Deep multiple instance learning for automatic glaucoma prevention and auto-annotation using color fundus photography

In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular complications such as glaucoma, cystoid macular edema, or diabetic proliferative retinopathy. Intelligent systems are proven to be beneficial for th...

Full description

Saved in:
Bibliographic Details
Published inProgress in artificial intelligence Vol. 11; no. 4; pp. 397 - 409
Main Authors Elmoufidi, Abdelali, Skouta, Ayoub, Jai-andaloussi, Said, Ouchetto, Ouail
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2192-6352
2192-6360
DOI10.1007/s13748-022-00292-4

Cover

Abstract In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular complications such as glaucoma, cystoid macular edema, or diabetic proliferative retinopathy. Intelligent systems are proven to be beneficial for the assessment of glaucoma. In this paper, we describe an approach to automate the diagnosis of glaucoma disease, based on color funds photography using deep learning. The setup of the proposed framework is ordered as follows: The bidimensional empirical mode decomposition (BEMD) algorithm is applied to decompose the ROI to components (BIMFs + residue). CNN architecture VGG19 is implemented to extract features from decomposed BEMD components. The features obtained are the input parameters of the implemented classifier based on full connect layers and softmax. To train the built model, we have used the public dataset RIM-ONE DL. To test our models, we have used a part of RIM-ONE DL and REFUGE. The average obtained sensitivity, specificity, accuracy and AUC rates are, respectively, 99.14%, 99.19%, 99.13%, 99.09% and 99.17%, 99.24%, 99.20%, 99.18% in RIM-ONE DL and REFUGE dataset. The experimental results obtained from different datasets demonstrate the efficiency and robustness of the proposed approach. A comparison with some recent previous work in the literature has shown a significant advancement in our proposal.
AbstractList In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular complications such as glaucoma, cystoid macular edema, or diabetic proliferative retinopathy. Intelligent systems are proven to be beneficial for the assessment of glaucoma. In this paper, we describe an approach to automate the diagnosis of glaucoma disease, based on color funds photography using deep learning. The setup of the proposed framework is ordered as follows: The bidimensional empirical mode decomposition (BEMD) algorithm is applied to decompose the ROI to components (BIMFs + residue). CNN architecture VGG19 is implemented to extract features from decomposed BEMD components. The features obtained are the input parameters of the implemented classifier based on full connect layers and softmax. To train the built model, we have used the public dataset RIM-ONE DL. To test our models, we have used a part of RIM-ONE DL and REFUGE. The average obtained sensitivity, specificity, accuracy and AUC rates are, respectively, 99.14%, 99.19%, 99.13%, 99.09% and 99.17%, 99.24%, 99.20%, 99.18% in RIM-ONE DL and REFUGE dataset. The experimental results obtained from different datasets demonstrate the efficiency and robustness of the proposed approach. A comparison with some recent previous work in the literature has shown a significant advancement in our proposal.
Author Ouchetto, Ouail
Jai-andaloussi, Said
Skouta, Ayoub
Elmoufidi, Abdelali
Author_xml – sequence: 1
  givenname: Abdelali
  orcidid: 0000-0002-8574-9584
  surname: Elmoufidi
  fullname: Elmoufidi, Abdelali
  email: a.elmoufidi@usms.ma
  organization: Data4Earth Laboratory, Sultan Moulay Slimane University
– sequence: 2
  givenname: Ayoub
  surname: Skouta
  fullname: Skouta, Ayoub
  organization: Computer and Systems Laboratory, Hassan II University
– sequence: 3
  givenname: Said
  surname: Jai-andaloussi
  fullname: Jai-andaloussi, Said
  organization: Computer and Systems Laboratory, Hassan II University
– sequence: 4
  givenname: Ouail
  surname: Ouchetto
  fullname: Ouchetto, Ouail
  organization: Computer and Systems Laboratory, Hassan II University
BookMark eNp9kMtKxDAUhoMoOF5ewFXAdTXXtlnKeAXBja5Dmp7WSiepSSr49sapKLiYVX7C_-WcfEdo33kHCJ1RckEJqS4j5ZWoC8JYQQhTrBB7aMVoDiUvyf5vluwQncb4RnKLCkK5WKF0DTDhzTymYRoBDy4m4yzgEUxwg-tx5wM2c_IbkwaL-9HMNmc8BfgAlwbvsHHttlEY53wy27s5frPWj5nuZtfOEU-vPvk-mOn18wQddGaMcPpzHqOX25vn9X3x-HT3sL56LCwTKhXAuTRWtSVpiGQdlSBkA6xUtWitIJVpjZJKCZC1KRmHRrYcOkma2koF1vJjdL68OwX_PkNM-s3PweWRmlVMKaqyk9xiS8sGH2OATk9h2JjwqSnR34L1IlhnwXorWIsM1f8gOyx_T8EM426UL2jMc1wP4W-rHdQXQo2UbQ
CitedBy_id crossref_primary_10_1080_13682199_2024_2364513
crossref_primary_10_1093_postmj_qgad095
crossref_primary_10_1016_j_bspc_2024_106907
crossref_primary_10_1007_s11042_023_15110_9
crossref_primary_10_1007_s42979_022_01482_6
crossref_primary_10_1016_j_engappai_2025_110010
crossref_primary_10_1088_2057_1976_ad91ba
crossref_primary_10_1186_s12938_023_01187_8
crossref_primary_10_1007_s42600_023_00305_8
Cites_doi 10.1016/j.preteyeres.2020.100916
10.3390/s20061601
10.1016/S0262-8856(03)00094-5
10.1109/JBHI.2016.2544961
10.1136/bjo.2005.081224
10.1016/j.media.2019.101570
10.1016/j.jacr.2017.09.044
10.1109/ACCESS.2018.2882946
10.1364/OE.18.021757
10.1007/s11432-011-4330-8
10.1631/jzus.A1300030
10.1109/TITB.2011.2176540
10.1098/rspa.1998.0193
10.1001/jama.2016.17216
10.1364/BOE.10.000892
10.1049/iet-ipr.2017.0536
10.1007/s00138-004-0170-5
10.1001/jama.2014.3192
10.1364/OE.19.018207
10.1016/j.ymssp.2013.02.001
10.1007/s11045-020-00756-7
10.1109/TIM.2013.2246917
10.1016/j.ophtha.2014.05.013
10.1088/1742-2132/9/3/302
10.5566/ias.2346
10.1186/s41747-018-0061-6
10.1037/h0042519
10.1073/pnas.95.22.12766
10.1109/TITB.2011.2119322
10.1016/j.eswa.2014.01.021
10.1016/j.ymssp.2013.04.005
10.3390/app10144916
10.1186/s12938-019-0649-y
10.1098/rspa.2003.1221
10.1109/TIM.2022.3177141
10.1109/CBMS.2011.5999143
10.1142/S0219467823500122
10.1186/s12911-018-0723-6
10.1111/exsy.12760
10.1109/ISC246665.2019.9071750
10.1109/ICIP.2005.1529810
10.1117/12.2255740
10.18287/2412-6179-CO-748
10.1109/ISBI.2016.7493360
10.1117/12.458772
10.1007/978-981-15-0978-0_43
10.1007/978-981-15-6048-4_16
10.1109/NGNS.2014.6990239
10.5194/isprs-archives-XLII-2-W12-211-2019
10.1177/1460458219876183
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13748-022-00292-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2192-6360
EndPage 409
ExternalDocumentID 10_1007_s13748_022_00292_4
GroupedDBID -EM
0R~
0VY
203
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
BSONS
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
HF~
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RIG
RLLFE
ROL
RSV
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7X
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c249t-e335ac9d60b052f15e45be26984dc407ada95994e58a623eb5d3ef50b8c59ecc3
IEDL.DBID AGYKE
ISSN 2192-6352
IngestDate Thu Sep 25 00:53:34 EDT 2025
Wed Oct 01 04:42:56 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Fri Feb 21 02:47:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Glaucoma
Medical imaging
Machine learning
Convolutional neural networks (CNNs)
Ophthalmology
Computer-aided diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-e335ac9d60b052f15e45be26984dc407ada95994e58a623eb5d3ef50b8c59ecc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8574-9584
PQID 2729919352
PQPubID 2044106
PageCount 13
ParticipantIDs proquest_journals_2729919352
crossref_primary_10_1007_s13748_022_00292_4
crossref_citationtrail_10_1007_s13748_022_00292_4
springer_journals_10_1007_s13748_022_00292_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Progress in artificial intelligence
PublicationTitleAbbrev Prog Artif Intell
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Elmoufidi, El Fahssi, Jai-Andaloussi, Sekkaki, Gwenole, Lamard (CR17) 2018; 12
Tham, Li, Wong, Quigley, Aung, Cheng (CR2) 2014; 121
Liaw, Wiener (CR9) 2002; 2
Kotsiantis, Zaharakis, Pintelas (CR8) 2007; 160
Gulshan, Peng, Coram, Stumpe, Derek, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (CR34) 2016; 316
He, Wang, Shen, Jin, Wang (CR51) 2013; 62
Quigley, Broman (CR3) 2006; 90
CR32
CR30
Orlando, Huazhu, Breda, van Keer, Bathula, Diaz-Pinto, Fang, Heng, Kim, Lee (CR27) 2020; 59
Qiao, Niu, Wang, Peng (CR46) 2011; 54
Pesapane, Codari, Sardanelli (CR5) 2018; 2
Garcia-Perez, Amezquita-Sanchez, Dominguez-Gonzalez, Sedaghati, Osornio-Rios, Romero-Troncoso (CR38) 2013; 14
Zhou, Li (CR43) 2011; 19
Nunes, Bouaoune, Delechelle, Niang, Bunel (CR41) 2003; 21
Baudouin, Kolko, Melik-Parsadaniantz, Messmer (CR4) 2021; 83
Gómez-Valverde, Antón, Fatti, Liefers, Herranz, Santos, Sánchez, Ledesma-Carbayo (CR29) 2019; 10
Weinreb, Aung, Medeiros (CR1) 2014; 311
CR7
CR48
Nunes, Guyot, Deléchelle (CR42) 2005; 16
CR45
CR44
Lakhani, Prater, Hutson, Andriole, Dreyer, Morey, Prevedello, Clark, Geis, Itri (CR6) 2018; 15
Zhu, Song, Xue (CR40) 2013; 15
Zhaohua, Huang (CR35) 2004; 460
Guo, Mai, Zhao, Duan, Fan, Zou, Xie (CR53) 2018; 6
Bajwa, Malik, Siddiqui, Dengel, Shafait, Neumeier, Ahmed (CR28) 2019; 19
CR19
CR18
CR16
Yang, Fengshou, Ball (CR49) 2013; 38
CR14
CR12
CR11
Diaz-Pinto, Morales, Naranjo, Köhler, Mossi, Navea (CR26) 2019; 18
Liu, Peng (CR50) 2004; 12
CR55
Huang, Shen, Long, ManliC, Shih, Zheng, Yen, Tung, Liu (CR52) 1998; 454
Maheshwari, Pachori, Acharya (CR23) 2016; 21
Song, Bai, Pinheiro, Dong, Huang, Liu (CR37) 2012; 9
Khamparia, Bharati, Podder, Gupta, Khanna, Phung, Thanh (CR15) 2021; 32
Batista, Diaz-Aleman, Sigut, Alayon, Arnay, Angel-Pereira (CR54) 2020; 39
Sreng, Maneerat, Hamamoto, Win (CR31) 2020; 10
Rosenblatt (CR10) 1958; 65
Zafar, Gilani, Waris, Ahmed, Jamil, Khan, Sohail Kashif (CR13) 2020; 20
CR22
El-Dahshan, Mohsen, Revett, Salem (CR33) 2014; 41
CR21
Zheng, Cheng, Yang (CR39) 2013; 40
CR20
Huang, Shen, Huang, Fung (CR36) 1998; 95
Dua, Acharya, Chowriappa, Sree (CR25) 2011; 16
Acharya, Dua, Du, Chua (CR24) 2011; 15
Chen, Wang, Sun, Jiang, Zhai (CR47) 2010; 18
F Rosenblatt (292_CR10) 1958; 65
K Zafar (292_CR13) 2020; 20
RN Weinreb (292_CR1) 2014; 311
MN Bajwa (292_CR28) 2019; 19
292_CR21
292_CR22
292_CR20
K Zhu (292_CR40) 2013; 15
NE Huang (292_CR52) 1998; 454
A Diaz-Pinto (292_CR26) 2019; 18
W Zhaohua (292_CR35) 2004; 460
HA Quigley (292_CR3) 2006; 90
A Liaw (292_CR9) 2002; 2
B-S Yang (292_CR49) 2013; 38
292_CR7
292_CR18
292_CR19
292_CR16
A Elmoufidi (292_CR17) 2018; 12
292_CR11
292_CR55
Y Zhou (292_CR43) 2011; 19
Y-C Tham (292_CR2) 2014; 121
292_CR14
292_CR12
S Dua (292_CR25) 2011; 16
JC Nunes (292_CR41) 2003; 21
S Maheshwari (292_CR23) 2016; 21
Z Liu (292_CR50) 2004; 12
FJF Batista (292_CR54) 2020; 39
W Huang (292_CR36) 1998; 95
Z He (292_CR51) 2013; 62
P Lakhani (292_CR6) 2018; 15
V Gulshan (292_CR34) 2016; 316
C Baudouin (292_CR4) 2021; 83
292_CR44
F Pesapane (292_CR5) 2018; 2
292_CR48
292_CR45
A Garcia-Perez (292_CR38) 2013; 14
E-SA El-Dahshan (292_CR33) 2014; 41
S Sreng (292_CR31) 2020; 10
JC Nunes (292_CR42) 2005; 16
UR Acharya (292_CR24) 2011; 15
F Guo (292_CR53) 2018; 6
Y Chen (292_CR47) 2010; 18
JI Orlando (292_CR27) 2020; 59
H Song (292_CR37) 2012; 9
292_CR32
JJ Gómez-Valverde (292_CR29) 2019; 10
292_CR30
J Zheng (292_CR39) 2013; 40
L Qiao (292_CR46) 2011; 54
A Khamparia (292_CR15) 2021; 32
SB Kotsiantis (292_CR8) 2007; 160
References_xml – ident: CR45
– ident: CR22
– volume: 83
  year: 2021
  ident: CR4
  article-title: Inflammation in glaucoma: from the back to the front of the eye, and beyond
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2020.100916
– volume: 20
  start-page: 1601
  issue: 6
  year: 2020
  ident: CR13
  article-title: Skin lesion segmentation from dermoscopic images using convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s20061601
– ident: CR16
– volume: 21
  start-page: 1019
  issue: 12
  year: 2003
  end-page: 1026
  ident: CR41
  article-title: Image analysis by bidimensional empirical mode decomposition
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(03)00094-5
– ident: CR12
– volume: 21
  start-page: 803
  issue: 3
  year: 2016
  end-page: 813
  ident: CR23
  article-title: Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2544961
– volume: 12
  start-page: 33
  issue: 1
  year: 2004
  end-page: 36
  ident: CR50
  article-title: Boundary processing of bidimensional EMD using texture synthesis
  publication-title: IEEE Signal Process. Lett.
– volume: 90
  start-page: 262
  issue: 3
  year: 2006
  end-page: 267
  ident: CR3
  article-title: the number of people with glaucoma worldwide in 2010 and 2020
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.2005.081224
– volume: 59
  year: 2020
  ident: CR27
  article-title: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101570
– volume: 15
  start-page: 350
  issue: 2
  year: 2018
  end-page: 359
  ident: CR6
  article-title: Machine learning in radiology: applications beyond image interpretation
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2017.09.044
– volume: 6
  start-page: 77414
  year: 2018
  end-page: 77428
  ident: CR53
  article-title: Yanbao: a mobile app using the measurement of clinical parameters for glaucoma screening
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882946
– volume: 18
  start-page: 21757
  issue: 21
  year: 2010
  end-page: 21769
  ident: CR47
  article-title: Fusion of color microscopic images based on bidimensional empirical mode decomposition
  publication-title: Opt. Express
  doi: 10.1364/OE.18.021757
– volume: 54
  start-page: 2602
  issue: 12
  year: 2011
  end-page: 2614
  ident: CR46
  article-title: Perfect reconstruction image modulation based on BEMD and quaternionic analytic signals
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-011-4330-8
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  end-page: 16
  ident: CR28
  article-title: Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 14
  start-page: 615
  issue: 9
  year: 2013
  end-page: 630
  ident: CR38
  article-title: Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A1300030
– volume: 16
  start-page: 80
  issue: 1
  year: 2011
  end-page: 87
  ident: CR25
  article-title: Wavelet-based energy features for glaucomatous image classification
  publication-title: IEEE Trans. Inf Technol. Biomed.
  doi: 10.1109/TITB.2011.2176540
– ident: CR21
– ident: CR19
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  end-page: 995
  ident: CR52
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  end-page: 2410
  ident: CR34
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– ident: CR11
– volume: 10
  start-page: 892
  issue: 2
  year: 2019
  end-page: 913
  ident: CR29
  article-title: Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.000892
– ident: CR32
– volume: 12
  start-page: 320
  issue: 3
  year: 2018
  end-page: 328
  ident: CR17
  article-title: Anomaly classification in digital mammography based on multiple-instance learning
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2017.0536
– volume: 16
  start-page: 177
  issue: 3
  year: 2005
  end-page: 188
  ident: CR42
  article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-004-0170-5
– volume: 311
  start-page: 1901
  issue: 18
  year: 2014
  end-page: 1911
  ident: CR1
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
  doi: 10.1001/jama.2014.3192
– volume: 19
  start-page: 18207
  issue: 19
  year: 2011
  end-page: 18215
  ident: CR43
  article-title: Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition
  publication-title: Opt. Express
  doi: 10.1364/OE.19.018207
– volume: 38
  start-page: 601
  issue: 2
  year: 2013
  end-page: 614
  ident: CR49
  article-title: Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.02.001
– volume: 32
  start-page: 747
  issue: 2
  year: 2021
  end-page: 765
  ident: CR15
  article-title: diagnosis of breast cancer based on modern mammography using hybrid transfer learning
  publication-title: Multidimension. Syst. Signal Process.
  doi: 10.1007/s11045-020-00756-7
– ident: CR18
– ident: CR14
– volume: 62
  start-page: 889
  issue: 5
  year: 2013
  end-page: 904
  ident: CR51
  article-title: Multivariate gray model-based BEMD for hyperspectral image classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2246917
– ident: CR30
– volume: 121
  start-page: 2081
  issue: 11
  year: 2014
  end-page: 2090
  ident: CR2
  article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.05.013
– volume: 9
  start-page: 302
  issue: 3
  year: 2012
  end-page: 311
  ident: CR37
  article-title: Analysis of ocean internal waves imaged by multichannel reflection seismics, using ensemble empirical mode decomposition
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/9/3/302
– volume: 39
  start-page: 161
  issue: 3
  year: 2020
  end-page: 167
  ident: CR54
  article-title: RIM-ONE DL: a unified retinal image database for assessing glaucoma using deep learning
  publication-title: Image Anal. Stereol.
  doi: 10.5566/ias.2346
– volume: 2
  start-page: 1
  issue: 1
  year: 2018
  end-page: 10
  ident: CR5
  article-title: Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-018-0061-6
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: CR10
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 95
  start-page: 12766
  issue: 22
  year: 1998
  end-page: 12771
  ident: CR36
  article-title: Use of intrinsic modes in biology: examples of indicial response of pulmonary blood pressure to step hypoxia
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.95.22.12766
– volume: 15
  start-page: 597
  issue: 2
  year: 2013
  end-page: 603
  ident: CR40
  article-title: Incipient fault diagnosis of roller bearings using empirical mode decomposition and correlation coefficient
  publication-title: J. Vibroengineering
– ident: CR44
– ident: CR48
– volume: 15
  start-page: 449
  issue: 3
  year: 2011
  end-page: 455
  ident: CR24
  article-title: Automated diagnosis of glaucoma using texture and higher order spectra features
  publication-title: IEEE Trans. Inf Technol. Biomed.
  doi: 10.1109/TITB.2011.2119322
– volume: 41
  start-page: 5526
  issue: 11
  year: 2014
  end-page: 5545
  ident: CR33
  article-title: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
– volume: 40
  start-page: 136
  issue: 1
  year: 2013
  end-page: 153
  ident: CR39
  article-title: Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.04.005
– volume: 10
  start-page: 4916
  issue: 14
  year: 2020
  ident: CR31
  article-title: Deep learning for optic disc segmentation and glaucoma diagnosis on retinal images
  publication-title: Appl. Sci.
  doi: 10.3390/app10144916
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  ident: CR9
  article-title: Classification and regression by randomforest
  publication-title: R news
– volume: 160
  start-page: 3
  issue: 1
  year: 2007
  end-page: 24
  ident: CR8
  article-title: Supervised machine learning: a review of classification techniques
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– ident: CR55
– ident: CR7
– volume: 18
  start-page: 1
  issue: 1
  year: 2019
  end-page: 19
  ident: CR26
  article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-019-0649-y
– ident: CR20
– volume: 460
  start-page: 1597
  issue: 2046
  year: 2004
  end-page: 1611
  ident: CR35
  article-title: A study of the characteristics of white noise using the empirical mode decomposition method
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2003.1221
– volume: 15
  start-page: 350
  issue: 2
  year: 2018
  ident: 292_CR6
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2017.09.044
– volume: 460
  start-page: 1597
  issue: 2046
  year: 2004
  ident: 292_CR35
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2003.1221
– volume: 16
  start-page: 177
  issue: 3
  year: 2005
  ident: 292_CR42
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-004-0170-5
– volume: 40
  start-page: 136
  issue: 1
  year: 2013
  ident: 292_CR39
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.04.005
– ident: 292_CR32
  doi: 10.1109/TIM.2022.3177141
– volume: 20
  start-page: 1601
  issue: 6
  year: 2020
  ident: 292_CR13
  publication-title: Sensors
  doi: 10.3390/s20061601
– ident: 292_CR55
  doi: 10.1109/CBMS.2011.5999143
– volume: 38
  start-page: 601
  issue: 2
  year: 2013
  ident: 292_CR49
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.02.001
– ident: 292_CR7
  doi: 10.1142/S0219467823500122
– volume: 95
  start-page: 12766
  issue: 22
  year: 1998
  ident: 292_CR36
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.95.22.12766
– volume: 311
  start-page: 1901
  issue: 18
  year: 2014
  ident: 292_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2014.3192
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 292_CR10
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 121
  start-page: 2081
  issue: 11
  year: 2014
  ident: 292_CR2
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.05.013
– volume: 19
  start-page: 18207
  issue: 19
  year: 2011
  ident: 292_CR43
  publication-title: Opt. Express
  doi: 10.1364/OE.19.018207
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 292_CR9
  publication-title: R news
– volume: 12
  start-page: 33
  issue: 1
  year: 2004
  ident: 292_CR50
  publication-title: IEEE Signal Process. Lett.
– volume: 16
  start-page: 80
  issue: 1
  year: 2011
  ident: 292_CR25
  publication-title: IEEE Trans. Inf Technol. Biomed.
  doi: 10.1109/TITB.2011.2176540
– volume: 21
  start-page: 1019
  issue: 12
  year: 2003
  ident: 292_CR41
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(03)00094-5
– volume: 9
  start-page: 302
  issue: 3
  year: 2012
  ident: 292_CR37
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/9/3/302
– volume: 14
  start-page: 615
  issue: 9
  year: 2013
  ident: 292_CR38
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A1300030
– volume: 59
  year: 2020
  ident: 292_CR27
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101570
– volume: 18
  start-page: 1
  issue: 1
  year: 2019
  ident: 292_CR26
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-019-0649-y
– ident: 292_CR48
– volume: 39
  start-page: 161
  issue: 3
  year: 2020
  ident: 292_CR54
  publication-title: Image Anal. Stereol.
  doi: 10.5566/ias.2346
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  ident: 292_CR28
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-018-0723-6
– ident: 292_CR14
  doi: 10.1111/exsy.12760
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 292_CR52
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– ident: 292_CR19
  doi: 10.1109/ISC246665.2019.9071750
– volume: 62
  start-page: 889
  issue: 5
  year: 2013
  ident: 292_CR51
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2246917
– volume: 6
  start-page: 77414
  year: 2018
  ident: 292_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882946
– volume: 41
  start-page: 5526
  issue: 11
  year: 2014
  ident: 292_CR33
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
– ident: 292_CR45
  doi: 10.1109/ICIP.2005.1529810
– ident: 292_CR30
  doi: 10.1117/12.2255740
– volume: 10
  start-page: 4916
  issue: 14
  year: 2020
  ident: 292_CR31
  publication-title: Appl. Sci.
  doi: 10.3390/app10144916
– ident: 292_CR12
  doi: 10.18287/2412-6179-CO-748
– ident: 292_CR22
  doi: 10.1109/ISBI.2016.7493360
– volume: 83
  year: 2021
  ident: 292_CR4
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2020.100916
– ident: 292_CR44
  doi: 10.1117/12.458772
– ident: 292_CR16
  doi: 10.1007/978-981-15-0978-0_43
– ident: 292_CR21
  doi: 10.1007/978-981-15-6048-4_16
– volume: 18
  start-page: 21757
  issue: 21
  year: 2010
  ident: 292_CR47
  publication-title: Opt. Express
  doi: 10.1364/OE.18.021757
– volume: 12
  start-page: 320
  issue: 3
  year: 2018
  ident: 292_CR17
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2017.0536
– ident: 292_CR18
  doi: 10.1109/NGNS.2014.6990239
– volume: 10
  start-page: 892
  issue: 2
  year: 2019
  ident: 292_CR29
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.000892
– ident: 292_CR20
  doi: 10.5194/isprs-archives-XLII-2-W12-211-2019
– volume: 15
  start-page: 597
  issue: 2
  year: 2013
  ident: 292_CR40
  publication-title: J. Vibroengineering
– volume: 15
  start-page: 449
  issue: 3
  year: 2011
  ident: 292_CR24
  publication-title: IEEE Trans. Inf Technol. Biomed.
  doi: 10.1109/TITB.2011.2119322
– volume: 54
  start-page: 2602
  issue: 12
  year: 2011
  ident: 292_CR46
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-011-4330-8
– volume: 21
  start-page: 803
  issue: 3
  year: 2016
  ident: 292_CR23
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2544961
– volume: 160
  start-page: 3
  issue: 1
  year: 2007
  ident: 292_CR8
  publication-title: Emerg. Artif. Intell. Appl. Comput. Eng.
– volume: 32
  start-page: 747
  issue: 2
  year: 2021
  ident: 292_CR15
  publication-title: Multidimension. Syst. Signal Process.
  doi: 10.1007/s11045-020-00756-7
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 292_CR34
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 90
  start-page: 262
  issue: 3
  year: 2006
  ident: 292_CR3
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.2005.081224
– ident: 292_CR11
  doi: 10.1177/1460458219876183
– volume: 2
  start-page: 1
  issue: 1
  year: 2018
  ident: 292_CR5
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-018-0061-6
SSID ssj0002140134
Score 2.2533524
Snippet In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection prevents severe ocular...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 397
SubjectTerms Algorithms
Annotations
Artificial Intelligence
Color
Computational Intelligence
Computer Imaging
Computer Science
Control
Data Mining and Knowledge Discovery
Datasets
Deep learning
Edema
Feature extraction
Glaucoma
Machine learning
Mechatronics
Natural Language Processing (NLP)
Ophthalmology
Pattern Recognition and Graphics
Photography
Regular Paper
Robotics
Vision
Title Deep multiple instance learning for automatic glaucoma prevention and auto-annotation using color fundus photography
URI https://link.springer.com/article/10.1007/s13748-022-00292-4
https://www.proquest.com/docview/2729919352
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2192-6360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140134
  issn: 2192-6352
  databaseCode: AFBBN
  dateStart: 20120401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2192-6360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140134
  issn: 2192-6352
  databaseCode: AGYKE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu3DhjRgv5cANgkaabO2R15hA7MQkOFV5FRConVh74dfjZCkVEyBxbpq2sVN_ju3PAIfGSomCtbSP2kt5T2mqIm1oljnz7Ep3_YH-3ag3HPObB_EQisKmdbZ7HZL0f-qm2M0xpVCXfe5CSYzyRWh7vq0WtM-uH2-bsxXmvQYXUMb9yCjaVBbqZX6e6LtNaoDmXGzUm5zBCozrl51lmryeVKU60R9zPI7__ZpVWA4YlJzNlGYNFmy-Dit1fwcStvsGlJfWTkidckhePJLUloROE08EAS-RVVl42leCQLzCh0syCbRQRU5kbvwIKvO8mEX9iUu1fyKOLfudoFk11ZRMnosycGdvwnhwdX8xpKFLA9XoupXURpGQOjG9ruoKlp0Ky4WyrJfE3Gh0F6WRiUgSbkUsEWtZJUxkM9FVsRYJKlC0Ba28yO02kCyOUU_6GepVnyseJ9qarjbcMAc8uO3AaS2nVAcKc9dJ4y1tyJfdsqa4rKlf1pR34OjrnsmMwOPP0Xu1-NOwmacpQwckQaArWAeOa2k2l3-fbed_w3dhiTmF8Mkye9Aq3yu7j5CnVAeo4YPz89FB0PRPXT_5zA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzGeOXCDoJEmW3tEvMbzxCQ4VXl1IFA7sfbCr8fJUioQIHFumraxU3-O7c8Ae8ZKiYK1tIfaS3lXaaoibWiWOfPsSnf9gf7tXbc_4FcP4iEUhY3rbPc6JOn_1E2xm2NKoS773IWSGOXTMMPRQWEtmDm-eLxuzlaY9xpcQBn3I6NoU1mol_l5oq82qQGa32Kj3uScL8CgftlJpsnLYVWqQ_3-jcfxv1-zCPMBg5LjidIswZTNl2Gh7u9AwnZfgfLU2hGpUw7Js0eS2pLQaWJIEPASWZWFp30lCMQrfLgko0ALVeRE5saPoDLPi0nUn7hU-yFxbNlvBM2qqcZk9FSUgTt7FQbnZ_cnfRq6NFCNrltJbRQJqRPT7aiOYNmRsFwoy7pJzI1Gd1EamYgk4VbEErGWVcJENhMdFWuRoAJFa9DKi9yuA8niGPWkl6Fe9bjicaKt6WjDDXPAg9s2HNVySnWgMHedNF7ThnzZLWuKy5r6ZU15G_Y_7xlNCDz-HL1Viz8Nm3mcMnRAEgS6grXhoJZmc_n32Tb-N3wXZvv3tzfpzeXd9SbMMaccPnFmC1rlW2W3Ef6Uaido-wc5rvsv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwEC0xII3mwjIDoll9mBtjaBy7OzkioNkRB5DgFHkLIFASQXLh6yk7DgHEICHOcSzHfk69sqteAfw1VkpcWEuHiF7KB0pTFWlDs8yZZ5e66w_0T04H-xf88FJcvsri99Hu7ZVkk9PgVJryaqM02UaX-OZUU6iLRHfXSozyHzCBrskQkT6xtXd11J2zMO9BuMtl3JuMon1lIXfm447e2qeOdL67J_XmZzQFsh14E3Vyt15Xal0_vdN0_M6XTcNk4KZkqwHTDIzZ_DdMtXUfSPgN_IFqx9qStKGI5NYzTG1JqEBxTZAIE1lXhZeDJUjQaxyIJGWQiypyInPjW1CZ50UTDUBcCP41cSraDwTNrakfSXlTVEFTexYuRrvn2_s0VG-gGl26itooElInZtBXfcGyTWG5UJYNkpgbjWsljUxEknArYokczCphIpuJvoq1SBBY0RyM50Vu54FkcYz4GWaItyFXPE60NX1tuGGOkHDbg812zVIdpM1dhY37tBNldtOa4rSmflpT3oO1l3fKRtjj09ZLLRTSsMkfU4aOSYIEWLAe_GtXtnv8_94WvtZ8FX6e7YzS44PTo0X4xRw2fDzNEoxXD7VdRlZUqZUA_Gcb-AQi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+multiple+instance+learning+for+automatic+glaucoma+prevention+and+auto-annotation+using+color+fundus+photography&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Elmoufidi%2C+Abdelali&rft.au=Skouta%2C+Ayoub&rft.au=Jai-andaloussi%2C+Said&rft.au=Ouchetto%2C+Ouail&rft.date=2022-12-01&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=11&rft.issue=4&rft.spage=397&rft.epage=409&rft_id=info:doi/10.1007%2Fs13748-022-00292-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13748_022_00292_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon