Non-intrusive parametric hyper-reduction for nonlinear structural finite element formulations

Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational burden of high-fidelity models. When dealing with nonlinear structural Finite Element analyses, several Hyper-Reduction (HR) approaches have bee...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 434; p. 117532
Main Authors Fleres, Davide, De Gregoriis, Daniel, Atak, Onur, Naets, Frank
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN0045-7825
DOI10.1016/j.cma.2024.117532

Cover

Abstract Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational burden of high-fidelity models. When dealing with nonlinear structural Finite Element analyses, several Hyper-Reduction (HR) approaches have been developed to reduce the computational cost. Nonetheless, HR approaches are typically intrusive in nature, posing challenges when it comes to integration into existing (commercial) software. Recently, data driven Non-Intrusive MOR methodologies have been proposed. However, these techniques often suffer from overfitting and violate key physics properties, leading to unstable behavior. This work proposes to use Scientific Machine Learning to reintegrate critical stability-preserving physics properties. It introduces a data-driven, physics-augmented, parametric approach that combines Proper Orthogonal Decomposition (POD) with a Partially Input Convex Neural Network (PICNN) architecture. The proposed method effectively reduces the computational burden associated with parametric static nonlinear elastic structural problems while retaining material consistency, hyper-elasticity, and material stability properties in the Reduced Order Model. Numerical validation on several structural models subjected to geometrical and material nonlinearities under static loading conditions demonstrates the effectiveness of the POD-PICNN approach. Additionally, three different sampling strategies have been compared to assess their impact on the method performance. The results emphasize that physics-augmentation is required, as it inherently embeds essential physical constraints into the neural network architecture, ensuring stable and consistent behavior, while highlighting its potential for dynamic and multiphysics applications. •Full Order Models are numerically expensive; Model Order Reduction can mitigate.•Hyper-Reduction techniques are efficient but intrusive and typically non-parametric.•Non-Intrusive techniques are limited in extrapolation and may violate physics.•Partial Input Convex Neural Networks combine strengths of both approaches.
AbstractList Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational burden of high-fidelity models. When dealing with nonlinear structural Finite Element analyses, several Hyper-Reduction (HR) approaches have been developed to reduce the computational cost. Nonetheless, HR approaches are typically intrusive in nature, posing challenges when it comes to integration into existing (commercial) software. Recently, data driven Non-Intrusive MOR methodologies have been proposed. However, these techniques often suffer from overfitting and violate key physics properties, leading to unstable behavior. This work proposes to use Scientific Machine Learning to reintegrate critical stability-preserving physics properties. It introduces a data-driven, physics-augmented, parametric approach that combines Proper Orthogonal Decomposition (POD) with a Partially Input Convex Neural Network (PICNN) architecture. The proposed method effectively reduces the computational burden associated with parametric static nonlinear elastic structural problems while retaining material consistency, hyper-elasticity, and material stability properties in the Reduced Order Model. Numerical validation on several structural models subjected to geometrical and material nonlinearities under static loading conditions demonstrates the effectiveness of the POD-PICNN approach. Additionally, three different sampling strategies have been compared to assess their impact on the method performance. The results emphasize that physics-augmentation is required, as it inherently embeds essential physical constraints into the neural network architecture, ensuring stable and consistent behavior, while highlighting its potential for dynamic and multiphysics applications. •Full Order Models are numerically expensive; Model Order Reduction can mitigate.•Hyper-Reduction techniques are efficient but intrusive and typically non-parametric.•Non-Intrusive techniques are limited in extrapolation and may violate physics.•Partial Input Convex Neural Networks combine strengths of both approaches.
ArticleNumber 117532
Author Fleres, Davide
De Gregoriis, Daniel
Naets, Frank
Atak, Onur
Author_xml – sequence: 1
  givenname: Davide
  surname: Fleres
  fullname: Fleres, Davide
  email: davide.fleres@siemens.com
  organization: KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300, Heverlee, B-3001, Flemish Brabant, Belgium
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0002-4289-3068
  surname: De Gregoriis
  fullname: De Gregoriis, Daniel
  organization: Siemens Digital Industries Software, Interleuvenlaan 68, Leuven, 3001, Flemish Brabant, Belgium
– sequence: 3
  givenname: Onur
  orcidid: 0000-0003-4451-5375
  surname: Atak
  fullname: Atak, Onur
  organization: Siemens Digital Industries Software, Hills Rd, Cambridge, United Kingdom
– sequence: 4
  givenname: Frank
  surname: Naets
  fullname: Naets, Frank
  organization: KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300, Heverlee, B-3001, Flemish Brabant, Belgium
BookMark eNp9kMtqwzAQRbVIoUnaD-hOP2BXD8uW6aqEviC0m3ZZhCyNqYItB0kO5O8rk647m4HhnpnhbNDKTx4QuqOkpITW94fSjLpkhFUlpY3gbIXWhFSiaCQT12gT44HkkpSt0ff75AvnU5ijOwE-6qBHSMEZ_HM-QigC2NkkN3ncTwHnQ4PzoAOOmTBpDnrAvfMuAYYBRvBpyY3zoBcm3qCrXg8Rbv_6Fn09P33uXov9x8vb7nFfGFa1qbBgtNUVNJoL0YlO1mCga3lftbaCWnMrbCdYHkDLJQfSUNlIabThoulqzreIXvaaMMUYoFfH4EYdzooStThRB5WdqMWJujjJzMOFgfzYyUFQ0TjwBqwLYJKyk_uH_gUKynEC
Cites_doi 10.1002/nme.3050
10.1016/j.cma.2022.115190
10.1007/s10915-021-01462-7
10.1007/s00466-019-01728-w
10.1016/j.cma.2022.115248
10.1016/j.physd.2020.132614
10.1016/j.cma.2021.113852
10.1090/qam/910462
10.1038/s42254-021-00314-5
10.1007/s00366-022-01733-3
10.1016/j.cma.2020.113402
10.1016/S0893-6080(05)80131-5
10.1016/j.cma.2018.10.029
10.1016/0893-6080(91)90009-T
10.1002/nme.6712
10.1016/j.cma.2020.113433
10.1016/j.jmps.2023.105363
10.1016/j.jmps.2021.104703
10.1007/BF02288367
10.1002/nme.4371
10.1007/s00466-021-02064-8
10.1016/j.compfluid.2018.07.021
10.1109/TAC.2008.2006102
10.1016/j.cma.2016.03.025
10.1137/090766498
10.1016/j.jcp.2018.02.037
10.1002/nme.6957
10.1007/s10915-022-02001-8
10.1007/BF00279992
10.1016/0168-874X(93)90075-2
10.1016/j.mechrescom.2022.103993
10.1080/00295639.2021.2014752
10.1016/j.cma.2022.115731
10.5802/smai-jcm.74
10.1016/j.jcp.2020.110072
10.1016/j.jsv.2019.04.011
10.1016/j.cma.2018.07.017
10.1002/nme.4820
10.1109/72.392253
10.1038/s42256-021-00302-5
10.1126/sciadv.abi8605
10.1007/s00158-022-03282-1
10.1002/nme.4953
10.1137/130932715
10.1016/j.cma.2021.113695
10.1016/j.cma.2018.03.005
10.1016/j.crma.2004.08.006
10.1007/s00466-022-02260-0
10.2514/6.2003-4213
10.1016/j.jcp.2019.108973
10.1016/j.cma.2022.115501
10.1007/s13272-018-0283-6
10.1177/0954410019890721
10.1109/TRPMS.2021.3066428
10.1109/TAC.1981.1102568
10.1016/j.cma.2020.113299
10.2514/3.4741
10.1016/j.cma.2021.114181
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cma.2024.117532
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cma_2024_117532
S0045782524007862
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c249t-decada4e7a355b5b86eceb93f49d4e6a3d5db5293fe9383e0718788cac357b633
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Wed Oct 01 04:46:08 EDT 2025
Sat Dec 21 16:01:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hyper-reduction
Non-intrusive
Model order reduction
Physics-augmented neural network
Scientific machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-decada4e7a355b5b86eceb93f49d4e6a3d5db5293fe9383e0718788cac357b633
ORCID 0000-0002-4289-3068
0000-0003-4451-5375
ParticipantIDs crossref_primary_10_1016_j_cma_2024_117532
elsevier_sciencedirect_doi_10_1016_j_cma_2024_117532
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Czech, Lesjak, Bach, Duddeck (b39) 2022; 65
Farhat, Chapman, Avery (b22) 2015; 102
Gong, Cheng, Chen, Li (b38) 2022; 196
Borrvall, Ehle, Stratton (b52) 2015
Vlassis, Sun (b75) 2021; 377
Chen, Guilleminot (b70) 2022; 125
Fan, Xiong, Li, Wang (b53) 2021; 5
Ball (b66) 1976; 63
Guo, Hesthaven (b34) 2019; 345
Yu, Yan, Guo (b27) 2019; 233
Vlassis, Ma, Sun (b63) 2020; 371
Guo, Hesthaven (b33) 2018; 341
Moore (b9) 1981; 26
Chaturantabut, Sorensen (b19) 2010; 32
Flaschel, Kumar, De Lorenzis (b47) 2021; 381
Hartmann, Herz, Wever (b2) 2018
Kalina, Linden, Brummund, Kästner (b59) 2023; 71
Ripepi, Verveld, Karcher, Franz, Abu-Zurayk, Görtz, Kier (b31) 2018; 9
Benner, Gugercin, Willcox (b17) 2015; 57
Bhattacharya, Hosseini, Kovachki, Stuart (b41) 2021; 7
Hartmann, Herz, Paffrath, Rommes, Tamarozzi, Van der Auweraer, Wever (b1) 2020; vol. 3
Fresca, Dede, Manzoni (b35) 2021; 87
T. Bui-Thanh, M. Damodaran, K. Willcox, Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics, in: 21st AIAA Applied Aerodynamics Conference, 2003, p. 4213.
Klein, Fernández, Martin, Neff, Weeger (b69) 2022; 159
Lee, Carlberg (b14) 2020; 404
Peherstorfer, Willcox (b24) 2016; 306
Ohlberger, Rave (b11) 2015
Chen, Chen (b46) 1995; 6
Helnwein, Liu, Meschke, Mang (b79) 1993; 14
Sirovich (b8) 1987; 45
Yang, Guo, Tang, Liu (b49) 2019; 64
Gao, Wang, Zahr (b23) 2020; 412
Tac, Linka, Sahli-Costabal, Kuhl, Tepole (b61) 2023
Kneifl, Grunert, Fehr (b37) 2021; 122
Farhat, Grimberg, Manzoni, Quarteroni (b16) 2020; 2
Inc. (b77) 2023
Amos, Xu, Kolter (b73) 2017
Xu, Huang, Darve (b68) 2021; 428
Tac, Costabal, Tepole (b72) 2022; 398
Liu, Liang, Sun (b65) 2020; 372
Quarteroni, Manzoni, Negri (b5) 2015
Le, Yvonnet, He (b48) 2015; 104
Benner, Goyal, Kramer, Peherstorfer, Willcox (b25) 2020; 372
Carlberg, Bou-Mosleh, Farhat (b15) 2011; 86
Weber, Geiger, Wagner (b64) 2021; 68
Hornik (b51) 1991; 4
Eckart, Young (b74) 1936; 1
Craig, Bampton (b10) 1968; 6
S.L. Brunton, J.N. Kutz, 7 Data-driven methods for reduced-order modeling, Model Order Reduct. 2, 307–344, 7.
Tac, Sree, Rausch, Tepole (b54) 2022; 38
D. Fleres, D. De Gregoriis, O. Atak, F. Naets, Non-Intrusive Physics-Informed Neural Network Hyper Reduction approach for Nonlinear Structural Finite Elements, in: MORTech 2023–6th International Workshop on Model Reduction Techniques, Date: 2023/11/22-2023/11/24, Location: Paris, France, 2023.
Holmes (b7) 2012
Wang, Wang, Perdikaris (b45) 2021; 7
Qian, Kramer, Marques, Willcox (b43) 2019
Masi, Stefanou (b60) 2022; 398
Hesthaven, Ubbiali (b29) 2018; 363
Leshno, Lin, Pinkus, Schocken (b50) 1993; 6
De Gregoriis, Naets, Kindt, Desmet (b78) 2019; 452
Hesthaven, Rozza, Stamm (b6) 2016
Baker, Alexander, Bremer, Hagberg, Kevrekidis, Najm, Parashar, Patra, Sethian, Wild (b55) 2019
Linka, Kuhl (b71) 2023; 403
Astrid, Weiland, Willcox, Backx (b21) 2008; 53
Klein, Ortigosa, Martínez-Frutos, Weeger (b58) 2022; 400
Barrault, Maday, Nguyen, Patera (b18) 2004; 339
Lu, Jin, Pang, Zhang, Karniadakis (b44) 2021; 3
Bathe (b76) 2006
Rizzi, Blonigan, Parish, Carlberg (b26) 2020
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b56) 2021; 3
Tiso, Dedden, Rixen (b20) 2013; Vol. 55973
Rozza, Hess, Stabile, Tezzele, Ballarin (b3) 2020; 2
Amsallem, Zahr, Farhat (b12) 2012; 92
Linden, Klein, Kalina, Brummund, Weeger, Kästner (b62) 2023; 179
Fresca, Manzoni (b36) 2022; 388
Cicci, Fresca, Manzoni (b42) 2022; 93
Alpaydin (b13) 2020
Swischuk, Mainini, Peherstorfer, Willcox (b40) 2019; 179
Le Guennec, Brunet, Daim, Chau, Tourbier (b32) 2018; 338
As’ ad, Avery, Farhat (b57) 2022; 123
Pinkus (b4) 2012
Ball (b67) 1977; Vol. 1
Tac (10.1016/j.cma.2024.117532_b54) 2022; 38
Chen (10.1016/j.cma.2024.117532_b70) 2022; 125
Fresca (10.1016/j.cma.2024.117532_b35) 2021; 87
Swischuk (10.1016/j.cma.2024.117532_b40) 2019; 179
Flaschel (10.1016/j.cma.2024.117532_b47) 2021; 381
Holmes (10.1016/j.cma.2024.117532_b7) 2012
Barrault (10.1016/j.cma.2024.117532_b18) 2004; 339
Ball (10.1016/j.cma.2024.117532_b66) 1976; 63
Xu (10.1016/j.cma.2024.117532_b68) 2021; 428
Tac (10.1016/j.cma.2024.117532_b61) 2023
Guo (10.1016/j.cma.2024.117532_b34) 2019; 345
Astrid (10.1016/j.cma.2024.117532_b21) 2008; 53
10.1016/j.cma.2024.117532_b80
Kalina (10.1016/j.cma.2024.117532_b59) 2023; 71
Vlassis (10.1016/j.cma.2024.117532_b75) 2021; 377
Chen (10.1016/j.cma.2024.117532_b46) 1995; 6
Ball (10.1016/j.cma.2024.117532_b67) 1977; Vol. 1
Inc. (10.1016/j.cma.2024.117532_b77) 2023
Ripepi (10.1016/j.cma.2024.117532_b31) 2018; 9
Masi (10.1016/j.cma.2024.117532_b60) 2022; 398
Tiso (10.1016/j.cma.2024.117532_b20) 2013; Vol. 55973
Lee (10.1016/j.cma.2024.117532_b14) 2020; 404
Qian (10.1016/j.cma.2024.117532_b43) 2019
Farhat (10.1016/j.cma.2024.117532_b22) 2015; 102
Linden (10.1016/j.cma.2024.117532_b62) 2023; 179
Yang (10.1016/j.cma.2024.117532_b49) 2019; 64
Quarteroni (10.1016/j.cma.2024.117532_b5) 2015
Lu (10.1016/j.cma.2024.117532_b44) 2021; 3
Liu (10.1016/j.cma.2024.117532_b65) 2020; 372
Fan (10.1016/j.cma.2024.117532_b53) 2021; 5
Vlassis (10.1016/j.cma.2024.117532_b63) 2020; 371
Alpaydin (10.1016/j.cma.2024.117532_b13) 2020
Weber (10.1016/j.cma.2024.117532_b64) 2021; 68
Fresca (10.1016/j.cma.2024.117532_b36) 2022; 388
Bhattacharya (10.1016/j.cma.2024.117532_b41) 2021; 7
Chaturantabut (10.1016/j.cma.2024.117532_b19) 2010; 32
Ohlberger (10.1016/j.cma.2024.117532_b11) 2015
Hornik (10.1016/j.cma.2024.117532_b51) 1991; 4
Le (10.1016/j.cma.2024.117532_b48) 2015; 104
Benner (10.1016/j.cma.2024.117532_b17) 2015; 57
Hesthaven (10.1016/j.cma.2024.117532_b6) 2016
Le Guennec (10.1016/j.cma.2024.117532_b32) 2018; 338
10.1016/j.cma.2024.117532_b28
Pinkus (10.1016/j.cma.2024.117532_b4) 2012
Benner (10.1016/j.cma.2024.117532_b25) 2020; 372
Leshno (10.1016/j.cma.2024.117532_b50) 1993; 6
Helnwein (10.1016/j.cma.2024.117532_b79) 1993; 14
Craig (10.1016/j.cma.2024.117532_b10) 1968; 6
Rizzi (10.1016/j.cma.2024.117532_b26) 2020
Hartmann (10.1016/j.cma.2024.117532_b1) 2020; vol. 3
Hesthaven (10.1016/j.cma.2024.117532_b29) 2018; 363
As’ ad (10.1016/j.cma.2024.117532_b57) 2022; 123
Moore (10.1016/j.cma.2024.117532_b9) 1981; 26
Amsallem (10.1016/j.cma.2024.117532_b12) 2012; 92
Sirovich (10.1016/j.cma.2024.117532_b8) 1987; 45
Klein (10.1016/j.cma.2024.117532_b69) 2022; 159
Farhat (10.1016/j.cma.2024.117532_b16) 2020; 2
Kneifl (10.1016/j.cma.2024.117532_b37) 2021; 122
Borrvall (10.1016/j.cma.2024.117532_b52) 2015
Rozza (10.1016/j.cma.2024.117532_b3) 2020; 2
De Gregoriis (10.1016/j.cma.2024.117532_b78) 2019; 452
Peherstorfer (10.1016/j.cma.2024.117532_b24) 2016; 306
Baker (10.1016/j.cma.2024.117532_b55) 2019
Carlberg (10.1016/j.cma.2024.117532_b15) 2011; 86
Eckart (10.1016/j.cma.2024.117532_b74) 1936; 1
Bathe (10.1016/j.cma.2024.117532_b76) 2006
Guo (10.1016/j.cma.2024.117532_b33) 2018; 341
Hartmann (10.1016/j.cma.2024.117532_b2) 2018
Amos (10.1016/j.cma.2024.117532_b73) 2017
Gao (10.1016/j.cma.2024.117532_b23) 2020; 412
Wang (10.1016/j.cma.2024.117532_b45) 2021; 7
10.1016/j.cma.2024.117532_b30
Gong (10.1016/j.cma.2024.117532_b38) 2022; 196
Yu (10.1016/j.cma.2024.117532_b27) 2019; 233
Cicci (10.1016/j.cma.2024.117532_b42) 2022; 93
Tac (10.1016/j.cma.2024.117532_b72) 2022; 398
Linka (10.1016/j.cma.2024.117532_b71) 2023; 403
Karniadakis (10.1016/j.cma.2024.117532_b56) 2021; 3
Klein (10.1016/j.cma.2024.117532_b58) 2022; 400
Czech (10.1016/j.cma.2024.117532_b39) 2022; 65
References_xml – volume: 53
  start-page: 2237
  year: 2008
  end-page: 2251
  ident: b21
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Trans. Autom. Control
– year: 2016
  ident: b6
  publication-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations
– volume: 102
  start-page: 1077
  year: 2015
  end-page: 1110
  ident: b22
  article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
  publication-title: Int. J. Numer. Methods Eng.
– start-page: 3707
  year: 2019
  ident: b43
  article-title: Transform & learn: A data-driven approach to nonlinear model reduction
  publication-title: AIAA Aviation 2019 Forum
– volume: 2
  start-page: 1
  year: 2020
  end-page: 47
  ident: b3
  article-title: Basic ideas and tools for projection-based model reduction of parametric partial differential equations
  publication-title: Model Order Reduct.
– volume: 38
  start-page: 4167
  year: 2022
  end-page: 4182
  ident: b54
  article-title: Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue
  publication-title: Eng. Comput.
– year: 2015
  ident: b52
  article-title: A fabric material model with stress map functionality in LS-DYNA
  publication-title: 10th European LS-DYNA Conference
– year: 2012
  ident: b7
  article-title: Turbulence, Coherent Structures, Dynamical Systems and Symmetry
– year: 2012
  ident: b4
  publication-title: N-widths in Approximation Theory
– year: 2023
  ident: b77
  article-title: MATLAB version: 9.14.0 (r2023a)
– year: 2015
  ident: b5
  publication-title: Reduced Basis Methods for Partial Differential Equations: an Introduction
– volume: 26
  start-page: 17
  year: 1981
  end-page: 32
  ident: b9
  article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction
  publication-title: IEEE Trans. Autom. Control
– volume: 65
  start-page: 190
  year: 2022
  ident: b39
  article-title: Data-driven models for crashworthiness optimisation: intrusive and non-intrusive model order reduction techniques
  publication-title: Struct. Multidiscip. Optim.
– volume: 86
  start-page: 155
  year: 2011
  end-page: 181
  ident: b15
  article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations
  publication-title: Int. J. Numer. Methods Eng.
– year: 2020
  ident: b13
  article-title: Introduction to Machine Learning
– volume: 377
  year: 2021
  ident: b75
  article-title: Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 5
  start-page: 741
  year: 2021
  end-page: 760
  ident: b53
  article-title: On interpretability of artificial neural networks: A survey
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
– volume: 68
  start-page: 1179
  year: 2021
  end-page: 1204
  ident: b64
  article-title: Constrained neural network training and its application to hyperelastic material modeling
  publication-title: Comput. Mech.
– volume: 179
  start-page: 704
  year: 2019
  end-page: 717
  ident: b40
  article-title: Projection-based model reduction: Formulations for physics-based machine learning
  publication-title: Comput. & Fluids
– volume: 404
  year: 2020
  ident: b14
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
– volume: 372
  year: 2020
  ident: b25
  article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 398
  year: 2022
  ident: b60
  article-title: Multiscale modeling of inelastic materials with thermodynamics-based artificial neural networks (TANN)
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 57
  start-page: 483
  year: 2015
  end-page: 531
  ident: b17
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
– volume: 159
  year: 2022
  ident: b69
  article-title: Polyconvex anisotropic hyperelasticity with neural networks
  publication-title: J. Mech. Phys. Solids
– volume: 14
  start-page: 1
  year: 1993
  end-page: 16
  ident: b79
  article-title: A new 3-D finite element model for cord-reinforced rubber composites—application to analysis of automobile tires
  publication-title: Finite Elem. Anal. Des.
– volume: 398
  year: 2022
  ident: b72
  article-title: Data-driven tissue mechanics with polyconvex neural ordinary differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 233
  start-page: 5896
  year: 2019
  end-page: 5912
  ident: b27
  article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review
  publication-title: Proc. Inst. Mech. Eng. G
– volume: 179
  year: 2023
  ident: b62
  article-title: Neural networks meet hyperelasticity: A guide to enforcing physics
  publication-title: J. Mech. Phys. Solids
– volume: 63
  start-page: 337
  year: 1976
  end-page: 403
  ident: b66
  article-title: Convexity conditions and existence theorems in nonlinear elasticity
  publication-title: Arch. Ration. Mech. Anal.
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: b51
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
– year: 2020
  ident: b26
  article-title: Pressio: Enabling projection-based model reduction for large-scale nonlinear dynamical systems
– volume: 7
  start-page: eabi8605
  year: 2021
  ident: b45
  article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
  publication-title: Sci. Adv.
– volume: Vol. 55973
  year: 2013
  ident: b20
  article-title: A modified discrete empirical interpolation method for reducing non-linear structural finite element models
  publication-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
– volume: Vol. 1
  start-page: 187
  year: 1977
  end-page: 241
  ident: b67
  article-title: Constitutive inequalities and existence theorems in nonlinear elastostatics
  publication-title: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium
– reference: S.L. Brunton, J.N. Kutz, 7 Data-driven methods for reduced-order modeling, Model Order Reduct. 2, 307–344, 7.
– volume: 372
  year: 2020
  ident: b65
  article-title: A generic physics-informed neural network-based constitutive model for soft biological tissues
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 306
  start-page: 196
  year: 2016
  end-page: 215
  ident: b24
  article-title: Data-driven operator inference for nonintrusive projection-based model reduction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 2
  start-page: 181
  year: 2020
  end-page: 244
  ident: b16
  article-title: Computational bottlenecks for PROMs: precomputation and hyperreduction
  publication-title: Model Order Reduct.
– volume: 122
  start-page: 4774
  year: 2021
  end-page: 4786
  ident: b37
  article-title: A nonintrusive nonlinear model reduction method for structural dynamical problems based on machine learning
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 341
  start-page: 807
  year: 2018
  end-page: 826
  ident: b33
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 6
  start-page: 911
  year: 1995
  end-page: 917
  ident: b46
  article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
– volume: 339
  start-page: 667
  year: 2004
  end-page: 672
  ident: b18
  article-title: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: C. R. Math.
– year: 2006
  ident: b76
  article-title: Finite Element Procedures
– year: 2015
  ident: b11
  article-title: Reduced basis methods: Success, limitations and future challenges
– year: 2023
  ident: b61
  article-title: Benchmarks for physics-informed data-driven hyperelasticity
– volume: 45
  start-page: 561
  year: 1987
  end-page: 571
  ident: b8
  article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures
  publication-title: Q. Appl. Math.
– volume: 7
  start-page: 121
  year: 2021
  end-page: 157
  ident: b41
  article-title: Model reduction and neural networks for parametric PDEs
  publication-title: SMAI J. Comput. Math.
– volume: 196
  start-page: 668
  year: 2022
  end-page: 693
  ident: b38
  article-title: Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics
  publication-title: Nucl. Sci. Eng.
– volume: 104
  start-page: 1061
  year: 2015
  end-page: 1084
  ident: b48
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 71
  start-page: 827
  year: 2023
  end-page: 851
  ident: b59
  article-title: FE ANN: an efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining
  publication-title: Comput. Mech.
– volume: 93
  start-page: 57
  year: 2022
  ident: b42
  article-title: Deep-HyROMnet: A deep learning-based operator approximation for hyper-reduction of nonlinear parametrized PDEs
  publication-title: J. Sci. Comput.
– reference: T. Bui-Thanh, M. Damodaran, K. Willcox, Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics, in: 21st AIAA Applied Aerodynamics Conference, 2003, p. 4213.
– volume: 32
  start-page: 2737
  year: 2010
  end-page: 2764
  ident: b19
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b56
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: vol. 3
  start-page: 379
  year: 2020
  ident: b1
  article-title: 12 Model order reduction and digital twins
  publication-title: Citation for Published Version (APA)
– volume: 345
  start-page: 75
  year: 2019
  end-page: 99
  ident: b34
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 167
  year: 2018
  end-page: 179
  ident: b2
  article-title: Model order reduction a key technology for digital twins
  publication-title: Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing
– volume: 363
  start-page: 55
  year: 2018
  end-page: 78
  ident: b29
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
– volume: 123
  start-page: 2738
  year: 2022
  end-page: 2759
  ident: b57
  article-title: A mechanics-informed artificial neural network approach in data-driven constitutive modeling
  publication-title: Internat. J. Numer. Methods Engrg.
– reference: D. Fleres, D. De Gregoriis, O. Atak, F. Naets, Non-Intrusive Physics-Informed Neural Network Hyper Reduction approach for Nonlinear Structural Finite Elements, in: MORTech 2023–6th International Workshop on Model Reduction Techniques, Date: 2023/11/22-2023/11/24, Location: Paris, France, 2023.
– start-page: 146
  year: 2017
  end-page: 155
  ident: b73
  article-title: Input convex neural networks
  publication-title: International Conference on Machine Learning
– volume: 412
  year: 2020
  ident: b23
  article-title: Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning
  publication-title: Physica D
– volume: 400
  year: 2022
  ident: b58
  article-title: Finite electro-elasticity with physics-augmented neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 64
  start-page: 365
  year: 2019
  end-page: 379
  ident: b49
  article-title: Derivation of heterogeneous material laws via data-driven principal component expansions
  publication-title: Comput. Mech.
– volume: 403
  year: 2023
  ident: b71
  article-title: A new family of constitutive artificial neural networks towards automated model discovery
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 388
  year: 2022
  ident: b36
  article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 125
  year: 2022
  ident: b70
  article-title: Polyconvex neural networks for hyperelastic constitutive models: A rectification approach
  publication-title: Mech. Res. Commun.
– volume: 6
  start-page: 1313
  year: 1968
  end-page: 1319
  ident: b10
  article-title: Coupling of substructures for dynamic analyses
  publication-title: AIAA J.
– volume: 6
  start-page: 861
  year: 1993
  end-page: 867
  ident: b50
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
– volume: 9
  start-page: 171
  year: 2018
  end-page: 193
  ident: b31
  article-title: Reduced-order models for aerodynamic applications, loads and MDO
  publication-title: CEAS Aeronaut. J.
– year: 2019
  ident: b55
  article-title: Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence
– volume: 452
  start-page: 147
  year: 2019
  end-page: 168
  ident: b78
  article-title: Development and validation of a fully predictive high-fidelity simulation approach for predicting coarse road dynamic tire/road rolling contact forces
  publication-title: J. Sound Vib.
– volume: 3
  start-page: 218
  year: 2021
  end-page: 229
  ident: b44
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
– volume: 87
  start-page: 1
  year: 2021
  end-page: 36
  ident: b35
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
– volume: 428
  year: 2021
  ident: b68
  article-title: Learning constitutive relations using symmetric positive definite neural networks
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 211
  year: 1936
  end-page: 218
  ident: b74
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
– volume: 92
  start-page: 891
  year: 2012
  end-page: 916
  ident: b12
  article-title: Nonlinear model order reduction based on local reduced-order bases
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 338
  start-page: 186
  year: 2018
  end-page: 207
  ident: b32
  article-title: A parametric and non-intrusive reduced order model of car crash simulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 381
  year: 2021
  ident: b47
  article-title: Unsupervised discovery of interpretable hyperelastic constitutive laws
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 371
  year: 2020
  ident: b63
  article-title: Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 86
  start-page: 155
  issue: 2
  year: 2011
  ident: 10.1016/j.cma.2024.117532_b15
  article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3050
– year: 2016
  ident: 10.1016/j.cma.2024.117532_b6
– volume: 398
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b60
  article-title: Multiscale modeling of inelastic materials with thermodynamics-based artificial neural networks (TANN)
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115190
– volume: 2
  start-page: 1
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b3
  article-title: Basic ideas and tools for projection-based model reduction of parametric partial differential equations
  publication-title: Model Order Reduct.
– volume: 87
  start-page: 1
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b35
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01462-7
– volume: 64
  start-page: 365
  year: 2019
  ident: 10.1016/j.cma.2024.117532_b49
  article-title: Derivation of heterogeneous material laws via data-driven principal component expansions
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01728-w
– volume: 2
  start-page: 181
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b16
  article-title: Computational bottlenecks for PROMs: precomputation and hyperreduction
  publication-title: Model Order Reduct.
– volume: 398
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b72
  article-title: Data-driven tissue mechanics with polyconvex neural ordinary differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115248
– volume: 412
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b23
  article-title: Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning
  publication-title: Physica D
  doi: 10.1016/j.physd.2020.132614
– volume: 381
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b47
  article-title: Unsupervised discovery of interpretable hyperelastic constitutive laws
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113852
– volume: 45
  start-page: 561
  issue: 3
  year: 1987
  ident: 10.1016/j.cma.2024.117532_b8
  article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/910462
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b56
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 38
  start-page: 4167
  issue: 5
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b54
  article-title: Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01733-3
– volume: 372
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b65
  article-title: A generic physics-informed neural network-based constitutive model for soft biological tissues
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113402
– volume: 6
  start-page: 861
  issue: 6
  year: 1993
  ident: 10.1016/j.cma.2024.117532_b50
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80131-5
– volume: 345
  start-page: 75
  year: 2019
  ident: 10.1016/j.cma.2024.117532_b34
  article-title: Data-driven reduced order modeling for time-dependent problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.10.029
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 10.1016/j.cma.2024.117532_b51
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– volume: 122
  start-page: 4774
  issue: 17
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b37
  article-title: A nonintrusive nonlinear model reduction method for structural dynamical problems based on machine learning
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6712
– ident: 10.1016/j.cma.2024.117532_b28
– volume: 372
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b25
  article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113433
– volume: 179
  year: 2023
  ident: 10.1016/j.cma.2024.117532_b62
  article-title: Neural networks meet hyperelasticity: A guide to enforcing physics
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2023.105363
– year: 2015
  ident: 10.1016/j.cma.2024.117532_b52
  article-title: A fabric material model with stress map functionality in LS-DYNA
– year: 2019
  ident: 10.1016/j.cma.2024.117532_b55
– volume: Vol. 55973
  year: 2013
  ident: 10.1016/j.cma.2024.117532_b20
  article-title: A modified discrete empirical interpolation method for reducing non-linear structural finite element models
– ident: 10.1016/j.cma.2024.117532_b80
– year: 2015
  ident: 10.1016/j.cma.2024.117532_b11
– volume: vol. 3
  start-page: 379
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b1
  article-title: 12 Model order reduction and digital twins
– volume: 159
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b69
  article-title: Polyconvex anisotropic hyperelasticity with neural networks
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104703
– volume: 1
  start-page: 211
  issue: 3
  year: 1936
  ident: 10.1016/j.cma.2024.117532_b74
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: 92
  start-page: 891
  issue: 10
  year: 2012
  ident: 10.1016/j.cma.2024.117532_b12
  article-title: Nonlinear model order reduction based on local reduced-order bases
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4371
– year: 2020
  ident: 10.1016/j.cma.2024.117532_b13
– year: 2020
  ident: 10.1016/j.cma.2024.117532_b26
– volume: 68
  start-page: 1179
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b64
  article-title: Constrained neural network training and its application to hyperelastic material modeling
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-021-02064-8
– volume: 179
  start-page: 704
  year: 2019
  ident: 10.1016/j.cma.2024.117532_b40
  article-title: Projection-based model reduction: Formulations for physics-based machine learning
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– volume: 53
  start-page: 2237
  issue: 10
  year: 2008
  ident: 10.1016/j.cma.2024.117532_b21
  article-title: Missing point estimation in models described by proper orthogonal decomposition
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2006102
– volume: 306
  start-page: 196
  year: 2016
  ident: 10.1016/j.cma.2024.117532_b24
  article-title: Data-driven operator inference for nonintrusive projection-based model reduction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.03.025
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  ident: 10.1016/j.cma.2024.117532_b19
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090766498
– year: 2015
  ident: 10.1016/j.cma.2024.117532_b5
– volume: 363
  start-page: 55
  year: 2018
  ident: 10.1016/j.cma.2024.117532_b29
  article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.037
– volume: 123
  start-page: 2738
  issue: 12
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b57
  article-title: A mechanics-informed artificial neural network approach in data-driven constitutive modeling
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6957
– volume: 93
  start-page: 57
  issue: 2
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b42
  article-title: Deep-HyROMnet: A deep learning-based operator approximation for hyper-reduction of nonlinear parametrized PDEs
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-02001-8
– volume: 63
  start-page: 337
  year: 1976
  ident: 10.1016/j.cma.2024.117532_b66
  article-title: Convexity conditions and existence theorems in nonlinear elasticity
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00279992
– volume: Vol. 1
  start-page: 187
  year: 1977
  ident: 10.1016/j.cma.2024.117532_b67
  article-title: Constitutive inequalities and existence theorems in nonlinear elastostatics
– volume: 14
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.cma.2024.117532_b79
  article-title: A new 3-D finite element model for cord-reinforced rubber composites—application to analysis of automobile tires
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/0168-874X(93)90075-2
– volume: 125
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b70
  article-title: Polyconvex neural networks for hyperelastic constitutive models: A rectification approach
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2022.103993
– volume: 196
  start-page: 668
  issue: 6
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b38
  article-title: Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics
  publication-title: Nucl. Sci. Eng.
  doi: 10.1080/00295639.2021.2014752
– volume: 403
  year: 2023
  ident: 10.1016/j.cma.2024.117532_b71
  article-title: A new family of constitutive artificial neural networks towards automated model discovery
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115731
– volume: 7
  start-page: 121
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b41
  article-title: Model reduction and neural networks for parametric PDEs
  publication-title: SMAI J. Comput. Math.
  doi: 10.5802/smai-jcm.74
– volume: 428
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b68
  article-title: Learning constitutive relations using symmetric positive definite neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110072
– volume: 452
  start-page: 147
  year: 2019
  ident: 10.1016/j.cma.2024.117532_b78
  article-title: Development and validation of a fully predictive high-fidelity simulation approach for predicting coarse road dynamic tire/road rolling contact forces
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.04.011
– volume: 341
  start-page: 807
  year: 2018
  ident: 10.1016/j.cma.2024.117532_b33
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.07.017
– volume: 102
  start-page: 1077
  issue: 5
  year: 2015
  ident: 10.1016/j.cma.2024.117532_b22
  article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4820
– volume: 6
  start-page: 911
  issue: 4
  year: 1995
  ident: 10.1016/j.cma.2024.117532_b46
  article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.392253
– start-page: 167
  year: 2018
  ident: 10.1016/j.cma.2024.117532_b2
  article-title: Model order reduction a key technology for digital twins
– year: 2023
  ident: 10.1016/j.cma.2024.117532_b77
– volume: 3
  start-page: 218
  issue: 3
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b44
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– volume: 7
  start-page: eabi8605
  issue: 40
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b45
  article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abi8605
– volume: 65
  start-page: 190
  issue: 7
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b39
  article-title: Data-driven models for crashworthiness optimisation: intrusive and non-intrusive model order reduction techniques
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03282-1
– volume: 104
  start-page: 1061
  issue: 12
  year: 2015
  ident: 10.1016/j.cma.2024.117532_b48
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4953
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2024.117532_b17
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
  doi: 10.1137/130932715
– volume: 377
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b75
  article-title: Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113695
– volume: 338
  start-page: 186
  year: 2018
  ident: 10.1016/j.cma.2024.117532_b32
  article-title: A parametric and non-intrusive reduced order model of car crash simulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.03.005
– volume: 339
  start-page: 667
  issue: 9
  year: 2004
  ident: 10.1016/j.cma.2024.117532_b18
  article-title: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations
  publication-title: C. R. Math.
  doi: 10.1016/j.crma.2004.08.006
– year: 2023
  ident: 10.1016/j.cma.2024.117532_b61
– volume: 71
  start-page: 827
  issue: 5
  year: 2023
  ident: 10.1016/j.cma.2024.117532_b59
  article-title: FE ANN: an efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-022-02260-0
– ident: 10.1016/j.cma.2024.117532_b30
  doi: 10.2514/6.2003-4213
– volume: 404
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b14
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108973
– volume: 400
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b58
  article-title: Finite electro-elasticity with physics-augmented neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115501
– year: 2006
  ident: 10.1016/j.cma.2024.117532_b76
– volume: 9
  start-page: 171
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2024.117532_b31
  article-title: Reduced-order models for aerodynamic applications, loads and MDO
  publication-title: CEAS Aeronaut. J.
  doi: 10.1007/s13272-018-0283-6
– volume: 233
  start-page: 5896
  issue: 16
  year: 2019
  ident: 10.1016/j.cma.2024.117532_b27
  article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review
  publication-title: Proc. Inst. Mech. Eng. G
  doi: 10.1177/0954410019890721
– start-page: 3707
  year: 2019
  ident: 10.1016/j.cma.2024.117532_b43
  article-title: Transform & learn: A data-driven approach to nonlinear model reduction
– volume: 5
  start-page: 741
  issue: 6
  year: 2021
  ident: 10.1016/j.cma.2024.117532_b53
  article-title: On interpretability of artificial neural networks: A survey
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
  doi: 10.1109/TRPMS.2021.3066428
– volume: 26
  start-page: 17
  issue: 1
  year: 1981
  ident: 10.1016/j.cma.2024.117532_b9
  article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1981.1102568
– year: 2012
  ident: 10.1016/j.cma.2024.117532_b7
– year: 2012
  ident: 10.1016/j.cma.2024.117532_b4
– volume: 371
  year: 2020
  ident: 10.1016/j.cma.2024.117532_b63
  article-title: Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113299
– volume: 6
  start-page: 1313
  issue: 7
  year: 1968
  ident: 10.1016/j.cma.2024.117532_b10
  article-title: Coupling of substructures for dynamic analyses
  publication-title: AIAA J.
  doi: 10.2514/3.4741
– start-page: 146
  year: 2017
  ident: 10.1016/j.cma.2024.117532_b73
  article-title: Input convex neural networks
– volume: 388
  year: 2022
  ident: 10.1016/j.cma.2024.117532_b36
  article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114181
SSID ssj0000812
Score 2.4752133
Snippet Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117532
SubjectTerms Hyper-reduction
Model order reduction
Non-intrusive
Physics-augmented neural network
Scientific machine learning
Title Non-intrusive parametric hyper-reduction for nonlinear structural finite element formulations
URI https://dx.doi.org/10.1016/j.cma.2024.117532
Volume 434
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0045-7825
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0045-7825
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0045-7825
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0045-7825
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0045-7825
  databaseCode: AKRWK
  dateStart: 19720601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvTgoyrWR8nBk5B2d5Ps41iKpSr2ZKEXWfJaXKG1tD37253Z7GIFvXhdEghfdme-2Xz5hpBbE0dOS4OSxihmIgsCprkzLHUydNj0KCjwP-TzNJ7MxONczltk1NyFQVllHft9TK-idf1kUKM5WJUl3vEV6MUuUQWZpFUcFiLBLgb9z2-ZB6Q87xguJMPRzclmpfEylfVQJPqVYWX0e27ayTfjY3JYE0U69Gs5IS237JCjmjTS-pPcdMjBjqPgKXmdfixZucSbFBDGKBp7L7BnlqFvUHCu2RqdWnEvKJBVuvQ-GWpNvY0sWnDQokQaSp3XleO4Rd3ia3NGZuP7l9GE1R0UmIGyasusM8oq4RIFtEJLncbOOJ3xQmRWuFhxK62WkPELl0Gp6oBvpFATG2W4THTM-Tlpw1LcBaEqsVGAh3pGWxFmKnXcArlUlqdahkXYJXcNdvnKG2XkjYLsPQegcwQ690B3iWjQzX_sdg6B_O9pl_-bdkX2I-zaW2mtr0kbEHU3QCW2ule9Kz2yN3x4mky_ANbXyfs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lLtSFj6pYn1m4EtLOI5nHUoqlattVC91IyGuwQsfSdu23mzvJYAXduB0SCCcz9547OTkXoTuVREYyBZLGKCE0DwIiY6NIZlhooOlRUMB_yNE4GUzp84zNGqhX34UBWaWP_S6mV9HaP-l6NLvL-Rzu-FLwYmeggkwziMM7lEUpVGCdz2-dh815zjKcMgLD66PNSuSlKu-hiHYqx8ro9-S0lXD6R-jAM0X84BZzjBqmbKFDzxqx_ybXLbS_ZSl4gl7HHyWZl3CVwsYxDM7eC2iapfCbrThXZAVWrbAZ2LJVXDqjDLHCzkcWPDhwMQceio0TlsO4he_xtT5F0_7jpDcgvoUCUbau2hBtlNCCmlRYXiGZzBKjjMzjguaamkTEmmnJbMovTG5rVWMJR2aLYiVUzFKZxPEZatqlmHOERaqjAE71lNQ0zEVmYm3ZpdBxJllYhG10X2PHl84pg9cSsndugeYANHdAtxGt0eU_tpvbSP73tIv_TbtFu4PJaMiHT-OXS7QXQQvfSnh9hZoWXXNtecVG3lTvzRe4JsuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+parametric+hyper-reduction+for+nonlinear+structural+finite+element+formulations&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Fleres%2C+Davide&rft.au=De+Gregoriis%2C+Daniel&rft.au=Atak%2C+Onur&rft.au=Naets%2C+Frank&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.volume=434&rft_id=info:doi/10.1016%2Fj.cma.2024.117532&rft.externalDocID=S0045782524007862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon