Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI

Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological co...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 20; pp. 30557 - 30580
Main Authors Garg, Gaurav, Juneja, Mamta
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-021-11133-2

Cover

Abstract Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological competencies. Although, manual segmentation of PCa on MRI is a tedious, operator-dependent and time consuming task. Therefore, Computer Aided Diagnosis (CAD) of PCa using mp-MRI images is highly desirable by employing computer-assisted segmentation approaches. In this paper, a method is proposed for segmentation of PCa based on level set with Particle Swarm Optimization (PSO) technique to address the limitations of existing techniques as PSO does not require any cost or objective function to be differentiable and it is easy to implement. The energy function is optimized with PSO based technique. The proposed approach is tested over three different mp-MRI modalities i.e., T2 weighted (T2w), Dynamic Contrast Enhanced (DCE) images and Apparent Diffusion Coefficient (ADC) Maps derived from Diffusion Weighted Images (DWI). The accuracy achieved by PSO based methodology is 7.6% greater than without PSO integration i.e., using Gradient descent with added computational overhead of 0.03 s. The experimental outcomes reveal that the proposed methodology shows better results in terms of considered evaluation metrics when compared with the existing techniques on the I2CVB dataset. The impact of the proposed methodology is that it has the ability for precise segmentation even with intensity inhomogeneity, which validates its applications in clinical treatments. Additionally, the proposed technique reduces the manual interference, which in turn minimizes the execution time.
AbstractList Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological competencies. Although, manual segmentation of PCa on MRI is a tedious, operator-dependent and time consuming task. Therefore, Computer Aided Diagnosis (CAD) of PCa using mp-MRI images is highly desirable by employing computer-assisted segmentation approaches. In this paper, a method is proposed for segmentation of PCa based on level set with Particle Swarm Optimization (PSO) technique to address the limitations of existing techniques as PSO does not require any cost or objective function to be differentiable and it is easy to implement. The energy function is optimized with PSO based technique. The proposed approach is tested over three different mp-MRI modalities i.e., T2 weighted (T2w), Dynamic Contrast Enhanced (DCE) images and Apparent Diffusion Coefficient (ADC) Maps derived from Diffusion Weighted Images (DWI). The accuracy achieved by PSO based methodology is 7.6% greater than without PSO integration i.e., using Gradient descent with added computational overhead of 0.03 s. The experimental outcomes reveal that the proposed methodology shows better results in terms of considered evaluation metrics when compared with the existing techniques on the I2CVB dataset. The impact of the proposed methodology is that it has the ability for precise segmentation even with intensity inhomogeneity, which validates its applications in clinical treatments. Additionally, the proposed technique reduces the manual interference, which in turn minimizes the execution time.
Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance Imaging (mp-MRI) is increasingly utilized by clinicians for performing diagnostics tasks because it possesses functional and morphological competencies. Although, manual segmentation of PCa on MRI is a tedious, operator-dependent and time consuming task. Therefore, Computer Aided Diagnosis (CAD) of PCa using mp-MRI images is highly desirable by employing computer-assisted segmentation approaches. In this paper, a method is proposed for segmentation of PCa based on level set with Particle Swarm Optimization (PSO) technique to address the limitations of existing techniques as PSO does not require any cost or objective function to be differentiable and it is easy to implement. The energy function is optimized with PSO based technique. The proposed approach is tested over three different mp-MRI modalities i.e., T2 weighted (T2w), Dynamic Contrast Enhanced (DCE) images and Apparent Diffusion Coefficient (ADC) Maps derived from Diffusion Weighted Images (DWI). The accuracy achieved by PSO based methodology is 7.6% greater than without PSO integration i.e., using Gradient descent with added computational overhead of 0.03 s. The experimental outcomes reveal that the proposed methodology shows better results in terms of considered evaluation metrics when compared with the existing techniques on the I2CVB dataset. The impact of the proposed methodology is that it has the ability for precise segmentation even with intensity inhomogeneity, which validates its applications in clinical treatments. Additionally, the proposed technique reduces the manual interference, which in turn minimizes the execution time.
Author Garg, Gaurav
Juneja, Mamta
Author_xml – sequence: 1
  givenname: Gaurav
  surname: Garg
  fullname: Garg, Gaurav
  organization: Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University
– sequence: 2
  givenname: Mamta
  orcidid: 0000-0002-2611-9005
  surname: Juneja
  fullname: Juneja, Mamta
  email: mamtajuneja@pu.ac.in
  organization: Department of Computer Science and Engineering, University Institute of Engineering and Technology, Panjab University
BookMark eNp9kMtKAzEUhoNUsK2-gKuA62hOJnNbSvFSqCiiC1chZk5KSudikiL69EZHEFx0lQv_l__km5FJ13dIyCnwc-C8vAgAXArGBTAAyDImDsgU8jJjZSlgkvZZxVmZczgisxA2nEORCzklLw_aR2e2SMO79i3th-ha96mj6zv6qgM2NOC6xS6OV72lC90Z9NR1tN1to2OD9rrF6J2hg-9DCiK9e1wek0OrtwFPftc5eb6-elrcstX9zXJxuWJGyDoya2rbaC4KQKhqicLYUkvNq0KaxhoB1pisqXldFEZabDhWvJCYTggCQGZzcja-m8rfdhii2vQ736VKJfJSlFn6ep5SYkyZNGLwaNXgXav9hwKuvhWqUaFKCtWPQiUSVP2DjBs9RK_ddj-ajWhIPd0a_d9Ue6gvFEiIdg
CitedBy_id crossref_primary_10_1007_s11042_023_16712_z
crossref_primary_10_1155_2022_8559011
crossref_primary_10_1007_s11042_023_14367_4
crossref_primary_10_1016_j_bspc_2022_104213
crossref_primary_10_1016_j_cmpb_2022_107157
crossref_primary_10_1016_j_compeleceng_2022_108219
Cites_doi 10.1023/A:1014080923068
10.1007/978-3-030-32486-5_6
10.1016/j.patrec.2012.12.022
10.1117/12.2182772
10.1109/ICMLA.2016.0032
10.1007/s13369-018-3400-2
10.1109/ACCESS.2015.2502220
10.2214/AJR.10.6062
10.1109/ACCESS.2019.2916894
10.1056/NEJMoa0810084
10.1109/TIP.2008.2004611
10.1007/978-1-4614-7245-2_3
10.1007/s10278-018-0160-1
10.1023/A:1020874308076
10.1016/j.patcog.2011.11.019
10.1109/TIP.2008.2002304
10.1016/j.asoc.2020.106328
10.2174/1573405613666170123124652
10.1117/12.911061
10.1016/j.bspc.2011.09.003
10.1117/12.877844
10.1016/j.media.2017.08.006
10.1118/1.3521470
10.1023/A:1007979827043
10.1007/978-3-319-60964-5_27
10.1007/s10915-008-9220-x
10.1007/s11263-006-7533-5
10.1007/978-3-319-06593-9_13
10.2174/1573405613666170504145842
10.1148/radiol.13121454
10.1002/cncr.29874
10.1137/040615286
10.1016/j.media.2012.10.004
10.1097/MOU.0b013e32835481c2
10.1002/jmri.25983
10.1016/j.patcog.2009.10.010
10.2214/AJR.13.11046
10.1007/s11042-018-6487-2
10.1016/j.patrec.2019.11.017
10.1073/pnas.1505935112
10.1118/1.1593633
10.1117/12.2007927
10.1007/978-3-030-53980-1_107
10.1109/ICASSP.2015.7178105
10.1186/s40644-016-0068-2
10.1117/12.2043751
10.1109/83.902291
10.1117/12.2006336
10.1117/12.2007979
10.1109/EMBC.2014.6944342
10.1007/978-981-15-2071-6_17
10.3390/info8020049
10.1117/12.878312
10.1088/0031-9155/57/6/1527
10.3389/fonc.2017.00259
10.1117/12.877549
10.1002/jmri.23618
10.1186/s12880-015-0069-9
10.1016/j.eururo.2014.10.026
10.1109/TBME.2015.2485779
10.1002/jmri.25562
10.1007/978-981-13-8950-4_25
10.1109/ICCSP48568.2020.9182093
10.1007/BF00133570
10.1007/s10257-014-0239-2
10.1002/jmri.24487
10.1117/12.877231
10.1109/TIP.2010.2069690
10.21928/uhdjst.v4n1y2020.pp9-17
10.1109/83.661186
10.1088/1361-6560/aa7731
10.1016/j.compbiomed.2015.02.009
10.1109/34.841758
10.1142/S0218001420550113
10.1109/ICCV.1995.466871
10.1109/ICNN.1995.488968
10.1088/0031-9155/57/12/3833
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-021-11133-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Computer Science Database (NC LIVE)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 30580
ExternalDocumentID 10_1007_s11042_021_11133_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c249t-fc9fda0261e1894e2cf7a4a0864cdfc21fcc3d90966c4fed0e8064e66ce121143
IEDL.DBID AGYKE
ISSN 1380-7501
IngestDate Fri Jul 25 04:32:46 EDT 2025
Thu Apr 24 22:59:26 EDT 2025
Wed Oct 01 04:51:14 EDT 2025
Fri Feb 21 02:48:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Multi-parametric
Segmentation
MRI
Prostate
Optimization
Cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-fc9fda0261e1894e2cf7a4a0864cdfc21fcc3d90966c4fed0e8064e66ce121143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2611-9005
PQID 2572731385
PQPubID 54626
PageCount 24
ParticipantIDs proquest_journals_2572731385
crossref_primary_10_1007_s11042_021_11133_2
crossref_citationtrail_10_1007_s11042_021_11133_2
springer_journals_10_1007_s11042_021_11133_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ViswanathSEBlochNBChappelowJCTothRRofskyNMGenegaEMLenkinskiREMadabhushiACentral gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imageryJ Magn Reson Imaging201236121322410.1002/jmri.23618
KassMWitkinATerzopoulosDSnakes: active contour modelsInt J Comput Vis1988143213310646.6810510.1007/BF00133570
Duda D, Kretowski M, Mathieu R, de Crevoisier R, Bezy-Wendling J (2014) Multi-image texture analysis in classification of prostatic tissues from MRI. Preliminary results. InInformation Technologies in Biomedicine, volume 3 (pp. 139-150). Springer, Cham
ZhangLLimCPIntelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble modelsAppl Soft Comput20202010632810.1016/j.asoc.2020.106328
ParfaitSWalkerPMCréhangeGTizonXMiteranJClassification of prostate magnetic resonance spectra using support vector machineBiomed Signal Process Control20127549950810.1016/j.bspc.2011.09.003Sep 1
Litjens GJ, Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ (2011) Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630T). Intl Soc Opt Photonics
Thamaraichelvi B (2020) PSO optimized pulse coupled neural network for segmenting MR brain image. In2020 international conference on communication and signal processing (ICCSP) (pp. 0731-0733). IEEE
de RooijMHamoenEHFüttererJJBarentszJORoversMMAccuracy of multiparametric MRI for prostate cancer detection: a meta-analysisAm J Roentgenol2014202234335110.2214/AJR.13.11046
Liu Z, Jiang W, Lee KH, Lo YL, Ng YL, Dou Q, Vardhanabhuti V, Kwok KW (2019) A two-stage approach for automated prostate lesion detection and classification with mask R-CNN and weakly supervised deep neural network. InWorkshop on artificial intelligence in radiation therapy (pp. 43-51). Springer, Cham
LeMHChenJWangLWangZLiuWChengKTYangXAutomated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networksPhys Med Biol201762166497651410.1088/1361-6560/aa7731
LemaîtreGMartíRFreixenetJVilanovaJCWalkerPMMeriaudeauFComputerAided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a reviewComput Biol Med20156083110.1016/j.compbiomed.2015.02.009
CremersDNonlinear dynamical shape priors for level set segmentationJ Sci Comput2008352–313214324299351203.6504210.1007/s10915-008-9220-x
Viswanath S, Bloch BN, Chappelow J, Patel P, Rofsky N, Lenkinski R, Genega E, Madabhushi A (2011) Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): detecting prostate cancer on multi-parametric MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630U). Intl Soc Opt Photonics.
SchröderFHHugossonJRoobolMJTammelaTLCiattoSNelenVKwiatkowskiMLujanMLiljaHZappaMDenisLJScreening and prostate-cancer mortality in a randomized European studyN Engl J Med2009360131320132810.1056/NEJMoa0810084
AlkadiRTaherFEl-BazAWerghiNA deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance imagesJ Digit Imaging201932579380710.1007/s10278-018-0160-1
GargGJunejaMA survey of prostate segmentation techniques in different imaging modalitiesCurr Med Imag2018141194610.2174/1573405613666170504145842
LanktonSTannenbaumALocalizing region-based active contoursIEEE Trans Image Process200817112029203925172851371.9421310.1109/TIP.2008.2004611
LiuSPengYA local region-based chan-vese model for image segmentationPattern Recogn2012457276927791236.6827510.1016/j.patcog.2011.11.019
ParagiosNDericheRGeodesic active contours and level sets for the detection and tracking of moving objectsIEEE Trans Pattern Anal Mach Intell200022326628010.1109/34.841758
Lemaitre G, Massich J, Martí R, Freixenet J, Vilanova JC, Walker PM, Sidibé D, Mériaudeau F (2015) A boosting approach for prostate cancer detection using multi-parametric MRI. InTwelfth international conference on quality control by artificial vision 2015 Apr 30 (Vol. 9534, p. 95340A). Intl Soc Opt Photonics
VeseLAChanTFA multiphase level set framework for image segmentation using the Mumford and shah modelInt J Comput Vis2002502712931012.6878210.1023/A:1020874308076
RundoLMilitelloCRussoGGarufiAVitabileSGilardiMCMauriGAutomated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imagingInformation.2017824910.3390/info8020049
Algohary A, Viswanath S, Shiradkar R, Ghose S, Pahwa S, Moses D, Jambor I, Shnier R, Böhm M, Haynes AM, Brenner P (2018) Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging 22
AndersonDGoldenBWasilEZhangHPredicting prostate cancer risk using magnetic resonance imaging dataIseB201513459960810.1007/s10257-014-0239-2
TurkbeyBChoykePLMultiparametric MRI and prostate cancer diagnosis and risk stratificationCurr Opin Urol201222431031510.1097/MOU.0b013e32835481c2
WangLFYuZPanCA unified level set framework utilizing parameter priors for medical image segmentationSci China Inf Sci201255114
FilsonCPNatarajanSMargolisDJHuangJLieuPDoreyFJReiterREMarksLSProstate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsiesCancer.2016122688489210.1002/cncr.29874
TiwariPKurhanewiczJMadabhushiAMulti-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRSMed Image Anal201317221923510.1016/j.media.2012.10.004
Wang L, Pan C (2015) Explicit order model for region-based level set segmentation. InAcoustics, speech and signal processing (ICASSP), 2015 IEEE international conference on Apr 19 (pp. 927-931). IEEE.
Lemaitre G. (n.d.) Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imaging (Doctoral dissertation, Ph. D. dissertation, Universitat de Girona and Université de Bourgogne).
ValerioMDonaldsonIEmbertonMEhdaieBHadaschikBAMarksLSMozerPRastinehadARAhmedHUDetection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic reviewEur Urol201568181910.1016/j.eururo.2014.10.026
LiCKaoC-YGoreJCDingZMinimization of region-scalable fitting energy for image segmentationIEEE Trans Image Process200817101940194925172771371.9422510.1109/TIP.2008.2002304
SharifMAminJRazaMYasminMSatapathySCAn integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumorPattern Recogn Lett202012915015710.1016/j.patrec.2019.11.017
CremersDOsherSJSoattoSKernel density estimation and intrinsic alignment for shape priors in level set segmentationInt J Comput Vis200669333535110.1007/s11263-006-7533-5
GargGJunejaMA survey of denoising techniques for multi-parametric prostate MRIMultimed Tools Appl20197810126891272210.1007/s11042-018-6487-2
RamuduKBabuTRSegmentation of tissues from MRI biomedical images using kernel fuzzy PSO clustering based level set approachCurr Med Imag201814338940010.2174/1573405613666170123124652
SungYSKwonHJParkBWChoGLeeCKChoKSKimJKProstate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter mapsAm J Roentgenol201119751122112910.2214/AJR.10.6062
ChanTFVeseLAActive contours without edgesIEEE Trans Image Process2001102662771039.6877910.1109/83.902291
Cameron A, Modhafar A, Khalvati F, Lui D, Shafiee MJ, Wong A, Haider M (2014) Multiparametric MRI Prostate cancer analysis via a hybrid morphological-textural model. InEngineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE (pp. 3357-3360). IEEE
Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Proceedings of IEEE international conference on neural networks. IV. Pp. 1942–1948
YangXLiuCWangZYangJLe MinHWangLChengKTCo-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRIMed Image Anal20174221222710.1016/j.media.2017.08.006
ZhangKHSongHHZhangLActive contours driven by local image fitting energyPattern Recogn2010434119912061192.6862410.1016/j.patcog.2009.10.010
Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: A new variational formulation,” in IEEE Conference on Computer Vision and Pattern Recogn, pp. 430–436
American Cancer Society. (2020) Facts & Figures 2020. American Cancer Society. Atlanta, Ga
Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. IEEE Intl Conf Comput Vis:694–699
LopesRAyacheAMakniNPuechPVillersAMordonSBetrouniNProstate cancer characterization on MR images using fractal featuresMed Phys2011381839510.1118/1.3521470
Peng Y, Jiang Y, Antic T, Giger ML, Eggener S, Oto A (2013) A study of T 2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86701H). Intl Soc Opt Photonics.
Kate V, Shukla P (2020) Image segmentation of breast Cancer histopathology images using PSO-based clustering technique. InSocial networking and computational intelligence (pp. 207-216). Springer, Singapore
Parra NA, Pollack A, Chinea FM, Abramowitz MC, Marples B, Munera F, Castillo R, Kryvenko ON, Punnen S, Stoyanova R (2017) automatic Detection and Quantitative Dce-Mri scoring of Prostate cancer aggressiveness. Frontiers in oncology. 7
PengYJiangYYangCBrownJBAnticTSethiISchmid-TannwaldCGigerMLEggenerSEOtoAQuantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development studyRadiology.2013267378779610.1148/radiol.13121454
VosPCBarentszJOKarssemeijerNHuismanHJAutomatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysisPhys Med Biol20125761527154210.1088/0031-9155/57/6/1527
Wang L, Zwiggelaar R (2
11133_CR48
F Khalvati (11133_CR28) 2015; 15
M Valerio (11133_CR68) 2015; 68
D Anderson (11133_CR4) 2015; 13
SE Viswanath (11133_CR71) 2012; 36
C Xu (11133_CR77) 1998; 7
B Turkbey (11133_CR67) 2012; 22
K Ramudu (11133_CR57) 2018; 14
YS Sung (11133_CR64) 2011; 197
TF Chan (11133_CR10) 2001; 10
ZF Mohammed (11133_CR47) 2020; 4
M Nikolova (11133_CR50) 2006; 66
X Yang (11133_CR78) 2017; 42
11133_CR54
11133_CR55
11133_CR59
M Kass (11133_CR25) 1988; 1
LF Wang (11133_CR76) 2013; 34
11133_CR17
D Fehr (11133_CR18) 2015; 112
G Garg (11133_CR22) 2019; 78
D Cremers (11133_CR14) 2008; 35
F Zhao (11133_CR81) 2019; 7
S Liu (11133_CR41) 2012; 45
LA Vese (11133_CR69) 2002; 50
LF Wang (11133_CR75) 2012; 55
11133_CR62
11133_CR20
L Rundo (11133_CR58) 2017; 8
11133_CR65
11133_CR23
11133_CR26
11133_CR27
11133_CR29
D Cremers (11133_CR15) 2006; 69
L Matulewicz (11133_CR45) 2014; 40
R Chakraborty (11133_CR9) 2019; 44
Y Peng (11133_CR56) 2013; 267
R Alkadi (11133_CR2) 2019; 32
S Lankton (11133_CR30) 2008; 17
11133_CR3
A Cameron (11133_CR6) 2016; 63
KH Zhang (11133_CR80) 2010; 43
11133_CR1
L Zhang (11133_CR79) 2020; 20
CP Filson (11133_CR19) 2016; 122
PC Vos (11133_CR72) 2012; 57
SB Ginsburg (11133_CR24) 2017; 46
11133_CR70
G Garg (11133_CR21) 2018; 14
11133_CR73
11133_CR74
11133_CR7
11133_CR32
P Tiwari (11133_CR66) 2013; 17
T Clark (11133_CR13) 2017; 4
11133_CR33
11133_CR5
11133_CR35
R Lopes (11133_CR44) 2011; 38
E Niaf (11133_CR49) 2012; 57
V Caselles (11133_CR8) 1997; 22
M de Rooij (11133_CR16) 2014; 202
11133_CR38
I Chan (11133_CR11) 2003; 30
11133_CR39
G Lemaître (11133_CR34) 2015; 60
C Li (11133_CR36) 2008; 17
M Sharif (11133_CR61) 2020; 129
C Li (11133_CR37) 2010; 19
MH Le (11133_CR31) 2017; 62
N Paragios (11133_CR52) 2002; 46
AG Chung (11133_CR12) 2015; 3
S Parfait (11133_CR53) 2012; 7
11133_CR40
P Steiger (11133_CR63) 2016; 16
11133_CR42
FH Schröder (11133_CR60) 2009; 360
11133_CR43
N Paragios (11133_CR51) 2000; 22
J Zhao (11133_CR82) 2020; 34
11133_CR46
References_xml – reference: Niaf E, Rouvière O, Lartizien C (2011) Computer-aided diagnosis for prostate cancer detection in the peripheral zone via multisequence MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79633P). Intl Soc Opt Photonics
– reference: Cameron A, Modhafar A, Khalvati F, Lui D, Shafiee MJ, Wong A, Haider M (2014) Multiparametric MRI Prostate cancer analysis via a hybrid morphological-textural model. InEngineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE (pp. 3357-3360). IEEE
– reference: Khalvati F, Zhang J, Wong A, Haider MA (2016) Bag of bags: nested multi instance classification for prostate Cancer detection. InMachine learning and applications (ICMLA), 2016 15th IEEE international conference on (pp. 146-151). IEEE
– reference: ParagiosNDericheRGeodesic active contours and level sets for the detection and tracking of moving objectsIEEE Trans Pattern Anal Mach Intell200022326628010.1109/34.841758
– reference: SteigerPThoenyHCProstate MRI based on PI-RADS version 2: how we review and reportCancer Imaging2016161910.1186/s40644-016-0068-2
– reference: WangLFWuH-YPanCRegion based image segmentation with local signed difference energyPattern Recogn Lett201334663764510.1016/j.patrec.2012.12.022
– reference: GinsburgSBAlgoharyAPahwaSGulaniVPonskyLAronenHJBoströmPJBöhmMHaynesAMBrennerPDelpradoWRadiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: preliminary findings from a multi-institutional studyJ Magn Reson Imaging201746118419310.1002/jmri.25562
– reference: Parra NA, Pollack A, Chinea FM, Abramowitz MC, Marples B, Munera F, Castillo R, Kryvenko ON, Punnen S, Stoyanova R (2017) automatic Detection and Quantitative Dce-Mri scoring of Prostate cancer aggressiveness. Frontiers in oncology. 7
– reference: CasellesVKimmelRSapiroGGeodesic active contoursInt J Comput Vis199722161790894.6813110.1023/A:1007979827043
– reference: KhalvatiFWongAHaiderMAAutomated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature modelsBMC Med Imaging20151512710.1186/s12880-015-0069-9
– reference: Lemaitre G. (n.d.) Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imaging (Doctoral dissertation, Ph. D. dissertation, Universitat de Girona and Université de Bourgogne).
– reference: Rundo L, Han C, Zhang J, Hataya R, Nagano Y, Militello C, Ferretti C, Nobile MS, Tangherloni A, Gilardi MC, Vitabile S (2020) CNN-based prostate zonal segmentation on T2-weighted MR images: a cross-dataset study. InNeural approaches to dynamics of signal exchanges (pp. 269-280). Springer, Singapore
– reference: ZhangKHSongHHZhangLActive contours driven by local image fitting energyPattern Recogn2010434119912061192.6862410.1016/j.patcog.2009.10.010
– reference: CameronAKhalvatiFHaiderMAWongAMAPS: a quantitative radiomics approach for prostate cancer detectionIEEE Trans Biomed Eng20166361145115610.1109/TBME.2015.2485779
– reference: ParagiosNDericheRGeodesic active regions and level set methods for supervised texture segmentationInt J Comput Vis2002462232471012.6872610.1023/A:1014080923068
– reference: ValerioMDonaldsonIEmbertonMEhdaieBHadaschikBAMarksLSMozerPRastinehadARAhmedHUDetection of clinically significant prostate cancer using magnetic resonance imaging–ultrasound fusion targeted biopsy: a systematic reviewEur Urol201568181910.1016/j.eururo.2014.10.026
– reference: ZhaoFChenYLiuHFanJAlternate PSO-based adaptive interval type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentationIEEE Access20197640286403910.1109/ACCESS.2019.2916894
– reference: TiwariPKurhanewiczJMadabhushiAMulti-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRSMed Image Anal201317221923510.1016/j.media.2012.10.004
– reference: Wang L, Zwiggelaar R (2017) 3d texton based prostate cancer detection using multiparametric magnetic resonance imaging. InAnnual conference on medical image understanding and analysis (pp. 309-319). Springer, Cham
– reference: VeseLAChanTFA multiphase level set framework for image segmentation using the Mumford and shah modelInt J Comput Vis2002502712931012.6878210.1023/A:1020874308076
– reference: CremersDNonlinear dynamical shape priors for level set segmentationJ Sci Comput2008352–313214324299351203.6504210.1007/s10915-008-9220-x
– reference: GargGJunejaMA survey of prostate segmentation techniques in different imaging modalitiesCurr Med Imag2018141194610.2174/1573405613666170504145842
– reference: Duda D, Kretowski M, Mathieu R, de Crevoisier R, Bezy-Wendling J (2014) Multi-image texture analysis in classification of prostatic tissues from MRI. Preliminary results. InInformation Technologies in Biomedicine, volume 3 (pp. 139-150). Springer, Cham
– reference: Giannini V, Vignati A, Mazzetti S, De Luca M, Bracco C, Stasi M, Russo F, Armando E, Regge D (2013) A prostate CAD system based on multiparametric analysis of DCE T1-w, and DW automatically registered images. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86703E). Intl Soc Opt Photonics.
– reference: SharifMAminJRazaMYasminMSatapathySCAn integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumorPattern Recogn Lett202012915015710.1016/j.patrec.2019.11.017
– reference: ZhangLLimCPIntelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble modelsAppl Soft Comput20202010632810.1016/j.asoc.2020.106328
– reference: LiCXuCMemberSGuiCFoxMDDistance regularized level set evolution and its application to image segmentationIEEE Trans Image Process201019123243325427897101371.9422610.1109/TIP.2010.2069690
– reference: Liu P, Wang S, Turkbey B, Grant K, Pinto P, Choyke P, Wood BJ, Summers RM (2013) A prostate cancer computer-aided diagnosis system using multimodal magnetic resonance imaging and targeted biopsy labels. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86701G). Intl Soc Opt Photonics.
– reference: FehrDVeeraraghavanHWibmerAGondoTMatsumotoKVargasHASalaEHricakHDeasyJOAutomatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance imagesProc Natl Acad Sci201511246E6265E627310.1073/pnas.1505935112
– reference: Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Proceedings of IEEE international conference on neural networks. IV. Pp. 1942–1948
– reference: FilsonCPNatarajanSMargolisDJHuangJLieuPDoreyFJReiterREMarksLSProstate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsiesCancer.2016122688489210.1002/cncr.29874
– reference: LopesRAyacheAMakniNPuechPVillersAMordonSBetrouniNProstate cancer characterization on MR images using fractal featuresMed Phys2011381839510.1118/1.3521470
– reference: Liu Z, Jiang W, Lee KH, Lo YL, Ng YL, Dou Q, Vardhanabhuti V, Kwok KW (2019) A two-stage approach for automated prostate lesion detection and classification with mask R-CNN and weakly supervised deep neural network. InWorkshop on artificial intelligence in radiation therapy (pp. 43-51). Springer, Cham
– reference: VosPCBarentszJOKarssemeijerNHuismanHJAutomatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysisPhys Med Biol20125761527154210.1088/0031-9155/57/6/1527
– reference: NiafERouvièreOMège-LechevallierFBratanFLartizienCComputer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRIPhys Med Biol201257123833385110.1088/0031-9155/57/12/3833
– reference: Viswanath S, Bloch BN, Chappelow J, Patel P, Rofsky N, Lenkinski R, Genega E, Madabhushi A (2011) Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): detecting prostate cancer on multi-parametric MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630U). Intl Soc Opt Photonics.
– reference: ChanTFVeseLAActive contours without edgesIEEE Trans Image Process2001102662771039.6877910.1109/83.902291
– reference: Litjens GJ, Vos PC, Barentsz JO, Karssemeijer N, Huisman HJ (2011) Automatic computer aided detection of abnormalities in multi-parametric prostate MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79630T). Intl Soc Opt Photonics
– reference: ParfaitSWalkerPMCréhangeGTizonXMiteranJClassification of prostate magnetic resonance spectra using support vector machineBiomed Signal Process Control20127549950810.1016/j.bspc.2011.09.003Sep 1
– reference: Algohary A, Viswanath S, Shiradkar R, Ghose S, Pahwa S, Moses D, Jambor I, Shnier R, Böhm M, Haynes AM, Brenner P (2018) Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging 22
– reference: PengYJiangYYangCBrownJBAnticTSethiISchmid-TannwaldCGigerMLEggenerSEOtoAQuantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development studyRadiology.2013267378779610.1148/radiol.13121454
– reference: RundoLMilitelloCRussoGGarufiAVitabileSGilardiMCMauriGAutomated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imagingInformation.2017824910.3390/info8020049
– reference: Wang L, Pan C (2015) Explicit order model for region-based level set segmentation. InAcoustics, speech and signal processing (ICASSP), 2015 IEEE international conference on Apr 19 (pp. 927-931). IEEE.
– reference: Litjens GJ, Elliott R, Shih N, Feldman M, Barentsz JO, Hulsbergen-van de Kaa CA, Kovacs I, Huisman HJ, Madabhushi A (2014) Distinguishing prostate cancer from benign confounders via a cascaded classifier on multi-parametric MRI. InMedical imaging 2014: computer-aided diagnosis (Vol. 9035, p. 903512). Intl Soc Opt Photonics
– reference: ChakrabortyRSushilRGargMLAn improved PSO-based multilevel image segmentation technique using minimum cross-entropy thresholdingArab J Sci Eng20194443005302010.1007/s13369-018-3400-2
– reference: SungYSKwonHJParkBWChoGLeeCKChoKSKimJKProstate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter mapsAm J Roentgenol201119751122112910.2214/AJR.10.6062
– reference: MatulewiczLJansenJFBokachevaLVargasHAAkinOFineSWShukla-DaveAEasthamJAHricakHKoutcherJAZakianKLAnatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imagingJ Magn Reson Imaging20144061414142110.1002/jmri.24487
– reference: GargGJunejaMA survey of denoising techniques for multi-parametric prostate MRIMultimed Tools Appl20197810126891272210.1007/s11042-018-6487-2
– reference: Peng Y, Jiang Y, Antic T, Giger ML, Eggener S, Oto A (2013) A study of T 2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer. InMedical imaging 2013: computer-aided diagnosis (Vol. 8670, p. 86701H). Intl Soc Opt Photonics.
– reference: LeMHChenJWangLWangZLiuWChengKTYangXAutomated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networksPhys Med Biol201762166497651410.1088/1361-6560/aa7731
– reference: Caselles V, Kimmel R, Sapiro G (1995) Geodesic active contours. IEEE Intl Conf Comput Vis:694–699
– reference: LiCKaoC-YGoreJCDingZMinimization of region-scalable fitting energy for image segmentationIEEE Trans Image Process200817101940194925172771371.9422510.1109/TIP.2008.2002304
– reference: YangXLiuCWangZYangJLe MinHWangLChengKTCo-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRIMed Image Anal20174221222710.1016/j.media.2017.08.006
– reference: Kate V, Shukla P (2020) Image segmentation of breast Cancer histopathology images using PSO-based clustering technique. InSocial networking and computational intelligence (pp. 207-216). Springer, Singapore
– reference: Song X, Li H (2020) Segmentation based on particle swarm optimization. InInternational conference on applications and techniques in cyber security and intelligence (pp. 731-736). Springer, Cham
– reference: ClarkTZhangJBaigSWongAHaiderMAKhalvatiFFully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networksJ Med Imagisg201744
– reference: KassMWitkinATerzopoulosDSnakes: active contour modelsInt J Comput Vis1988143213310646.6810510.1007/BF00133570
– reference: Thamaraichelvi B (2020) PSO optimized pulse coupled neural network for segmenting MR brain image. In2020 international conference on communication and signal processing (ICCSP) (pp. 0731-0733). IEEE
– reference: ZhaoJWangXLiMA novel Neutrosophic image segmentation based on improved fuzzy C-means algorithm (NIS-IFCM)Int J Pattern Recognit Artif Intell20203405205501110.1142/S0218001420550113
– reference: Firjani A, Khalifa F, Elnakib A, Gimel’farb G, El-Ghar MA, Elmaghraby A, El-Baz A (2014) A novel image-based approach for early detection of prostate cancer using DCE-MRI. InComputational intelligence in biomedical imaging (pp. 55-82). Springer, New York, NY
– reference: XuCPrinceJLSnakes, shapes, and gradient vector flowIEEE Trans Image Process19987335936916695280973.9400310.1109/83.661186
– reference: AndersonDGoldenBWasilEZhangHPredicting prostate cancer risk using magnetic resonance imaging dataIseB201513459960810.1007/s10257-014-0239-2
– reference: ChanIWellsWMulkernRVHakerSZhangJZouKHMaierSETempanyCDetection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifierMed Phys20033092390239810.1118/1.1593633
– reference: American Cancer Society. (2020) Facts & Figures 2020. American Cancer Society. Atlanta, Ga
– reference: MohammedZFAbdullaAAThresholding-based white blood cells segmentation from microscopic blood imagesUHD J Sci Technol20204191710.21928/uhdjst.v4n1y2020.pp9-17
– reference: LanktonSTannenbaumALocalizing region-based active contoursIEEE Trans Image Process200817112029203925172851371.9421310.1109/TIP.2008.2004611
– reference: Lemaitre G, Massich J, Martí R, Freixenet J, Vilanova JC, Walker PM, Sidibé D, Mériaudeau F (2015) A boosting approach for prostate cancer detection using multi-parametric MRI. InTwelfth international conference on quality control by artificial vision 2015 Apr 30 (Vol. 9534, p. 95340A). Intl Soc Opt Photonics
– reference: AlkadiRTaherFEl-BazAWerghiNA deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance imagesJ Digit Imaging201932579380710.1007/s10278-018-0160-1
– reference: LemaîtreGMartíRFreixenetJVilanovaJCWalkerPMMeriaudeauFComputerAided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a reviewComput Biol Med20156083110.1016/j.compbiomed.2015.02.009
– reference: Mazzetti S, De Luca M, Bracco C, Vignati A, Giannini V, Stasi M, Russo F, Armando E, Agliozzo S, Regge D (2011) A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI. InMedical imaging 2011: computer-aided diagnosis (Vol. 7963, p. 79633Q). Intl Soc Opt Photonics
– reference: de RooijMHamoenEHFüttererJJBarentszJORoversMMAccuracy of multiparametric MRI for prostate cancer detection: a meta-analysisAm J Roentgenol2014202234335110.2214/AJR.13.11046
– reference: Litjens GJ, Barentsz JO, Karssemeijer N, Huisman HJ (2012) Automated computer-aided detection of prostate cancer in MR images: from a whole-organ to a zone-based approach. InMedical imaging 2012: computer-aided diagnosis (Vol. 8315, p. 83150G). Intl Soc Opt Photonics.
– reference: WangLFYuZPanCA unified level set framework utilizing parameter priors for medical image segmentationSci China Inf Sci201255114
– reference: Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: A new variational formulation,” in IEEE Conference on Computer Vision and Pattern Recogn, pp. 430–436
– reference: RamuduKBabuTRSegmentation of tissues from MRI biomedical images using kernel fuzzy PSO clustering based level set approachCurr Med Imag201814338940010.2174/1573405613666170123124652
– reference: TurkbeyBChoykePLMultiparametric MRI and prostate cancer diagnosis and risk stratificationCurr Opin Urol201222431031510.1097/MOU.0b013e32835481c2
– reference: ChungAGKhalvatiFShafieeMJHaiderMAWongAProstate cancer detection via a quantitative radiomics-driven conditional random field frameworkIEEE Access.201532531254110.1109/ACCESS.2015.2502220
– reference: NikolovaMEsedogluSChanTFAlgorithms for finding global minimizers of image segmentation and denoising modelsSIAM J Appl Math20066651632164822460721117.9400210.1137/040615286
– reference: ViswanathSEBlochNBChappelowJCTothRRofskyNMGenegaEMLenkinskiREMadabhushiACentral gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imageryJ Magn Reson Imaging201236121322410.1002/jmri.23618
– reference: CremersDOsherSJSoattoSKernel density estimation and intrinsic alignment for shape priors in level set segmentationInt J Comput Vis200669333535110.1007/s11263-006-7533-5
– reference: LiuSPengYA local region-based chan-vese model for image segmentationPattern Recogn2012457276927791236.6827510.1016/j.patcog.2011.11.019
– reference: SchröderFHHugossonJRoobolMJTammelaTLCiattoSNelenVKwiatkowskiMLujanMLiljaHZappaMDenisLJScreening and prostate-cancer mortality in a randomized European studyN Engl J Med2009360131320132810.1056/NEJMoa0810084
– volume: 46
  start-page: 223
  year: 2002
  ident: 11133_CR52
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1014080923068
– ident: 11133_CR43
  doi: 10.1007/978-3-030-32486-5_6
– volume: 34
  start-page: 637
  issue: 6
  year: 2013
  ident: 11133_CR76
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2012.12.022
– ident: 11133_CR33
  doi: 10.1117/12.2182772
– ident: 11133_CR29
  doi: 10.1109/ICMLA.2016.0032
– volume: 44
  start-page: 3005
  issue: 4
  year: 2019
  ident: 11133_CR9
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3400-2
– ident: 11133_CR35
– volume: 3
  start-page: 2531
  year: 2015
  ident: 11133_CR12
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2015.2502220
– volume: 197
  start-page: 1122
  issue: 5
  year: 2011
  ident: 11133_CR64
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.10.6062
– volume: 7
  start-page: 64028
  year: 2019
  ident: 11133_CR81
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916894
– volume: 4
  issue: 4
  year: 2017
  ident: 11133_CR13
  publication-title: J Med Imagisg
– volume: 360
  start-page: 1320
  issue: 13
  year: 2009
  ident: 11133_CR60
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0810084
– volume: 17
  start-page: 2029
  issue: 11
  year: 2008
  ident: 11133_CR30
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.2004611
– ident: 11133_CR20
  doi: 10.1007/978-1-4614-7245-2_3
– volume: 32
  start-page: 793
  issue: 5
  year: 2019
  ident: 11133_CR2
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0160-1
– volume: 50
  start-page: 271
  year: 2002
  ident: 11133_CR69
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1020874308076
– volume: 45
  start-page: 2769
  issue: 7
  year: 2012
  ident: 11133_CR41
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.11.019
– volume: 17
  start-page: 1940
  issue: 10
  year: 2008
  ident: 11133_CR36
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.2002304
– volume: 20
  start-page: 106328
  year: 2020
  ident: 11133_CR79
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106328
– volume: 14
  start-page: 389
  issue: 3
  year: 2018
  ident: 11133_CR57
  publication-title: Curr Med Imag
  doi: 10.2174/1573405613666170123124652
– ident: 11133_CR3
– ident: 11133_CR39
  doi: 10.1117/12.911061
– volume: 7
  start-page: 499
  issue: 5
  year: 2012
  ident: 11133_CR53
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2011.09.003
– ident: 11133_CR38
  doi: 10.1117/12.877844
– ident: 11133_CR32
– volume: 42
  start-page: 212
  year: 2017
  ident: 11133_CR78
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.08.006
– volume: 38
  start-page: 83
  issue: 1
  year: 2011
  ident: 11133_CR44
  publication-title: Med Phys
  doi: 10.1118/1.3521470
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  ident: 11133_CR8
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007979827043
– ident: 11133_CR74
  doi: 10.1007/978-3-319-60964-5_27
– volume: 35
  start-page: 132
  issue: 2–3
  year: 2008
  ident: 11133_CR14
  publication-title: J Sci Comput
  doi: 10.1007/s10915-008-9220-x
– volume: 69
  start-page: 335
  issue: 3
  year: 2006
  ident: 11133_CR15
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-006-7533-5
– ident: 11133_CR17
  doi: 10.1007/978-3-319-06593-9_13
– volume: 14
  start-page: 19
  issue: 1
  year: 2018
  ident: 11133_CR21
  publication-title: Curr Med Imag
  doi: 10.2174/1573405613666170504145842
– volume: 267
  start-page: 787
  issue: 3
  year: 2013
  ident: 11133_CR56
  publication-title: Radiology.
  doi: 10.1148/radiol.13121454
– volume: 122
  start-page: 884
  issue: 6
  year: 2016
  ident: 11133_CR19
  publication-title: Cancer.
  doi: 10.1002/cncr.29874
– volume: 66
  start-page: 1632
  issue: 5
  year: 2006
  ident: 11133_CR50
  publication-title: SIAM J Appl Math
  doi: 10.1137/040615286
– volume: 17
  start-page: 219
  issue: 2
  year: 2013
  ident: 11133_CR66
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2012.10.004
– volume: 22
  start-page: 310
  issue: 4
  year: 2012
  ident: 11133_CR67
  publication-title: Curr Opin Urol
  doi: 10.1097/MOU.0b013e32835481c2
– ident: 11133_CR1
  doi: 10.1002/jmri.25983
– volume: 43
  start-page: 1199
  issue: 4
  year: 2010
  ident: 11133_CR80
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.10.010
– volume: 202
  start-page: 343
  issue: 2
  year: 2014
  ident: 11133_CR16
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.13.11046
– volume: 78
  start-page: 12689
  issue: 10
  year: 2019
  ident: 11133_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6487-2
– volume: 129
  start-page: 150
  year: 2020
  ident: 11133_CR61
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.11.017
– volume: 112
  start-page: E6265
  issue: 46
  year: 2015
  ident: 11133_CR18
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1505935112
– volume: 30
  start-page: 2390
  issue: 9
  year: 2003
  ident: 11133_CR11
  publication-title: Med Phys
  doi: 10.1118/1.1593633
– ident: 11133_CR42
  doi: 10.1117/12.2007927
– ident: 11133_CR62
  doi: 10.1007/978-3-030-53980-1_107
– ident: 11133_CR73
  doi: 10.1109/ICASSP.2015.7178105
– volume: 16
  start-page: 9
  issue: 1
  year: 2016
  ident: 11133_CR63
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-016-0068-2
– ident: 11133_CR40
  doi: 10.1117/12.2043751
– volume: 10
  start-page: 266
  year: 2001
  ident: 11133_CR10
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.902291
– ident: 11133_CR23
  doi: 10.1117/12.2006336
– ident: 11133_CR55
  doi: 10.1117/12.2007979
– ident: 11133_CR5
  doi: 10.1109/EMBC.2014.6944342
– ident: 11133_CR26
  doi: 10.1007/978-981-15-2071-6_17
– volume: 8
  start-page: 49
  issue: 2
  year: 2017
  ident: 11133_CR58
  publication-title: Information.
  doi: 10.3390/info8020049
– ident: 11133_CR70
  doi: 10.1117/12.878312
– volume: 57
  start-page: 1527
  issue: 6
  year: 2012
  ident: 11133_CR72
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/6/1527
– ident: 11133_CR54
  doi: 10.3389/fonc.2017.00259
– volume: 55
  start-page: 1
  year: 2012
  ident: 11133_CR75
  publication-title: Sci China Inf Sci
– ident: 11133_CR46
  doi: 10.1117/12.877549
– volume: 36
  start-page: 213
  issue: 1
  year: 2012
  ident: 11133_CR71
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23618
– volume: 15
  start-page: 27
  issue: 1
  year: 2015
  ident: 11133_CR28
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-015-0069-9
– volume: 68
  start-page: 8
  issue: 1
  year: 2015
  ident: 11133_CR68
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2014.10.026
– volume: 63
  start-page: 1145
  issue: 6
  year: 2016
  ident: 11133_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2485779
– volume: 46
  start-page: 184
  issue: 1
  year: 2017
  ident: 11133_CR24
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25562
– ident: 11133_CR59
  doi: 10.1007/978-981-13-8950-4_25
– ident: 11133_CR65
  doi: 10.1109/ICCSP48568.2020.9182093
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  ident: 11133_CR25
  publication-title: Int J Comput Vis
  doi: 10.1007/BF00133570
– volume: 13
  start-page: 599
  issue: 4
  year: 2015
  ident: 11133_CR4
  publication-title: IseB
  doi: 10.1007/s10257-014-0239-2
– volume: 40
  start-page: 1414
  issue: 6
  year: 2014
  ident: 11133_CR45
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24487
– ident: 11133_CR48
  doi: 10.1117/12.877231
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  ident: 11133_CR37
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2069690
– volume: 4
  start-page: 9
  issue: 1
  year: 2020
  ident: 11133_CR47
  publication-title: UHD J Sci Technol
  doi: 10.21928/uhdjst.v4n1y2020.pp9-17
– volume: 7
  start-page: 359
  issue: 3
  year: 1998
  ident: 11133_CR77
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.661186
– volume: 62
  start-page: 6497
  issue: 16
  year: 2017
  ident: 11133_CR31
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa7731
– volume: 60
  start-page: 8
  year: 2015
  ident: 11133_CR34
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.02.009
– volume: 22
  start-page: 266
  issue: 3
  year: 2000
  ident: 11133_CR51
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.841758
– volume: 34
  start-page: 2055011
  issue: 05
  year: 2020
  ident: 11133_CR82
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001420550113
– ident: 11133_CR7
  doi: 10.1109/ICCV.1995.466871
– ident: 11133_CR27
  doi: 10.1109/ICNN.1995.488968
– volume: 57
  start-page: 3833
  issue: 12
  year: 2012
  ident: 11133_CR49
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/12/3833
SSID ssj0016524
Score 2.3194191
Snippet Prostate Cancer (PCa) is one among the prominent causes of mortality in men, which can only be reduced by early diagnosis. Multi-parametric Magnetic Resonance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30557
SubjectTerms 1155T: Advanced machine learning algorithms for biomedical data and imaging
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Diagnosis
Diffusion coefficient
Image contrast
Image enhancement
Image segmentation
Inhomogeneity
Magnetic resonance imaging
Medical imaging
Methodology
Multimedia Information Systems
Particle swarm optimization
Prostate
Prostate cancer
Special Purpose and Application-Based Systems
Time dependence
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe9GDb7FaZQ_edDHZbPM4iKhYqmApYkFPIdmHCDatbcW_70y6sSroMeRxmJ2d-SY7830ARypCUB8YwTNtFZehjXiOaZljHETwYEUSZmW3RS_sDuTtY_uxBr1qFobaKquYWAZqPVL0j_wUXQszrR_E7fPxGyfVKDpdrSQ0MietoM9KirElaAhixqpD4_K617__OlcI207mNvY45krfjdHMh-l8GlWhlgWSXw-4-JmqFvjz15FpmYk667DqICS7mK_5BtRMsQlrlTwDc7t1E1a-cQ1uwVPfOQmbfmSTIRthrBi6IUxGuUyzqXkeulGkgo0suyKPmLCXgpVth5xowoekwKXYmIZFEKayu_ubbRh0rh-uutzpKnCFxdaMW5VYnVHxZfw4kUYoG2Uyw-JGKlwx4VulAp1gcRMqaY32TIzAxeCVIUI4GexAvRgVZhdYLuJceW0dRBYrMxnlfhYknpZejsgB7d0EvzJhqhzpOGlfvKYLumQye4pmT0uzp6IJx1_vjOeUG_8-3apWJnXbb5ounKUJJ9VqLW7__bW9_7-2D8uCHKRsAGxBfTZ5NwcISmb5ofO0T5TK2-k
  priority: 102
  providerName: ProQuest
Title Particle swarm optimization based segmentation of Cancer in multi-parametric prostate MRI
URI https://link.springer.com/article/10.1007/s11042-021-11133-2
https://www.proquest.com/docview/2572731385
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvRgtSpWa9mDN13JY_M6tqX1haWIAT2FZLMrok1L0yL4651NN60WFTyFkM2S7MzOfMPOfANwyj0E9bawaJxKTpkrPZqgW6ZoBxE8SCtw4yLbou9ehezm0XnURWF5me1eHkkWlnpZ7GaqUhKVUqDao9sUDe9GwbdVgY3W5dNtd3F64Dq6ma1vUPSIpi6W-XmW7w5piTJXDkYLf9OrQlh-6TzN5PViNk0u-McKieN_f2UHtjUAJa25xuzCmshqUC2bOxC912uw9YWpcA-eBlrFSP4eT4ZkhJZmqEs4ifKEKcnF81AXMmVkJElH6dOEvGSkSFqkimR8qPp3cTJWpSYIcsnd_fU-hL3uQ-eK6q4MlGOoNqWSBzKNVegmTD9gwuLSi1mMoRHjKG_LlJzbaYChkcuZFKkhfIQ9Au-EopNj9gFUslEmDoEklp9ww0ltT2Jcx7zEjO3ASJmRIO5AOdbBLEUTcU1ZrjpnvEVLsmW1khGuZFSsZGTV4WzxznhO2PHn6EYp8Uhv3jxCK4agDrXHqcN5KcDl499nO_rf8GPYtJQOFOmEDahMJzNxghBnmjRh3e9dNlGve-12v6n1G6_tbn9wj09Dq_UJxkzz7Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2F5gAcWiggQgPsAU6wwl5v_HGIKgiNEppEUdRI5eTa-4GQiBOSVFX_XH9bZ5x1A0j0lmPkeGXNjmfeeOfNA3inIgT1gRE801ZxGdqI55iWOcZBBA9WJGFWdluMwt5UfjtvndfgpuLCUFtlFRPLQK3nir6Rf0LXwkzrB3HrePGbk2oUna5WEhqZk1bQ7XLEmCN2nJrrKyzhVu3-V9zv90J0T846Pe5UBrjC0mPNrUqszqgUMX6cSCOUjTKZIdSXCp9f-FapQCcI9UMlrdGeiTGNG_xlaDyaDHDdB1CXgUyw-Kt_ORmNJ3fnGGHLyerGHsfc7Dvazoa85xM1hlokSO494OLv1LjFu_8c0ZaZr_sE9h1kZZ83PvYUaqY4hINKDoK56HAIj_-YbfgMvo-dU7LVVbacsTnGppkjfTLKnZqtzI-Zoz4VbG5ZhzxwyX4WrGxz5DSWfEaKX4otiJyCsJgNJ_3nMN2JhV_AXjEvzEtguYhz5bV0EFmsBGWU-1mQeFp6OSIVtHcD_MqEqXJDzklr41e6Hc9MZk_R7Glp9lQ04MPdPYvNiI97_92sdiZ1r_sq3TpnAz5Wu7W9_P_VXt2_2lt42DsbDtJBf3R6BI8EOUvZfNiEvfXy0rxGQLTO3zivY3Cxa0e_BVIdGdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60gujBt1ife9CTLiabbR4HEVGr9YWIgp5istkVwaa1rYh_zV_nTLqxKujNY0mzhNkvM99kZ-YDWFcBknpPC55kRnHpm4CnGJY5-kEkD0ZEflJUW1z4xzfy5LZ2OwTvZS8MlVWWPrFw1FlL0TfybYQWRlrXC2vbxpZFXB7Ud9vPnBSk6KS1lNPoQ-RUv71i-tbdaRzgXm8IUT-83j_mVmGAK0w7etyoyGQJpSHaDSOphTJBIhOk-VLhswvXKOVlEdJ8X0mjM0eHGMI1_tI0Gk16uO4wjAQ0xZ261OtHnycYfs0K6oYOx6js2oadftueS00xVBxBQu8eF9-D4oDp_jicLWJefQomLFlle310TcOQzmdgshSCYNYvzMD4l6mGs3B3aeHIuq9Jp8la6JWatt2TUdTMWFc_NG3TU85ahu0T9jrsMWdFgSOngeRN0vpSrE1tKUiI2flVYw5u_sW-81DJW7leAJaKMFVOLfMCgzmgDFI38SInk06KHAXtXQW3NGGs7HhzUtl4igeDmcnsMZo9Lsweiypsft7T7g_3-PPfy-XOxPZF78YDWFZhq9ytweXfV1v8e7U1GEV4x2eNi9MlGBOElaLqcBkqvc6LXkEm1EtXC8gxuP9vjH8AkQYXcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+based+segmentation+of+Cancer+in+multi-parametric+prostate+MRI&rft.jtitle=Multimedia+tools+and+applications&rft.au=Garg%2C+Gaurav&rft.au=Juneja%2C+Mamta&rft.date=2021-08-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=20&rft.spage=30557&rft.epage=30580&rft_id=info:doi/10.1007%2Fs11042-021-11133-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11133_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon