133_CR64) 2011; 197 TF Chan (11133_CR10) 2001; 10 ZF Mohammed (11133_CR47) 2020; 4 M Nikolova (11133_CR50) 2006; 66 X Yang (11133_CR78) 2017; 42 11133_CR54 11133_CR55 11133_CR59 M Kass (11133_CR25) 1988; 1 LF Wang (11133_CR76) 2013; 34 11133_CR17 D Fehr (11133_CR18) 2015; 112 G Garg (11133_CR22) 2019; 78 D Cremers (11133_CR14) 2008; 35 F Zhao (11133_CR81) 2019; 7 S Liu (11133_CR41) 2012; 45 LA Vese (11133_CR69) 2002; 50 LF Wang (11133_CR75) 2012; 55 11133_CR62 11133_CR20 L Rundo (11133_CR58) 2017; 8 11133_CR65 11133_CR23 11133_CR26 11133_CR27 11133_CR29 D Cremers (11133_CR15) 2006; 69 L Matulewicz (11133_CR45) 2014; 40 R Chakraborty (11133_CR9) 2019; 44 Y Peng (11133_CR56) 2013; 267 R Alkadi (11133_CR2) 2019; 32 S Lankton (11133_CR30) 2008; 17 11133_CR3 A Cameron (11133_CR6) 2016; 63 KH Zhang (11133_CR80) 2010; 43 11133_CR1 L Zhang (11133_CR79) 2020; 20 CP Filson (11133_CR19) 2016; 122 PC Vos (11133_CR72) 2012; 57 SB Ginsburg (11133_CR24) 2017; 46 11133_CR70 G Garg (11133_CR21) 2018; 14 11133_CR73 11133_CR74 11133_CR7 11133_CR32 P Tiwari (11133_CR66) 2013; 17 T Clark (11133_CR13) 2017; 4 11133_CR33 11133_CR5 11133_CR35 R Lopes (11133_CR44) 2011; 38 E Niaf (11133_CR49) 2012; 57 V Caselles (11133_CR8) 1997; 22 M de Rooij (11133_CR16) 2014; 202 11133_CR38 I Chan (11133_CR11) 2003; 30 11133_CR39 G Lemaître (11133_CR34) 2015; 60 C Li (11133_CR36) 2008; 17 M Sharif (11133_CR61) 2020; 129 C Li (11133_CR37) 2010; 19 MH Le (11133_CR31) 2017; 62 N Paragios (11133_CR52) 2002; 46 AG Chung (11133_CR12) 2015; 3 S Parfait (11133_CR53) 2012; 7 11133_CR40 P Steiger (11133_CR63) 2016; 16 11133_CR42 FH Schröder (11133_CR60) 2009; 360 11133_CR43 N Paragios (11133_CR51) 2000; 22 J Zhao (11133_CR82) 2020; 34 11133_CR46 |
| References_xml | – reference: Niaf E, Rouvière O, Lartizien C (2011) Computer-aided diagnosis for prostate cancer detection in the peripheral zone via multisequence MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79633P). Intl Soc Opt Photonics – reference: Cameron A, Modhafar A, Khalvati F, Lui D, Shafiee MJ, Wong A, Haider M (2014) Multiparametric MRI Prostate cancer analysis via a hybrid morphological-textural model. InEngineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE (pp. 3357-3360). IEEE – reference: Khalvati F, Zhang J, Wong A, Haider MA (2016) Bag of bags: nested multi instance classification for prostate Cancer detection. InMachine learning and applications (ICMLA), 2016 15th IEEE international conference on (pp. 146-151). IEEE – reference: ParagiosNDericheRGeodesic active contours and level sets for the detection and tracking of moving objectsIEEE Trans Pattern Anal Mach Intell200022326628010.1109/34.841758 – reference: SteigerPThoenyHCProstate MRI based on PI-RADS version 2: how we review and reportCancer Imaging2016161910.1186/s40644-016-0068-2 – reference: WangLFWuH-YPanCRegion based image segmentation with local signed difference energyPattern Recogn Lett201334663764510.1016/j.patrec.2012.12.022 – reference: GinsburgSBAlgoharyAPahwaSGulaniVPonskyLAronenHJBoströmPJBöhmMHaynesAMBrennerPDelpradoWRadiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: preliminary findings from a multi-institutional studyJ Magn Reson Imaging201746118419310.1002/jmri.25562 – reference: Parra NA, Pollack A, Chinea FM, Abramowitz MC, Marples B, Munera F, Castillo R, Kryvenko ON, Punnen S, Stoyanova R (2017) automatic Detection and Quantitative Dce-Mri scoring of Prostate cancer aggressiveness. Frontiers in oncology. 7 – reference: CasellesVKimmelRSapiroGGeodesic active contoursInt J Comput Vis199722161790894.6813110.1023/A:1007979827043 – reference: KhalvatiFWongAHaiderMAAutomated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature modelsBMC Med Imaging20151512710.1186/s12880-015-0069-9 – reference: Lemaitre G. (n.d.) Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imaging (Doctoral dissertation, Ph. D. dissertation, Universitat de Girona and Université de Bourgogne). – reference: Rundo L, Han C, Zhang J, Hataya R, Nagano Y, Militello C, Ferretti C, Nobile MS, Tangherloni A, Gilardi MC, Vitabile S (2020) CNN-based prostate zonal segmentation on T2-weighted MR images: a cross-dataset study. InNeural approaches to dynamics of signal exchanges (pp. 269-280). Springer, Singapore – reference: ZhangKHSongHHZhangLActive contours driven by local image fitting energyPattern Recogn2010434119912061192.6862410.1016/j.patcog.2009.10.010 – reference: CameronAKhalvatiFHaiderMAWongAMAPS: a quantitative radiomics approach for prostate cancer detectionIEEE Trans Biomed Eng20166361145115610.1109/TBME.2015.2485779 – reference: ParagiosNDericheRGeodesic active regions and level set methods for supervised texture segmentationInt J Comput Vis2002462232471012.6872610.1023/A:1014080923068 – reference: ValerioMDonaldsonIEmbertonMEhdaieBHadaschikBAMarksLSMozerPRastinehadARAhmedHUDetection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic reviewEur Urol201568181910.1016/j.eururo.2014.10.026 – reference: ZhaoFChenYLiuHFanJAlternate PSO-based adaptive interval type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentationIEEE Access20197640286403910.1109/ACCESS.2019.2916894 – reference: TiwariPKurhanewiczJMadabhushiAMulti-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRSMed Image Anal201317221923510.1016/j.media.2012.10.004 – reference: Wang L, Zwiggelaar R (2017) 3d texton based prostate cancer detection using multiparametric magnetic resonance imaging. InAnnual conference on medical image understanding and analysis (pp. 309-319). Springer, Cham – reference: VeseLAChanTFA multiphase level set framework for image segmentation using the Mumford and shah modelInt J Comput Vis2002502712931012.6878210.1023/A:1020874308076 – reference: CremersDNonlinear dynamical shape priors for level set segmentationJ Sci Comput2008352–313214324299351203.6504210.1007/s10915-008-9220-x – reference: GargGJunejaMA survey of prostate segmentation techniques in different imaging modalitiesCurr Med Imag2018141194610.2174/1573405613666170504145842 – reference: Duda D, Kretowski M, Mathieu R, de Crevoisier R, Bezy-Wendling J (2014) Multi-image texture analysis in classification of prostatic tissues from MRI. Preliminary results. InInformation Technologies in Biomedicine, volume 3 (pp. 139-150). Springer, Cham – reference: Giannini V, Vignati A, Mazzetti S, De Luca M, Bracco C, Stasi M, Russo F, Armando E, Regge D (2013) A prostate CAD system based on multiparametric analysis of DCE T1-w, and DW automatically registered images. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86703E). Intl Soc Opt Photonics. – reference: SharifMAminJRazaMYasminMSatapathySCAn integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumorPattern Recogn Lett202012915015710.1016/j.patrec.2019.11.017 – reference: ZhangLLimCPIntelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble modelsAppl Soft Comput20202010632810.1016/j.asoc.2020.106328 – reference: LiCXuCMemberSGuiCFoxMDDistance regularized level set evolution and its application to image segmentationIEEE Trans Image Process201019123243325427897101371.9422610.1109/TIP.2010.2069690 – reference: Liu P, Wang S, Turkbey B, Grant K, Pinto P, Choyke P, Wood BJ, Summers RM (2013) A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86701G). Intl Soc Opt Photonics. – reference: FehrDVeeraraghavanHWibmerAGondoTMatsumotoKVargasHASalaEHricakHDeasyJOAutomatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance imagesProc Natl Acad Sci201511246E6265E627310.1073/pnas.1505935112 – reference: Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Proceedings of IEEE international conference on neural networks. IV. Pp. 1942–1948 – reference: FilsonCPNatarajanSMargolisDJHuangJLieuPDoreyFJReiterREMarksLSProstate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsiesCancer.2016122688489210.1002/cncr.29874 – reference: LopesRAyacheAMakniNPuechPVillersAMordonSBetrouniNProstate cancer characterization on MR images using fractal featuresMed Phys2011381839510.1118/1.3521470 – reference: Liu Z, Jiang W, Lee KH, Lo YL, Ng YL, Dou Q, Vardhanabhuti V, Kwok KW (2019) A two-stage approach for automated prostate lesion detection and classification with mask R-CNN and weakly supervised deep neural network. InWorkshop on artificial intelligence in radiation therapy (pp. 43-51). Springer, Cham – reference: VosPCBarentszJOKarssemeijerNHuismanHJAutomatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysisPhys Med Biol20125761527154210.1088/0031-9155/57/6/1527 – reference: NiafERouvièreOMège-LechevallierFBratanFLartizienCComputer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRIPhys Med Biol201257123833385110.1088/0031-9155/57/12/3833 – reference: Viswanath S, Bloch BN, Chappelow J, Patel P, Rofsky N, Lenkinski R, Genega E, Madabhushi A (2011) Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): detecting prostate cancer on multi-parametric MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630U). Intl Soc Opt Photonics. – reference: ChanTFVeseLAActive contours without edgesIEEE Trans Image Process2001102662771039.6877910.1109/83.902291 – reference: Litjens GJ, Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ (2011) Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630T). Intl Soc Opt Photonics – reference: ParfaitSWalkerPMCréhangeGTizonXMiteranJClassification of prostate magnetic resonance spectra using support vector machineBiomed Signal Process Control20127549950810.1016/j.bspc.2011.09.003Sep 1 – reference: Algohary A, Viswanath S, Shiradkar R, Ghose S, Pahwa S, Moses D, Jambor I, Shnier R, Böhm M, Haynes AM, Brenner P (2018) Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging 22 – reference: PengYJiangYYangCBrownJBAnticTSethiISchmid-TannwaldCGigerMLEggenerSEOtoAQuantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development studyRadiology.2013267378779610.1148/radiol.13121454 – reference: RundoLMilitelloCRussoGGarufiAVitabileSGilardiMCMauriGAutomated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imagingInformation.2017824910.3390/info8020049 – reference: Wang L, Pan C (2015) Explicit order model for region-based level set segmentation. InAcoustics, speech and signal processing (ICASSP), 2015 IEEE international conference on Apr 19 (pp. 927-931). IEEE. – reference: Litjens GJ, Elliott R, Shih N, Feldman M, Barentsz JO, Hulsbergen-van de Kaa CA, Kovacs I, Huisman HJ, Madabhushi A (2014) Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI. InMedical imaging 2014: computer-aided diagnosis (Vol. 9035, p. 903512). Intl Soc Opt Photonics – reference: ChakrabortyRSushilRGargMLAn improved PSO-based multilevel image segmentation technique using minimum cross-entropy thresholdingArab J Sci Eng20194443005302010.1007/s13369-018-3400-2 – reference: SungYSKwonHJParkBWChoGLeeCKChoKSKimJKProstate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter mapsAm J Roentgenol201119751122112910.2214/AJR.10.6062 – reference: MatulewiczLJansenJFBokachevaLVargasHAAkinOFineSWShukla-DaveAEasthamJAHricakHKoutcherJAZakianKLAnatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imagingJ Magn Reson Imaging20144061414142110.1002/jmri.24487 – reference: GargGJunejaMA survey of denoising techniques for multi-parametric prostate MRIMultimed Tools Appl20197810126891272210.1007/s11042-018-6487-2 – reference: Peng Y, Jiang Y, Antic T, Giger ML, Eggener S, Oto A (2013) A study of T 2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86701H). Intl Soc Opt Photonics. – reference: LeMHChenJWangLWangZLiuWChengKTYangXAutomated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networksPhys Med Biol201762166497651410.1088/1361-6560/aa7731 – reference: Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. IEEE Intl Conf Comput Vis:694–699 – reference: LiCKaoC-YGoreJCDingZMinimization of region-scalable fitting energy for image segmentationIEEE Trans Image Process200817101940194925172771371.9422510.1109/TIP.2008.2002304 – reference: YangXLiuCWangZYangJLe MinHWangLChengKTCo-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRIMed Image Anal20174221222710.1016/j.media.2017.08.006 – reference: Kate V, Shukla P (2020) Image segmentation of breast Cancer histopathology images using PSO-based clustering technique. InSocial networking and computational intelligence (pp. 207-216). Springer, Singapore – reference: Song X, Li H (2020) Segmentation based on particle swarm optimization. InInternational conference on applications and techniques in cyber security and intelligence (pp. 731-736). Springer, Cham – reference: ClarkTZhangJBaigSWongAHaiderMAKhalvatiFFully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networksJ Med Imagisg201744 – reference: KassMWitkinATerzopoulosDSnakes: active contour modelsInt J Comput Vis1988143213310646.6810510.1007/BF00133570 – reference: Thamaraichelvi B (2020) PSO optimized pulse coupled neural network for segmenting MR brain image. In2020 international conference on communication and signal processing (ICCSP) (pp. 0731-0733). IEEE – reference: ZhaoJWangXLiMA novel Neutrosophic image segmentation based on improved fuzzy C-means algorithm (NIS-IFCM)Int J Pattern Recognit Artif Intell20203405205501110.1142/S0218001420550113 – reference: Firjani A, Khalifa F, Elnakib A, Gimel’farb G, El-Ghar MA, Elmaghraby A, El-Baz A (2014) A novel image-based approach for early detection of prostate cancer using DCE-MRI. InComputational intelligence in biomedical imaging (pp. 55-82). Springer, New York, NY – reference: XuCPrinceJLSnakes, shapes, and gradient vector flowIEEE Trans Image Process19987335936916695280973.9400310.1109/83.661186 – reference: AndersonDGoldenBWasilEZhangHPredicting prostate cancer risk using magnetic resonance imaging dataIseB201513459960810.1007/s10257-014-0239-2 – reference: ChanIWellsWMulkernRVHakerSZhangJZouKHMaierSETempanyCDetection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifierMed Phys20033092390239810.1118/1.1593633 – reference: American Cancer Society. (2020) Facts & Figures 2020. American Cancer Society. Atlanta, Ga – reference: MohammedZFAbdullaAAThresholding-based white blood cells segmentation from microscopic blood imagesUHD J Sci Technol20204191710.21928/uhdjst.v4n1y2020.pp9-17 – reference: LanktonSTannenbaumALocalizing region-based active contoursIEEE Trans Image Process200817112029203925172851371.9421310.1109/TIP.2008.2004611 – reference: Lemaitre G, Massich J, Martí R, Freixenet J, Vilanova JC, Walker PM, Sidibé D, Mériaudeau F (2015) A boosting approach for prostate cancer detection using multi-parametric MRI. InTwelfth international conference on quality control by artificial vision 2015 Apr 30 (Vol. 9534, p. 95340A). Intl Soc Opt Photonics – reference: AlkadiRTaherFEl-BazAWerghiNA deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance imagesJ Digit Imaging201932579380710.1007/s10278-018-0160-1 – reference: LemaîtreGMartíRFreixenetJVilanovaJCWalkerPMMeriaudeauFComputerAided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a reviewComput Biol Med20156083110.1016/j.compbiomed.2015.02.009 – reference: Mazzetti S, De Luca M, Bracco C, Vignati A, Giannini V, Stasi M, Russo F, Armando E, Agliozzo S, Regge D (2011) A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79633Q). Intl Soc Opt Photonics – reference: de RooijMHamoenEHFüttererJJBarentszJORoversMMAccuracy of multiparametric MRI for prostate cancer detection: a meta-analysisAm J Roentgenol2014202234335110.2214/AJR.13.11046 – reference: Litjens GJ, Barentsz JO, Karssemeijer N, Huisman HJ (2012) Automated computer-aided detection of prostate cancer in MR images: from a whole-organ to a zone-based approach. InMedical imaging 2012: computer-aided diagnosis (Vol. 8315, p. 83150G). Intl Soc Opt Photonics. – reference: WangLFYuZPanCA unified level set framework utilizing parameter priors for medical image segmentationSci China Inf Sci201255114 – reference: Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: A new variational formulation,” in IEEE Conference on Computer Vision and Pattern Recogn, pp. 430–436 – reference: RamuduKBabuTRSegmentation of tissues from MRI biomedical images using kernel fuzzy PSO clustering based level set approachCurr Med Imag201814338940010.2174/1573405613666170123124652 – reference: TurkbeyBChoykePLMultiparametric MRI and prostate cancer diagnosis and risk stratificationCurr Opin Urol201222431031510.1097/MOU.0b013e32835481c2 – reference: ChungAGKhalvatiFShafieeMJHaiderMAWongAProstate cancer detection via a quantitative radiomics-driven conditional random field frameworkIEEE Access.201532531254110.1109/ACCESS.2015.2502220 – reference: NikolovaMEsedogluSChanTFAlgorithms for finding global minimizers of image segmentation and denoising modelsSIAM J Appl Math20066651632164822460721117.9400210.1137/040615286 – reference: ViswanathSEBlochNBChappelowJCTothRRofskyNMGenegaEMLenkinskiREMadabhushiACentral gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imageryJ Magn Reson Imaging201236121322410.1002/jmri.23618 – reference: CremersDOsherSJSoattoSKernel density estimation and intrinsic alignment for shape priors in level set segmentationInt J Comput Vis200669333535110.1007/s11263-006-7533-5 – reference: LiuSPengYA local region-based chan-vese model for image segmentationPattern Recogn2012457276927791236.6827510.1016/j.patcog.2011.11.019 – reference: SchröderFHHugossonJRoobolMJTammelaTLCiattoSNelenVKwiatkowskiMLujanMLiljaHZappaMDenisLJScreening and prostate-cancer mortality in a randomized European studyN Engl J Med2009360131320132810.1056/NEJMoa0810084 – volume: 46 start-page: 223 year: 2002 ident: 11133_CR52 publication-title: Int J Comput Vis doi: 10.1023/A:1014080923068 – ident: 11133_CR43 doi: 10.1007/978-3-030-32486-5_6 – volume: 34 start-page: 637 issue: 6 year: 2013 ident: 11133_CR76 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2012.12.022 – ident: 11133_CR33 doi: 10.1117/12.2182772 – ident: 11133_CR29 doi: 10.1109/ICMLA.2016.0032 – volume: 44 start-page: 3005 issue: 4 year: 2019 ident: 11133_CR9 publication-title: Arab J Sci Eng doi: 10.1007/s13369-018-3400-2 – ident: 11133_CR35 – volume: 3 start-page: 2531 year: 2015 ident: 11133_CR12 publication-title: IEEE Access. doi: 10.1109/ACCESS.2015.2502220 – volume: 197 start-page: 1122 issue: 5 year: 2011 ident: 11133_CR64 publication-title: Am J Roentgenol doi: 10.2214/AJR.10.6062 – volume: 7 start-page: 64028 year: 2019 ident: 11133_CR81 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916894 – volume: 4 issue: 4 year: 2017 ident: 11133_CR13 publication-title: J Med Imagisg – volume: 360 start-page: 1320 issue: 13 year: 2009 ident: 11133_CR60 publication-title: N Engl J Med doi: 10.1056/NEJMoa0810084 – volume: 17 start-page: 2029 issue: 11 year: 2008 ident: 11133_CR30 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.2004611 – ident: 11133_CR20 doi: 10.1007/978-1-4614-7245-2_3 – volume: 32 start-page: 793 issue: 5 year: 2019 ident: 11133_CR2 publication-title: J Digit Imaging doi: 10.1007/s10278-018-0160-1 – volume: 50 start-page: 271 year: 2002 ident: 11133_CR69 publication-title: Int J Comput Vis doi: 10.1023/A:1020874308076 – volume: 45 start-page: 2769 issue: 7 year: 2012 ident: 11133_CR41 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.11.019 – volume: 17 start-page: 1940 issue: 10 year: 2008 ident: 11133_CR36 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.2002304 – volume: 20 start-page: 106328 year: 2020 ident: 11133_CR79 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106328 – volume: 14 start-page: 389 issue: 3 year: 2018 ident: 11133_CR57 publication-title: Curr Med Imag doi: 10.2174/1573405613666170123124652 – ident: 11133_CR3 – ident: 11133_CR39 doi: 10.1117/12.911061 – volume: 7 start-page: 499 issue: 5 year: 2012 ident: 11133_CR53 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2011.09.003 – ident: 11133_CR38 doi: 10.1117/12.877844 – ident: 11133_CR32 – volume: 42 start-page: 212 year: 2017 ident: 11133_CR78 publication-title: Med Image Anal doi: 10.1016/j.media.2017.08.006 – volume: 38 start-page: 83 issue: 1 year: 2011 ident: 11133_CR44 publication-title: Med Phys doi: 10.1118/1.3521470 – volume: 22 start-page: 61 issue: 1 year: 1997 ident: 11133_CR8 publication-title: Int J Comput Vis doi: 10.1023/A:1007979827043 – ident: 11133_CR74 doi: 10.1007/978-3-319-60964-5_27 – volume: 35 start-page: 132 issue: 2–3 year: 2008 ident: 11133_CR14 publication-title: J Sci Comput doi: 10.1007/s10915-008-9220-x – volume: 69 start-page: 335 issue: 3 year: 2006 ident: 11133_CR15 publication-title: Int J Comput Vis doi: 10.1007/s11263-006-7533-5 – ident: 11133_CR17 doi: 10.1007/978-3-319-06593-9_13 – volume: 14 start-page: 19 issue: 1 year: 2018 ident: 11133_CR21 publication-title: Curr Med Imag doi: 10.2174/1573405613666170504145842 – volume: 267 start-page: 787 issue: 3 year: 2013 ident: 11133_CR56 publication-title: Radiology. doi: 10.1148/radiol.13121454 – volume: 122 start-page: 884 issue: 6 year: 2016 ident: 11133_CR19 publication-title: Cancer. doi: 10.1002/cncr.29874 – volume: 66 start-page: 1632 issue: 5 year: 2006 ident: 11133_CR50 publication-title: SIAM J Appl Math doi: 10.1137/040615286 – volume: 17 start-page: 219 issue: 2 year: 2013 ident: 11133_CR66 publication-title: Med Image Anal doi: 10.1016/j.media.2012.10.004 – volume: 22 start-page: 310 issue: 4 year: 2012 ident: 11133_CR67 publication-title: Curr Opin Urol doi: 10.1097/MOU.0b013e32835481c2 – ident: 11133_CR1 doi: 10.1002/jmri.25983 – volume: 43 start-page: 1199 issue: 4 year: 2010 ident: 11133_CR80 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.10.010 – volume: 202 start-page: 343 issue: 2 year: 2014 ident: 11133_CR16 publication-title: Am J Roentgenol doi: 10.2214/AJR.13.11046 – volume: 78 start-page: 12689 issue: 10 year: 2019 ident: 11133_CR22 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6487-2 – volume: 129 start-page: 150 year: 2020 ident: 11133_CR61 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.11.017 – volume: 112 start-page: E6265 issue: 46 year: 2015 ident: 11133_CR18 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1505935112 – volume: 30 start-page: 2390 issue: 9 year: 2003 ident: 11133_CR11 publication-title: Med Phys doi: 10.1118/1.1593633 – ident: 11133_CR42 doi: 10.1117/12.2007927 – ident: 11133_CR62 doi: 10.1007/978-3-030-53980-1_107 – ident: 11133_CR73 doi: 10.1109/ICASSP.2015.7178105 – volume: 16 start-page: 9 issue: 1 year: 2016 ident: 11133_CR63 publication-title: Cancer Imaging doi: 10.1186/s40644-016-0068-2 – ident: 11133_CR40 doi: 10.1117/12.2043751 – volume: 10 start-page: 266 year: 2001 ident: 11133_CR10 publication-title: IEEE Trans Image Process doi: 10.1109/83.902291 – ident: 11133_CR23 doi: 10.1117/12.2006336 – ident: 11133_CR55 doi: 10.1117/12.2007979 – ident: 11133_CR5 doi: 10.1109/EMBC.2014.6944342 – ident: 11133_CR26 doi: 10.1007/978-981-15-2071-6_17 – volume: 8 start-page: 49 issue: 2 year: 2017 ident: 11133_CR58 publication-title: Information. doi: 10.3390/info8020049 – ident: 11133_CR70 doi: 10.1117/12.878312 – volume: 57 start-page: 1527 issue: 6 year: 2012 ident: 11133_CR72 publication-title: Phys Med Biol doi: 10.1088/0031-9155/57/6/1527 – ident: 11133_CR54 doi: 10.3389/fonc.2017.00259 – volume: 55 start-page: 1 year: 2012 ident: 11133_CR75 publication-title: Sci China Inf Sci – ident: 11133_CR46 doi: 10.1117/12.877549 – volume: 36 start-page: 213 issue: 1 year: 2012 ident: 11133_CR71 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.23618 – volume: 15 start-page: 27 issue: 1 year: 2015 ident: 11133_CR28 publication-title: BMC Med Imaging doi: 10.1186/s12880-015-0069-9 – volume: 68 start-page: 8 issue: 1 year: 2015 ident: 11133_CR68 publication-title: Eur Urol doi: 10.1016/j.eururo.2014.10.026 – volume: 63 start-page: 1145 issue: 6 year: 2016 ident: 11133_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2485779 – volume: 46 start-page: 184 issue: 1 year: 2017 ident: 11133_CR24 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25562 – ident: 11133_CR59 doi: 10.1007/978-981-13-8950-4_25 – ident: 11133_CR65 doi: 10.1109/ICCSP48568.2020.9182093 – volume: 1 start-page: 321 issue: 4 year: 1988 ident: 11133_CR25 publication-title: Int J Comput Vis doi: 10.1007/BF00133570 – volume: 13 start-page: 599 issue: 4 year: 2015 ident: 11133_CR4 publication-title: IseB doi: 10.1007/s10257-014-0239-2 – volume: 40 start-page: 1414 issue: 6 year: 2014 ident: 11133_CR45 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24487 – ident: 11133_CR48 doi: 10.1117/12.877231 – volume: 19 start-page: 3243 issue: 12 year: 2010 ident: 11133_CR37 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2069690 – volume: 4 start-page: 9 issue: 1 year: 2020 ident: 11133_CR47 publication-title: UHD J Sci Technol doi: 10.21928/uhdjst.v4n1y2020.pp9-17 – volume: 7 start-page: 359 issue: 3 year: 1998 ident: 11133_CR77 publication-title: IEEE Trans Image Process doi: 10.1109/83.661186 – volume: 62 start-page: 6497 issue: 16 year: 2017 ident: 11133_CR31 publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa7731 – volume: 60 start-page: 8 year: 2015 ident: 11133_CR34 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.02.009 – volume: 22 start-page: 266 issue: 3 year: 2000 ident: 11133_CR51 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.841758 – volume: 34 start-page: 2055011 issue: 05 year: 2020 ident: 11133_CR82 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001420550113 – ident: 11133_CR7 doi: 10.1109/ICCV.1995.466871 – ident: 11133_CR27 doi: 10.1109/ICNN.1995.488968 – volume: 57 start-page: 3833 issue: 12 year: 2012 ident: 11133_CR49 publication-title: Phys Med Biol doi: 10.1088/0031-9155/57/12/3833 |
| SSID | ssj0016524 |
| Score | 2.3194191 |
| Snippet | Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 30557 |
| SubjectTerms | 1155T: Advanced machine learning algorithms for biomedical data and imaging Computer Communication Networks Computer Science Data Structures and Information Theory Diagnosis Diffusion coefficient Image contrast Image enhancement Image segmentation Inhomogeneity Magnetic resonance imaging Medical imaging Methodology Multimedia Information Systems Particle swarm optimization Prostate Prostate cancer Special Purpose and Application-Based Systems Time dependence |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe9GDb7FaZQ_edDHZbPM4iKhYqmApYkFPIdmHCDatbcW_70y6sSroMeRxmJ2d-SY7830ARypCUB8YwTNtFZehjXiOaZljHETwYEUSZmW3RS_sDuTtY_uxBr1qFobaKquYWAZqPVL0j_wUXQszrR_E7fPxGyfVKDpdrSQ0MietoM9KirElaAhixqpD4_K617__OlcI207mNvY45krfjdHMh-l8GlWhlgWSXw-4-JmqFvjz15FpmYk667DqICS7mK_5BtRMsQlrlTwDc7t1E1a-cQ1uwVPfOQmbfmSTIRthrBi6IUxGuUyzqXkeulGkgo0suyKPmLCXgpVth5xowoekwKXYmIZFEKayu_ubbRh0rh-uutzpKnCFxdaMW5VYnVHxZfw4kUYoG2Uyw-JGKlwx4VulAp1gcRMqaY32TIzAxeCVIUI4GexAvRgVZhdYLuJceW0dRBYrMxnlfhYknpZejsgB7d0EvzJhqhzpOGlfvKYLumQye4pmT0uzp6IJx1_vjOeUG_8-3apWJnXbb5ounKUJJ9VqLW7__bW9_7-2D8uCHKRsAGxBfTZ5NwcISmb5ofO0T5TK2-k priority: 102 providerName: ProQuest |
| Title | Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI |
| URI | https://link.springer.com/article/10.1007/s11042-021-11133-2 https://www.proquest.com/docview/2572731385 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvRgtSpWa9mDN13JY_M6tqX1haWIAT2FZLMrok1L0yL4651NN60WFTyFkM2S7MzOfMPOfANwyj0E9bawaJxKTpkrPZqgW6ZoBxE8SCtw4yLbou9ehezm0XnURWF5me1eHkkWlnpZ7GaqUhKVUqDao9sUDe9GwbdVgY3W5dNtd3F64Dq6ma1vUPSIpi6W-XmW7w5piTJXDkYLf9OrQlh-6TzN5PViNk0u-McKieN_f2UHtjUAJa25xuzCmshqUC2bOxC912uw9YWpcA-eBlrFSP4eT4ZkhJZmqEs4ifKEKcnF81AXMmVkJElH6dOEvGSkSFqkimR8qPp3cTJWpSYIcsnd_fU-hL3uQ-eK6q4MlGOoNqWSBzKNVegmTD9gwuLSi1mMoRHjKG_LlJzbaYChkcuZFKkhfIQ9Au-EopNj9gFUslEmDoEklp9ww0ltT2Jcx7zEjO3ASJmRIO5AOdbBLEUTcU1ZrjpnvEVLsmW1khGuZFSsZGTV4WzxznhO2PHn6EYp8Uhv3jxCK4agDrXHqcN5KcDl499nO_rf8GPYtJQOFOmEDahMJzNxghBnmjRh3e9dNlGve-12v6n1G6_tbn9wj09Dq_UJxkzz7Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2F5gAcWiggQgPsAU6wwl5v_HGIKgiNEppEUdRI5eTa-4GQiBOSVFX_XH9bZ5x1A0j0lmPkeGXNjmfeeOfNA3inIgT1gRE801ZxGdqI55iWOcZBBA9WJGFWdluMwt5UfjtvndfgpuLCUFtlFRPLQK3nir6Rf0LXwkzrB3HrePGbk2oUna5WEhqZk1bQ7XLEmCN2nJrrKyzhVu3-V9zv90J0T846Pe5UBrjC0mPNrUqszqgUMX6cSCOUjTKZIdSXCp9f-FapQCcI9UMlrdGeiTGNG_xlaDyaDHDdB1CXgUyw-Kt_ORmNJ3fnGGHLyerGHsfc7Dvazoa85xM1hlokSO494OLv1LjFu_8c0ZaZr_sE9h1kZZ83PvYUaqY4hINKDoK56HAIj_-YbfgMvo-dU7LVVbacsTnGppkjfTLKnZqtzI-Zoz4VbG5ZhzxwyX4WrGxz5DSWfEaKX4otiJyCsJgNJ_3nMN2JhV_AXjEvzEtguYhz5bV0EFmsBGWU-1mQeFp6OSIVtHcD_MqEqXJDzklr41e6Hc9MZk_R7Glp9lQ04MPdPYvNiI97_92sdiZ1r_sq3TpnAz5Wu7W9_P_VXt2_2lt42DsbDtJBf3R6BI8EOUvZfNiEvfXy0rxGQLTO3zivY3Cxa0e_BVIdGdg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60gujBt1ife9CTLiabbR4HEVGr9YWIgp5istkVwaa1rYh_zV_nTLqxKujNY0mzhNkvM99kZ-YDWFcBknpPC55kRnHpm4CnGJY5-kEkD0ZEflJUW1z4xzfy5LZ2OwTvZS8MlVWWPrFw1FlL0TfybYQWRlrXC2vbxpZFXB7Ud9vPnBSk6KS1lNPoQ-RUv71i-tbdaRzgXm8IUT-83j_mVmGAK0w7etyoyGQJpSHaDSOphTJBIhOk-VLhswvXKOVlEdJ8X0mjM0eHGMI1_tI0Gk16uO4wjAQ0xZ261OtHnycYfs0K6oYOx6js2oadftueS00xVBxBQu8eF9-D4oDp_jicLWJefQomLFlle310TcOQzmdgshSCYNYvzMD4l6mGs3B3aeHIuq9Jp8la6JWatt2TUdTMWFc_NG3TU85ahu0T9jrsMWdFgSOngeRN0vpSrE1tKUiI2flVYw5u_sW-81DJW7leAJaKMFVOLfMCgzmgDFI38SInk06KHAXtXQW3NGGs7HhzUtl4igeDmcnsMZo9Lsweiypsft7T7g_3-PPfy-XOxPZF78YDWFZhq9ytweXfV1v8e7U1GEV4x2eNi9MlGBOElaLqcBkqvc6LXkEm1EtXC8gxuP9vjH8AkQYXcg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+based+segmentation+of+Cancer+in+multi-parametric+prostate+MRI&rft.jtitle=Multimedia+tools+and+applications&rft.au=Garg%2C+Gaurav&rft.au=Juneja%2C+Mamta&rft.date=2021-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=20&rft.spage=30557&rft.epage=30580&rft_id=info:doi/10.1007%2Fs11042-021-11133-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11133_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |