Deep multiple instance learning for automatic glaucoma prevention and auto-annotation using color fundus photography
In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular complications such as glaucoma, cystoid macular edema, or diabetic proliferative retinopathy. Intelligent systems are proven to be beneficial for th...
Saved in:
| Published in | Progress in artificial intelligence Vol. 11; no. 4; pp. 397 - 409 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2192-6352 2192-6360 |
| DOI | 10.1007/s13748-022-00292-4 |
Cover
| Abstract | In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular complications such as glaucoma, cystoid macular edema, or diabetic proliferative retinopathy. Intelligent systems are proven to be beneficial for the assessment of glaucoma. In this paper, we describe an approach to automate the diagnosis of glaucoma disease, based on color funds photography using deep learning. The setup of the proposed framework is ordered as follows: The bidimensional empirical mode decomposition (BEMD) algorithm is applied to decompose the ROI to components (BIMFs + residue). CNN architecture VGG19 is implemented to extract features from decomposed BEMD components. The features obtained are the input parameters of the implemented classifier based on full connect layers and softmax. To train the built model, we have used the public dataset RIM-ONE DL. To test our models, we have used a part of RIM-ONE DL and REFUGE. The average obtained sensitivity, specificity, accuracy and AUC rates are, respectively, 99.14%, 99.19%, 99.13%, 99.09% and 99.17%, 99.24%, 99.20%, 99.18% in RIM-ONE DL and REFUGE dataset. The experimental results obtained from different datasets demonstrate the efficiency and robustness of the proposed approach. A comparison with some recent previous work in the literature has shown a significant advancement in our proposal. |
|---|---|
| AbstractList | In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular complications such as glaucoma, cystoid macular edema, or diabetic proliferative retinopathy. Intelligent systems are proven to be beneficial for the assessment of glaucoma. In this paper, we describe an approach to automate the diagnosis of glaucoma disease, based on color funds photography using deep learning. The setup of the proposed framework is ordered as follows: The bidimensional empirical mode decomposition (BEMD) algorithm is applied to decompose the ROI to components (BIMFs + residue). CNN architecture VGG19 is implemented to extract features from decomposed BEMD components. The features obtained are the input parameters of the implemented classifier based on full connect layers and softmax. To train the built model, we have used the public dataset RIM-ONE DL. To test our models, we have used a part of RIM-ONE DL and REFUGE. The average obtained sensitivity, specificity, accuracy and AUC rates are, respectively, 99.14%, 99.19%, 99.13%, 99.09% and 99.17%, 99.24%, 99.20%, 99.18% in RIM-ONE DL and REFUGE dataset. The experimental results obtained from different datasets demonstrate the efficiency and robustness of the proposed approach. A comparison with some recent previous work in the literature has shown a significant advancement in our proposal. |
| Author | Ouchetto, Ouail Jai-andaloussi, Said Skouta, Ayoub Elmoufidi, Abdelali |
| Author_xml | – sequence: 1 givenname: Abdelali orcidid: 0000-0002-8574-9584 surname: Elmoufidi fullname: Elmoufidi, Abdelali email: a.elmoufidi@usms.ma organization: Data4Earth Laboratory, Sultan Moulay Slimane University – sequence: 2 givenname: Ayoub surname: Skouta fullname: Skouta, Ayoub organization: Computer and Systems Laboratory, Hassan II University – sequence: 3 givenname: Said surname: Jai-andaloussi fullname: Jai-andaloussi, Said organization: Computer and Systems Laboratory, Hassan II University – sequence: 4 givenname: Ouail surname: Ouchetto fullname: Ouchetto, Ouail organization: Computer and Systems Laboratory, Hassan II University |
| BookMark | eNp9kMtKxDAUhoMoOF5ewFXAdTXXtlnKeAXBja5Dmp7WSiepSSr49sapKLiYVX7C_-WcfEdo33kHCJ1RckEJqS4j5ZWoC8JYQQhTrBB7aMVoDiUvyf5vluwQncb4RnKLCkK5WKF0DTDhzTymYRoBDy4m4yzgEUxwg-tx5wM2c_IbkwaL-9HMNmc8BfgAlwbvsHHttlEY53wy27s5frPWj5nuZtfOEU-vPvk-mOn18wQddGaMcPpzHqOX25vn9X3x-HT3sL56LCwTKhXAuTRWtSVpiGQdlSBkA6xUtWitIJVpjZJKCZC1KRmHRrYcOkma2koF1vJjdL68OwX_PkNM-s3PweWRmlVMKaqyk9xiS8sGH2OATk9h2JjwqSnR34L1IlhnwXorWIsM1f8gOyx_T8EM426UL2jMc1wP4W-rHdQXQo2UbQ |
| CitedBy_id | crossref_primary_10_1080_13682199_2024_2364513 crossref_primary_10_1093_postmj_qgad095 crossref_primary_10_1016_j_bspc_2024_106907 crossref_primary_10_1007_s11042_023_15110_9 crossref_primary_10_1007_s42979_022_01482_6 crossref_primary_10_1016_j_engappai_2025_110010 crossref_primary_10_1088_2057_1976_ad91ba crossref_primary_10_1186_s12938_023_01187_8 crossref_primary_10_1007_s42600_023_00305_8 |
| Cites_doi | 10.1016/j.preteyeres.2020.100916 10.3390/s20061601 10.1016/S0262-8856(03)00094-5 10.1109/JBHI.2016.2544961 10.1136/bjo.2005.081224 10.1016/j.media.2019.101570 10.1016/j.jacr.2017.09.044 10.1109/ACCESS.2018.2882946 10.1364/OE.18.021757 10.1007/s11432-011-4330-8 10.1631/jzus.A1300030 10.1109/TITB.2011.2176540 10.1098/rspa.1998.0193 10.1001/jama.2016.17216 10.1364/BOE.10.000892 10.1049/iet-ipr.2017.0536 10.1007/s00138-004-0170-5 10.1001/jama.2014.3192 10.1364/OE.19.018207 10.1016/j.ymssp.2013.02.001 10.1007/s11045-020-00756-7 10.1109/TIM.2013.2246917 10.1016/j.ophtha.2014.05.013 10.1088/1742-2132/9/3/302 10.5566/ias.2346 10.1186/s41747-018-0061-6 10.1037/h0042519 10.1073/pnas.95.22.12766 10.1109/TITB.2011.2119322 10.1016/j.eswa.2014.01.021 10.1016/j.ymssp.2013.04.005 10.3390/app10144916 10.1186/s12938-019-0649-y 10.1098/rspa.2003.1221 10.1109/TIM.2022.3177141 10.1109/CBMS.2011.5999143 10.1142/S0219467823500122 10.1186/s12911-018-0723-6 10.1111/exsy.12760 10.1109/ISC246665.2019.9071750 10.1109/ICIP.2005.1529810 10.1117/12.2255740 10.18287/2412-6179-CO-748 10.1109/ISBI.2016.7493360 10.1117/12.458772 10.1007/978-981-15-0978-0_43 10.1007/978-981-15-6048-4_16 10.1109/NGNS.2014.6990239 10.5194/isprs-archives-XLII-2-W12-211-2019 10.1177/1460458219876183 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s13748-022-00292-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2192-6360 |
| EndPage | 409 |
| ExternalDocumentID | 10_1007_s13748_022_00292_4 |
| GroupedDBID | -EM 0R~ 0VY 203 30V 4.4 406 408 409 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BGNMA BSONS CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 HF~ HMJXF HQYDN HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RIG RLLFE ROL RSV SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7X Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c249t-e335ac9d60b052f15e45be26984dc407ada95994e58a623eb5d3ef50b8c59ecc3 |
| IEDL.DBID | AGYKE |
| ISSN | 2192-6352 |
| IngestDate | Thu Sep 25 00:53:34 EDT 2025 Wed Oct 01 04:42:56 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Fri Feb 21 02:47:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Glaucoma Medical imaging Machine learning Convolutional neural networks (CNNs) Ophthalmology Computer-aided diagnosis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-e335ac9d60b052f15e45be26984dc407ada95994e58a623eb5d3ef50b8c59ecc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8574-9584 |
| PQID | 2729919352 |
| PQPubID | 2044106 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2729919352 crossref_primary_10_1007_s13748_022_00292_4 crossref_citationtrail_10_1007_s13748_022_00292_4 springer_journals_10_1007_s13748_022_00292_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Progress in artificial intelligence |
| PublicationTitleAbbrev | Prog Artif Intell |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Elmoufidi, El Fahssi, Jai-Andaloussi, Sekkaki, Gwenole, Lamard (CR17) 2018; 12 Tham, Li, Wong, Quigley, Aung, Cheng (CR2) 2014; 121 Liaw, Wiener (CR9) 2002; 2 Kotsiantis, Zaharakis, Pintelas (CR8) 2007; 160 Gulshan, Peng, Coram, Stumpe, Derek, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (CR34) 2016; 316 He, Wang, Shen, Jin, Wang (CR51) 2013; 62 Quigley, Broman (CR3) 2006; 90 CR32 CR30 Orlando, Huazhu, Breda, van Keer, Bathula, Diaz-Pinto, Fang, Heng, Kim, Lee (CR27) 2020; 59 Qiao, Niu, Wang, Peng (CR46) 2011; 54 Pesapane, Codari, Sardanelli (CR5) 2018; 2 Garcia-Perez, Amezquita-Sanchez, Dominguez-Gonzalez, Sedaghati, Osornio-Rios, Romero-Troncoso (CR38) 2013; 14 Zhou, Li (CR43) 2011; 19 Nunes, Bouaoune, Delechelle, Niang, Bunel (CR41) 2003; 21 Baudouin, Kolko, Melik-Parsadaniantz, Messmer (CR4) 2021; 83 Gómez-Valverde, Antón, Fatti, Liefers, Herranz, Santos, Sánchez, Ledesma-Carbayo (CR29) 2019; 10 Weinreb, Aung, Medeiros (CR1) 2014; 311 CR7 CR48 Nunes, Guyot, Deléchelle (CR42) 2005; 16 CR45 CR44 Lakhani, Prater, Hutson, Andriole, Dreyer, Morey, Prevedello, Clark, Geis, Itri (CR6) 2018; 15 Zhu, Song, Xue (CR40) 2013; 15 Zhaohua, Huang (CR35) 2004; 460 Guo, Mai, Zhao, Duan, Fan, Zou, Xie (CR53) 2018; 6 Bajwa, Malik, Siddiqui, Dengel, Shafait, Neumeier, Ahmed (CR28) 2019; 19 CR19 CR18 CR16 Yang, Fengshou, Ball (CR49) 2013; 38 CR14 CR12 CR11 Diaz-Pinto, Morales, Naranjo, Köhler, Mossi, Navea (CR26) 2019; 18 Liu, Peng (CR50) 2004; 12 CR55 Huang, Shen, Long, ManliC, Shih, Zheng, Yen, Tung, Liu (CR52) 1998; 454 Maheshwari, Pachori, Acharya (CR23) 2016; 21 Song, Bai, Pinheiro, Dong, Huang, Liu (CR37) 2012; 9 Khamparia, Bharati, Podder, Gupta, Khanna, Phung, Thanh (CR15) 2021; 32 Batista, Diaz-Aleman, Sigut, Alayon, Arnay, Angel-Pereira (CR54) 2020; 39 Sreng, Maneerat, Hamamoto, Win (CR31) 2020; 10 Rosenblatt (CR10) 1958; 65 Zafar, Gilani, Waris, Ahmed, Jamil, Khan, Sohail Kashif (CR13) 2020; 20 CR22 El-Dahshan, Mohsen, Revett, Salem (CR33) 2014; 41 CR21 Zheng, Cheng, Yang (CR39) 2013; 40 CR20 Huang, Shen, Huang, Fung (CR36) 1998; 95 Dua, Acharya, Chowriappa, Sree (CR25) 2011; 16 Acharya, Dua, Du, Chua (CR24) 2011; 15 Chen, Wang, Sun, Jiang, Zhai (CR47) 2010; 18 F Rosenblatt (292_CR10) 1958; 65 K Zafar (292_CR13) 2020; 20 RN Weinreb (292_CR1) 2014; 311 MN Bajwa (292_CR28) 2019; 19 292_CR21 292_CR22 292_CR20 K Zhu (292_CR40) 2013; 15 NE Huang (292_CR52) 1998; 454 A Diaz-Pinto (292_CR26) 2019; 18 W Zhaohua (292_CR35) 2004; 460 HA Quigley (292_CR3) 2006; 90 A Liaw (292_CR9) 2002; 2 B-S Yang (292_CR49) 2013; 38 292_CR7 292_CR18 292_CR19 292_CR16 A Elmoufidi (292_CR17) 2018; 12 292_CR11 292_CR55 Y Zhou (292_CR43) 2011; 19 Y-C Tham (292_CR2) 2014; 121 292_CR14 292_CR12 S Dua (292_CR25) 2011; 16 JC Nunes (292_CR41) 2003; 21 S Maheshwari (292_CR23) 2016; 21 Z Liu (292_CR50) 2004; 12 FJF Batista (292_CR54) 2020; 39 W Huang (292_CR36) 1998; 95 Z He (292_CR51) 2013; 62 P Lakhani (292_CR6) 2018; 15 V Gulshan (292_CR34) 2016; 316 C Baudouin (292_CR4) 2021; 83 292_CR44 F Pesapane (292_CR5) 2018; 2 292_CR48 292_CR45 A Garcia-Perez (292_CR38) 2013; 14 E-SA El-Dahshan (292_CR33) 2014; 41 S Sreng (292_CR31) 2020; 10 JC Nunes (292_CR42) 2005; 16 UR Acharya (292_CR24) 2011; 15 F Guo (292_CR53) 2018; 6 Y Chen (292_CR47) 2010; 18 JI Orlando (292_CR27) 2020; 59 H Song (292_CR37) 2012; 9 292_CR32 JJ Gómez-Valverde (292_CR29) 2019; 10 292_CR30 J Zheng (292_CR39) 2013; 40 L Qiao (292_CR46) 2011; 54 A Khamparia (292_CR15) 2021; 32 SB Kotsiantis (292_CR8) 2007; 160 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 83 year: 2021 ident: CR4 article-title: Inflammation in glaucoma: from the back to the front of the eye, and beyond publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2020.100916 – volume: 20 start-page: 1601 issue: 6 year: 2020 ident: CR13 article-title: Skin lesion segmentation from dermoscopic images using convolutional neural network publication-title: Sensors doi: 10.3390/s20061601 – ident: CR16 – volume: 21 start-page: 1019 issue: 12 year: 2003 end-page: 1026 ident: CR41 article-title: Image analysis by bidimensional empirical mode decomposition publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(03)00094-5 – ident: CR12 – volume: 21 start-page: 803 issue: 3 year: 2016 end-page: 813 ident: CR23 article-title: Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2544961 – volume: 12 start-page: 33 issue: 1 year: 2004 end-page: 36 ident: CR50 article-title: Boundary processing of bidimensional EMD using texture synthesis publication-title: IEEE Signal Process. Lett. – volume: 90 start-page: 262 issue: 3 year: 2006 end-page: 267 ident: CR3 article-title: the number of people with glaucoma worldwide in 2010 and 2020 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.2005.081224 – volume: 59 year: 2020 ident: CR27 article-title: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101570 – volume: 15 start-page: 350 issue: 2 year: 2018 end-page: 359 ident: CR6 article-title: Machine learning in radiology: applications beyond image interpretation publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2017.09.044 – volume: 6 start-page: 77414 year: 2018 end-page: 77428 ident: CR53 article-title: Yanbao: a mobile app using the measurement of clinical parameters for glaucoma screening publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2882946 – volume: 18 start-page: 21757 issue: 21 year: 2010 end-page: 21769 ident: CR47 article-title: Fusion of color microscopic images based on bidimensional empirical mode decomposition publication-title: Opt. Express doi: 10.1364/OE.18.021757 – volume: 54 start-page: 2602 issue: 12 year: 2011 end-page: 2614 ident: CR46 article-title: Perfect reconstruction image modulation based on BEMD and quaternionic analytic signals publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-011-4330-8 – volume: 19 start-page: 1 issue: 1 year: 2019 end-page: 16 ident: CR28 article-title: Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning publication-title: BMC Med. Inform. Decis. Mak. – volume: 14 start-page: 615 issue: 9 year: 2013 end-page: 630 ident: CR38 article-title: Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis publication-title: J. Zhejiang Univ. Sci. A doi: 10.1631/jzus.A1300030 – volume: 16 start-page: 80 issue: 1 year: 2011 end-page: 87 ident: CR25 article-title: Wavelet-based energy features for glaucomatous image classification publication-title: IEEE Trans. Inf Technol. Biomed. doi: 10.1109/TITB.2011.2176540 – ident: CR21 – ident: CR19 – volume: 454 start-page: 903 issue: 1971 year: 1998 end-page: 995 ident: CR52 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 316 start-page: 2402 issue: 22 year: 2016 end-page: 2410 ident: CR34 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – ident: CR11 – volume: 10 start-page: 892 issue: 2 year: 2019 end-page: 913 ident: CR29 article-title: Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.000892 – ident: CR32 – volume: 12 start-page: 320 issue: 3 year: 2018 end-page: 328 ident: CR17 article-title: Anomaly classification in digital mammography based on multiple-instance learning publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2017.0536 – volume: 16 start-page: 177 issue: 3 year: 2005 end-page: 188 ident: CR42 article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-004-0170-5 – volume: 311 start-page: 1901 issue: 18 year: 2014 end-page: 1911 ident: CR1 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA doi: 10.1001/jama.2014.3192 – volume: 19 start-page: 18207 issue: 19 year: 2011 end-page: 18215 ident: CR43 article-title: Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition publication-title: Opt. Express doi: 10.1364/OE.19.018207 – volume: 38 start-page: 601 issue: 2 year: 2013 end-page: 614 ident: CR49 article-title: Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.02.001 – volume: 32 start-page: 747 issue: 2 year: 2021 end-page: 765 ident: CR15 article-title: diagnosis of breast cancer based on modern mammography using hybrid transfer learning publication-title: Multidimension. Syst. Signal Process. doi: 10.1007/s11045-020-00756-7 – ident: CR18 – ident: CR14 – volume: 62 start-page: 889 issue: 5 year: 2013 end-page: 904 ident: CR51 article-title: Multivariate gray model-based BEMD for hyperspectral image classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2246917 – ident: CR30 – volume: 121 start-page: 2081 issue: 11 year: 2014 end-page: 2090 ident: CR2 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.05.013 – volume: 9 start-page: 302 issue: 3 year: 2012 end-page: 311 ident: CR37 article-title: Analysis of ocean internal waves imaged by multichannel reflection seismics, using ensemble empirical mode decomposition publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/9/3/302 – volume: 39 start-page: 161 issue: 3 year: 2020 end-page: 167 ident: CR54 article-title: RIM-ONE DL: a unified retinal image database for assessing glaucoma using deep learning publication-title: Image Anal. Stereol. doi: 10.5566/ias.2346 – volume: 2 start-page: 1 issue: 1 year: 2018 end-page: 10 ident: CR5 article-title: Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-018-0061-6 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: CR10 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 95 start-page: 12766 issue: 22 year: 1998 end-page: 12771 ident: CR36 article-title: Use of intrinsic modes in biology: examples of indicial response of pulmonary blood pressure to step hypoxia publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.95.22.12766 – volume: 15 start-page: 597 issue: 2 year: 2013 end-page: 603 ident: CR40 article-title: Incipient fault diagnosis of roller bearings using empirical mode decomposition and correlation coefficient publication-title: J. Vibroengineering – ident: CR44 – ident: CR48 – volume: 15 start-page: 449 issue: 3 year: 2011 end-page: 455 ident: CR24 article-title: Automated diagnosis of glaucoma using texture and higher order spectra features publication-title: IEEE Trans. Inf Technol. Biomed. doi: 10.1109/TITB.2011.2119322 – volume: 41 start-page: 5526 issue: 11 year: 2014 end-page: 5545 ident: CR33 article-title: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 – volume: 40 start-page: 136 issue: 1 year: 2013 end-page: 153 ident: CR39 article-title: Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.04.005 – volume: 10 start-page: 4916 issue: 14 year: 2020 ident: CR31 article-title: Deep learning for optic disc segmentation and glaucoma diagnosis on retinal images publication-title: Appl. Sci. doi: 10.3390/app10144916 – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 ident: CR9 article-title: Classification and regression by randomforest publication-title: R news – volume: 160 start-page: 3 issue: 1 year: 2007 end-page: 24 ident: CR8 article-title: Supervised machine learning: a review of classification techniques publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – ident: CR55 – ident: CR7 – volume: 18 start-page: 1 issue: 1 year: 2019 end-page: 19 ident: CR26 article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation publication-title: Biomed. Eng. Online doi: 10.1186/s12938-019-0649-y – ident: CR20 – volume: 460 start-page: 1597 issue: 2046 year: 2004 end-page: 1611 ident: CR35 article-title: A study of the characteristics of white noise using the empirical mode decomposition method publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.2003.1221 – volume: 15 start-page: 350 issue: 2 year: 2018 ident: 292_CR6 publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2017.09.044 – volume: 460 start-page: 1597 issue: 2046 year: 2004 ident: 292_CR35 publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.2003.1221 – volume: 16 start-page: 177 issue: 3 year: 2005 ident: 292_CR42 publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-004-0170-5 – volume: 40 start-page: 136 issue: 1 year: 2013 ident: 292_CR39 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.04.005 – ident: 292_CR32 doi: 10.1109/TIM.2022.3177141 – volume: 20 start-page: 1601 issue: 6 year: 2020 ident: 292_CR13 publication-title: Sensors doi: 10.3390/s20061601 – ident: 292_CR55 doi: 10.1109/CBMS.2011.5999143 – volume: 38 start-page: 601 issue: 2 year: 2013 ident: 292_CR49 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.02.001 – ident: 292_CR7 doi: 10.1142/S0219467823500122 – volume: 95 start-page: 12766 issue: 22 year: 1998 ident: 292_CR36 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.95.22.12766 – volume: 311 start-page: 1901 issue: 18 year: 2014 ident: 292_CR1 publication-title: JAMA doi: 10.1001/jama.2014.3192 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 292_CR10 publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 121 start-page: 2081 issue: 11 year: 2014 ident: 292_CR2 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.05.013 – volume: 19 start-page: 18207 issue: 19 year: 2011 ident: 292_CR43 publication-title: Opt. Express doi: 10.1364/OE.19.018207 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 292_CR9 publication-title: R news – volume: 12 start-page: 33 issue: 1 year: 2004 ident: 292_CR50 publication-title: IEEE Signal Process. Lett. – volume: 16 start-page: 80 issue: 1 year: 2011 ident: 292_CR25 publication-title: IEEE Trans. Inf Technol. Biomed. doi: 10.1109/TITB.2011.2176540 – volume: 21 start-page: 1019 issue: 12 year: 2003 ident: 292_CR41 publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(03)00094-5 – volume: 9 start-page: 302 issue: 3 year: 2012 ident: 292_CR37 publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/9/3/302 – volume: 14 start-page: 615 issue: 9 year: 2013 ident: 292_CR38 publication-title: J. Zhejiang Univ. Sci. A doi: 10.1631/jzus.A1300030 – volume: 59 year: 2020 ident: 292_CR27 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101570 – volume: 18 start-page: 1 issue: 1 year: 2019 ident: 292_CR26 publication-title: Biomed. Eng. Online doi: 10.1186/s12938-019-0649-y – ident: 292_CR48 – volume: 39 start-page: 161 issue: 3 year: 2020 ident: 292_CR54 publication-title: Image Anal. Stereol. doi: 10.5566/ias.2346 – volume: 19 start-page: 1 issue: 1 year: 2019 ident: 292_CR28 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-018-0723-6 – ident: 292_CR14 doi: 10.1111/exsy.12760 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 292_CR52 publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – ident: 292_CR19 doi: 10.1109/ISC246665.2019.9071750 – volume: 62 start-page: 889 issue: 5 year: 2013 ident: 292_CR51 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2246917 – volume: 6 start-page: 77414 year: 2018 ident: 292_CR53 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2882946 – volume: 41 start-page: 5526 issue: 11 year: 2014 ident: 292_CR33 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 – ident: 292_CR45 doi: 10.1109/ICIP.2005.1529810 – ident: 292_CR30 doi: 10.1117/12.2255740 – volume: 10 start-page: 4916 issue: 14 year: 2020 ident: 292_CR31 publication-title: Appl. Sci. doi: 10.3390/app10144916 – ident: 292_CR12 doi: 10.18287/2412-6179-CO-748 – ident: 292_CR22 doi: 10.1109/ISBI.2016.7493360 – volume: 83 year: 2021 ident: 292_CR4 publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2020.100916 – ident: 292_CR44 doi: 10.1117/12.458772 – ident: 292_CR16 doi: 10.1007/978-981-15-0978-0_43 – ident: 292_CR21 doi: 10.1007/978-981-15-6048-4_16 – volume: 18 start-page: 21757 issue: 21 year: 2010 ident: 292_CR47 publication-title: Opt. Express doi: 10.1364/OE.18.021757 – volume: 12 start-page: 320 issue: 3 year: 2018 ident: 292_CR17 publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2017.0536 – ident: 292_CR18 doi: 10.1109/NGNS.2014.6990239 – volume: 10 start-page: 892 issue: 2 year: 2019 ident: 292_CR29 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.000892 – ident: 292_CR20 doi: 10.5194/isprs-archives-XLII-2-W12-211-2019 – volume: 15 start-page: 597 issue: 2 year: 2013 ident: 292_CR40 publication-title: J. Vibroengineering – volume: 15 start-page: 449 issue: 3 year: 2011 ident: 292_CR24 publication-title: IEEE Trans. Inf Technol. Biomed. doi: 10.1109/TITB.2011.2119322 – volume: 54 start-page: 2602 issue: 12 year: 2011 ident: 292_CR46 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-011-4330-8 – volume: 21 start-page: 803 issue: 3 year: 2016 ident: 292_CR23 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2544961 – volume: 160 start-page: 3 issue: 1 year: 2007 ident: 292_CR8 publication-title: Emerg. Artif. Intell. Appl. Comput. Eng. – volume: 32 start-page: 747 issue: 2 year: 2021 ident: 292_CR15 publication-title: Multidimension. Syst. Signal Process. doi: 10.1007/s11045-020-00756-7 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 292_CR34 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 90 start-page: 262 issue: 3 year: 2006 ident: 292_CR3 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.2005.081224 – ident: 292_CR11 doi: 10.1177/1460458219876183 – volume: 2 start-page: 1 issue: 1 year: 2018 ident: 292_CR5 publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-018-0061-6 |
| SSID | ssj0002140134 |
| Score | 2.2533524 |
| Snippet | In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 397 |
| SubjectTerms | Algorithms Annotations Artificial Intelligence Color Computational Intelligence Computer Imaging Computer Science Control Data Mining and Knowledge Discovery Datasets Deep learning Edema Feature extraction Glaucoma Machine learning Mechatronics Natural Language Processing (NLP) Ophthalmology Pattern Recognition and Graphics Photography Regular Paper Robotics Vision |
| Title | Deep multiple instance learning for automatic glaucoma prevention and auto-annotation using color fundus photography |
| URI | https://link.springer.com/article/10.1007/s13748-022-00292-4 https://www.proquest.com/docview/2729919352 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2192-6360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140134 issn: 2192-6352 databaseCode: AFBBN dateStart: 20120401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2192-6360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140134 issn: 2192-6352 databaseCode: AGYKE dateStart: 20120101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu3DhjRgv5cANgkaabO2R15hA7MQkOFV5FRConVh74dfjZCkVEyBxbpq2sVN_ju3PAIfGSomCtbSP2kt5T2mqIm1oljnz7Ep3_YH-3ag3HPObB_EQisKmdbZ7HZL0f-qm2M0xpVCXfe5CSYzyRWh7vq0WtM-uH2-bsxXmvQYXUMb9yCjaVBbqZX6e6LtNaoDmXGzUm5zBCozrl51lmryeVKU60R9zPI7__ZpVWA4YlJzNlGYNFmy-Dit1fwcStvsGlJfWTkidckhePJLUloROE08EAS-RVVl42leCQLzCh0syCbRQRU5kbvwIKvO8mEX9iUu1fyKOLfudoFk11ZRMnosycGdvwnhwdX8xpKFLA9XoupXURpGQOjG9ruoKlp0Ky4WyrJfE3Gh0F6WRiUgSbkUsEWtZJUxkM9FVsRYJKlC0Ba28yO02kCyOUU_6GepVnyseJ9qarjbcMAc8uO3AaS2nVAcKc9dJ4y1tyJfdsqa4rKlf1pR34OjrnsmMwOPP0Xu1-NOwmacpQwckQaArWAeOa2k2l3-fbed_w3dhiTmF8Mkye9Aq3yu7j5CnVAeo4YPz89FB0PRPXT_5zA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzGeOXCDoJEmW3tEvMbzxCQ4VXl1IFA7sfbCr8fJUioQIHFumraxU3-O7c8Ae8ZKiYK1tIfaS3lXaaoibWiWOfPsSnf9gf7tXbc_4FcP4iEUhY3rbPc6JOn_1E2xm2NKoS773IWSGOXTMMPRQWEtmDm-eLxuzlaY9xpcQBn3I6NoU1mol_l5oq82qQGa32Kj3uScL8CgftlJpsnLYVWqQ_3-jcfxv1-zCPMBg5LjidIswZTNl2Gh7u9AwnZfgfLU2hGpUw7Js0eS2pLQaWJIEPASWZWFp30lCMQrfLgko0ALVeRE5saPoDLPi0nUn7hU-yFxbNlvBM2qqcZk9FSUgTt7FQbnZ_cnfRq6NFCNrltJbRQJqRPT7aiOYNmRsFwoy7pJzI1Gd1EamYgk4VbEErGWVcJENhMdFWuRoAJFa9DKi9yuA8niGPWkl6Fe9bjicaKt6WjDDXPAg9s2HNVySnWgMHedNF7ThnzZLWuKy5r6ZU15G_Y_7xlNCDz-HL1Viz8Nm3mcMnRAEgS6grXhoJZmc_n32Tb-N3wXZvv3tzfpzeXd9SbMMaccPnFmC1rlW2W3Ef6Uaido-wc5rvsv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwEC0xII3mwjIDoll9mBtjaBy7OzkioNkRB5DgFHkLIFASQXLh6yk7DgHEICHOcSzHfk69sqteAfw1VkpcWEuHiF7KB0pTFWlDs8yZZ5e66w_0T04H-xf88FJcvsri99Hu7ZVkk9PgVJryaqM02UaX-OZUU6iLRHfXSozyHzCBrskQkT6xtXd11J2zMO9BuMtl3JuMon1lIXfm447e2qeOdL67J_XmZzQFsh14E3Vyt15Xal0_vdN0_M6XTcNk4KZkqwHTDIzZ_DdMtXUfSPgN_IFqx9qStKGI5NYzTG1JqEBxTZAIE1lXhZeDJUjQaxyIJGWQiypyInPjW1CZ50UTDUBcCP41cSraDwTNrakfSXlTVEFTexYuRrvn2_s0VG-gGl26itooElInZtBXfcGyTWG5UJYNkpgbjWsljUxEknArYokczCphIpuJvoq1SBBY0RyM50Vu54FkcYz4GWaItyFXPE60NX1tuGGOkHDbg812zVIdpM1dhY37tBNldtOa4rSmflpT3oO1l3fKRtjj09ZLLRTSsMkfU4aOSYIEWLAe_GtXtnv8_94WvtZ8FX6e7YzS44PTo0X4xRw2fDzNEoxXD7VdRlZUqZUA_Gcb-AQi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+multiple+instance+learning+for+automatic+glaucoma+prevention+and+auto-annotation+using+color+fundus+photography&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Elmoufidi%2C+Abdelali&rft.au=Skouta%2C+Ayoub&rft.au=Jai-andaloussi%2C+Said&rft.au=Ouchetto%2C+Ouail&rft.date=2022-12-01&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=11&rft.issue=4&rft.spage=397&rft.epage=409&rft_id=info:doi/10.1007%2Fs13748-022-00292-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13748_022_00292_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon |