Non-intrusive parametric hyper-reduction for nonlinear structural finite element formulations
Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational burden of high-fidelity models. When dealing with nonlinear structural Finite Element analyses, several Hyper-Reduction (HR) approaches have bee...
Saved in:
| Published in | Computer methods in applied mechanics and engineering Vol. 434; p. 117532 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7825 |
| DOI | 10.1016/j.cma.2024.117532 |
Cover
| Abstract | Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational burden of high-fidelity models. When dealing with nonlinear structural Finite Element analyses, several Hyper-Reduction (HR) approaches have been developed to reduce the computational cost. Nonetheless, HR approaches are typically intrusive in nature, posing challenges when it comes to integration into existing (commercial) software. Recently, data driven Non-Intrusive MOR methodologies have been proposed. However, these techniques often suffer from overfitting and violate key physics properties, leading to unstable behavior. This work proposes to use Scientific Machine Learning to reintegrate critical stability-preserving physics properties. It introduces a data-driven, physics-augmented, parametric approach that combines Proper Orthogonal Decomposition (POD) with a Partially Input Convex Neural Network (PICNN) architecture. The proposed method effectively reduces the computational burden associated with parametric static nonlinear elastic structural problems while retaining material consistency, hyper-elasticity, and material stability properties in the Reduced Order Model. Numerical validation on several structural models subjected to geometrical and material nonlinearities under static loading conditions demonstrates the effectiveness of the POD-PICNN approach. Additionally, three different sampling strategies have been compared to assess their impact on the method performance. The results emphasize that physics-augmentation is required, as it inherently embeds essential physical constraints into the neural network architecture, ensuring stable and consistent behavior, while highlighting its potential for dynamic and multiphysics applications.
•Full Order Models are numerically expensive; Model Order Reduction can mitigate.•Hyper-Reduction techniques are efficient but intrusive and typically non-parametric.•Non-Intrusive techniques are limited in extrapolation and may violate physics.•Partial Input Convex Neural Networks combine strengths of both approaches. |
|---|---|
| AbstractList | Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational burden of high-fidelity models. When dealing with nonlinear structural Finite Element analyses, several Hyper-Reduction (HR) approaches have been developed to reduce the computational cost. Nonetheless, HR approaches are typically intrusive in nature, posing challenges when it comes to integration into existing (commercial) software. Recently, data driven Non-Intrusive MOR methodologies have been proposed. However, these techniques often suffer from overfitting and violate key physics properties, leading to unstable behavior. This work proposes to use Scientific Machine Learning to reintegrate critical stability-preserving physics properties. It introduces a data-driven, physics-augmented, parametric approach that combines Proper Orthogonal Decomposition (POD) with a Partially Input Convex Neural Network (PICNN) architecture. The proposed method effectively reduces the computational burden associated with parametric static nonlinear elastic structural problems while retaining material consistency, hyper-elasticity, and material stability properties in the Reduced Order Model. Numerical validation on several structural models subjected to geometrical and material nonlinearities under static loading conditions demonstrates the effectiveness of the POD-PICNN approach. Additionally, three different sampling strategies have been compared to assess their impact on the method performance. The results emphasize that physics-augmentation is required, as it inherently embeds essential physical constraints into the neural network architecture, ensuring stable and consistent behavior, while highlighting its potential for dynamic and multiphysics applications.
•Full Order Models are numerically expensive; Model Order Reduction can mitigate.•Hyper-Reduction techniques are efficient but intrusive and typically non-parametric.•Non-Intrusive techniques are limited in extrapolation and may violate physics.•Partial Input Convex Neural Networks combine strengths of both approaches. |
| ArticleNumber | 117532 |
| Author | Fleres, Davide De Gregoriis, Daniel Naets, Frank Atak, Onur |
| Author_xml | – sequence: 1 givenname: Davide surname: Fleres fullname: Fleres, Davide email: davide.fleres@siemens.com organization: KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300, Heverlee, B-3001, Flemish Brabant, Belgium – sequence: 2 givenname: Daniel orcidid: 0000-0002-4289-3068 surname: De Gregoriis fullname: De Gregoriis, Daniel organization: Siemens Digital Industries Software, Interleuvenlaan 68, Leuven, 3001, Flemish Brabant, Belgium – sequence: 3 givenname: Onur orcidid: 0000-0003-4451-5375 surname: Atak fullname: Atak, Onur organization: Siemens Digital Industries Software, Hills Rd, Cambridge, United Kingdom – sequence: 4 givenname: Frank surname: Naets fullname: Naets, Frank organization: KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300, Heverlee, B-3001, Flemish Brabant, Belgium |
| BookMark | eNp9kMtqwzAQRbVIoUnaD-hOP2BXD8uW6aqEviC0m3ZZhCyNqYItB0kO5O8rk647m4HhnpnhbNDKTx4QuqOkpITW94fSjLpkhFUlpY3gbIXWhFSiaCQT12gT44HkkpSt0ff75AvnU5ijOwE-6qBHSMEZ_HM-QigC2NkkN3ncTwHnQ4PzoAOOmTBpDnrAvfMuAYYBRvBpyY3zoBcm3qCrXg8Rbv_6Fn09P33uXov9x8vb7nFfGFa1qbBgtNUVNJoL0YlO1mCga3lftbaCWnMrbCdYHkDLJQfSUNlIabThoulqzreIXvaaMMUYoFfH4EYdzooStThRB5WdqMWJujjJzMOFgfzYyUFQ0TjwBqwLYJKyk_uH_gUKynEC |
| Cites_doi | 10.1002/nme.3050 10.1016/j.cma.2022.115190 10.1007/s10915-021-01462-7 10.1007/s00466-019-01728-w 10.1016/j.cma.2022.115248 10.1016/j.physd.2020.132614 10.1016/j.cma.2021.113852 10.1090/qam/910462 10.1038/s42254-021-00314-5 10.1007/s00366-022-01733-3 10.1016/j.cma.2020.113402 10.1016/S0893-6080(05)80131-5 10.1016/j.cma.2018.10.029 10.1016/0893-6080(91)90009-T 10.1002/nme.6712 10.1016/j.cma.2020.113433 10.1016/j.jmps.2023.105363 10.1016/j.jmps.2021.104703 10.1007/BF02288367 10.1002/nme.4371 10.1007/s00466-021-02064-8 10.1016/j.compfluid.2018.07.021 10.1109/TAC.2008.2006102 10.1016/j.cma.2016.03.025 10.1137/090766498 10.1016/j.jcp.2018.02.037 10.1002/nme.6957 10.1007/s10915-022-02001-8 10.1007/BF00279992 10.1016/0168-874X(93)90075-2 10.1016/j.mechrescom.2022.103993 10.1080/00295639.2021.2014752 10.1016/j.cma.2022.115731 10.5802/smai-jcm.74 10.1016/j.jcp.2020.110072 10.1016/j.jsv.2019.04.011 10.1016/j.cma.2018.07.017 10.1002/nme.4820 10.1109/72.392253 10.1038/s42256-021-00302-5 10.1126/sciadv.abi8605 10.1007/s00158-022-03282-1 10.1002/nme.4953 10.1137/130932715 10.1016/j.cma.2021.113695 10.1016/j.cma.2018.03.005 10.1016/j.crma.2004.08.006 10.1007/s00466-022-02260-0 10.2514/6.2003-4213 10.1016/j.jcp.2019.108973 10.1016/j.cma.2022.115501 10.1007/s13272-018-0283-6 10.1177/0954410019890721 10.1109/TRPMS.2021.3066428 10.1109/TAC.1981.1102568 10.1016/j.cma.2020.113299 10.2514/3.4741 10.1016/j.cma.2021.114181 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cma.2024.117532 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cma_2024_117532 S0045782524007862 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- SBC SET VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c249t-decada4e7a355b5b86eceb93f49d4e6a3d5db5293fe9383e0718788cac357b633 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7825 |
| IngestDate | Wed Oct 01 04:46:08 EDT 2025 Sat Dec 21 16:01:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hyper-reduction Non-intrusive Model order reduction Physics-augmented neural network Scientific machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-decada4e7a355b5b86eceb93f49d4e6a3d5db5293fe9383e0718788cac357b633 |
| ORCID | 0000-0002-4289-3068 0000-0003-4451-5375 |
| ParticipantIDs | crossref_primary_10_1016_j_cma_2024_117532 elsevier_sciencedirect_doi_10_1016_j_cma_2024_117532 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Czech, Lesjak, Bach, Duddeck (b39) 2022; 65 Farhat, Chapman, Avery (b22) 2015; 102 Gong, Cheng, Chen, Li (b38) 2022; 196 Borrvall, Ehle, Stratton (b52) 2015 Vlassis, Sun (b75) 2021; 377 Chen, Guilleminot (b70) 2022; 125 Fan, Xiong, Li, Wang (b53) 2021; 5 Ball (b66) 1976; 63 Guo, Hesthaven (b34) 2019; 345 Yu, Yan, Guo (b27) 2019; 233 Vlassis, Ma, Sun (b63) 2020; 371 Guo, Hesthaven (b33) 2018; 341 Moore (b9) 1981; 26 Chaturantabut, Sorensen (b19) 2010; 32 Flaschel, Kumar, De Lorenzis (b47) 2021; 381 Hartmann, Herz, Wever (b2) 2018 Kalina, Linden, Brummund, Kästner (b59) 2023; 71 Ripepi, Verveld, Karcher, Franz, Abu-Zurayk, Görtz, Kier (b31) 2018; 9 Benner, Gugercin, Willcox (b17) 2015; 57 Bhattacharya, Hosseini, Kovachki, Stuart (b41) 2021; 7 Hartmann, Herz, Paffrath, Rommes, Tamarozzi, Van der Auweraer, Wever (b1) 2020; vol. 3 Fresca, Dede, Manzoni (b35) 2021; 87 T. Bui-Thanh, M. Damodaran, K. Willcox, Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics, in: 21st AIAA Applied Aerodynamics Conference, 2003, p. 4213. Klein, Fernández, Martin, Neff, Weeger (b69) 2022; 159 Lee, Carlberg (b14) 2020; 404 Peherstorfer, Willcox (b24) 2016; 306 Ohlberger, Rave (b11) 2015 Chen, Chen (b46) 1995; 6 Helnwein, Liu, Meschke, Mang (b79) 1993; 14 Sirovich (b8) 1987; 45 Yang, Guo, Tang, Liu (b49) 2019; 64 Gao, Wang, Zahr (b23) 2020; 412 Tac, Linka, Sahli-Costabal, Kuhl, Tepole (b61) 2023 Kneifl, Grunert, Fehr (b37) 2021; 122 Farhat, Grimberg, Manzoni, Quarteroni (b16) 2020; 2 Inc. (b77) 2023 Amos, Xu, Kolter (b73) 2017 Xu, Huang, Darve (b68) 2021; 428 Tac, Costabal, Tepole (b72) 2022; 398 Liu, Liang, Sun (b65) 2020; 372 Quarteroni, Manzoni, Negri (b5) 2015 Le, Yvonnet, He (b48) 2015; 104 Benner, Goyal, Kramer, Peherstorfer, Willcox (b25) 2020; 372 Carlberg, Bou-Mosleh, Farhat (b15) 2011; 86 Weber, Geiger, Wagner (b64) 2021; 68 Hornik (b51) 1991; 4 Eckart, Young (b74) 1936; 1 Craig, Bampton (b10) 1968; 6 S.L. Brunton, J.N. Kutz, 7 Data-driven methods for reduced-order modeling, Model Order Reduct. 2, 307–344, 7. Tac, Sree, Rausch, Tepole (b54) 2022; 38 D. Fleres, D. De Gregoriis, O. Atak, F. Naets, Non-Intrusive Physics-Informed Neural Network Hyper Reduction approach for Nonlinear Structural Finite Elements, in: MORTech 2023–6th International Workshop on Model Reduction Techniques, Date: 2023/11/22-2023/11/24, Location: Paris, France, 2023. Holmes (b7) 2012 Wang, Wang, Perdikaris (b45) 2021; 7 Qian, Kramer, Marques, Willcox (b43) 2019 Masi, Stefanou (b60) 2022; 398 Hesthaven, Ubbiali (b29) 2018; 363 Leshno, Lin, Pinkus, Schocken (b50) 1993; 6 De Gregoriis, Naets, Kindt, Desmet (b78) 2019; 452 Hesthaven, Rozza, Stamm (b6) 2016 Baker, Alexander, Bremer, Hagberg, Kevrekidis, Najm, Parashar, Patra, Sethian, Wild (b55) 2019 Linka, Kuhl (b71) 2023; 403 Astrid, Weiland, Willcox, Backx (b21) 2008; 53 Klein, Ortigosa, Martínez-Frutos, Weeger (b58) 2022; 400 Barrault, Maday, Nguyen, Patera (b18) 2004; 339 Lu, Jin, Pang, Zhang, Karniadakis (b44) 2021; 3 Bathe (b76) 2006 Rizzi, Blonigan, Parish, Carlberg (b26) 2020 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b56) 2021; 3 Tiso, Dedden, Rixen (b20) 2013; Vol. 55973 Rozza, Hess, Stabile, Tezzele, Ballarin (b3) 2020; 2 Amsallem, Zahr, Farhat (b12) 2012; 92 Linden, Klein, Kalina, Brummund, Weeger, Kästner (b62) 2023; 179 Fresca, Manzoni (b36) 2022; 388 Cicci, Fresca, Manzoni (b42) 2022; 93 Alpaydin (b13) 2020 Swischuk, Mainini, Peherstorfer, Willcox (b40) 2019; 179 Le Guennec, Brunet, Daim, Chau, Tourbier (b32) 2018; 338 As’ ad, Avery, Farhat (b57) 2022; 123 Pinkus (b4) 2012 Ball (b67) 1977; Vol. 1 Tac (10.1016/j.cma.2024.117532_b54) 2022; 38 Chen (10.1016/j.cma.2024.117532_b70) 2022; 125 Fresca (10.1016/j.cma.2024.117532_b35) 2021; 87 Swischuk (10.1016/j.cma.2024.117532_b40) 2019; 179 Flaschel (10.1016/j.cma.2024.117532_b47) 2021; 381 Holmes (10.1016/j.cma.2024.117532_b7) 2012 Barrault (10.1016/j.cma.2024.117532_b18) 2004; 339 Ball (10.1016/j.cma.2024.117532_b66) 1976; 63 Xu (10.1016/j.cma.2024.117532_b68) 2021; 428 Tac (10.1016/j.cma.2024.117532_b61) 2023 Guo (10.1016/j.cma.2024.117532_b34) 2019; 345 Astrid (10.1016/j.cma.2024.117532_b21) 2008; 53 10.1016/j.cma.2024.117532_b80 Kalina (10.1016/j.cma.2024.117532_b59) 2023; 71 Vlassis (10.1016/j.cma.2024.117532_b75) 2021; 377 Chen (10.1016/j.cma.2024.117532_b46) 1995; 6 Ball (10.1016/j.cma.2024.117532_b67) 1977; Vol. 1 Inc. (10.1016/j.cma.2024.117532_b77) 2023 Ripepi (10.1016/j.cma.2024.117532_b31) 2018; 9 Masi (10.1016/j.cma.2024.117532_b60) 2022; 398 Tiso (10.1016/j.cma.2024.117532_b20) 2013; Vol. 55973 Lee (10.1016/j.cma.2024.117532_b14) 2020; 404 Qian (10.1016/j.cma.2024.117532_b43) 2019 Farhat (10.1016/j.cma.2024.117532_b22) 2015; 102 Linden (10.1016/j.cma.2024.117532_b62) 2023; 179 Yang (10.1016/j.cma.2024.117532_b49) 2019; 64 Quarteroni (10.1016/j.cma.2024.117532_b5) 2015 Lu (10.1016/j.cma.2024.117532_b44) 2021; 3 Liu (10.1016/j.cma.2024.117532_b65) 2020; 372 Fan (10.1016/j.cma.2024.117532_b53) 2021; 5 Vlassis (10.1016/j.cma.2024.117532_b63) 2020; 371 Alpaydin (10.1016/j.cma.2024.117532_b13) 2020 Weber (10.1016/j.cma.2024.117532_b64) 2021; 68 Fresca (10.1016/j.cma.2024.117532_b36) 2022; 388 Bhattacharya (10.1016/j.cma.2024.117532_b41) 2021; 7 Chaturantabut (10.1016/j.cma.2024.117532_b19) 2010; 32 Ohlberger (10.1016/j.cma.2024.117532_b11) 2015 Hornik (10.1016/j.cma.2024.117532_b51) 1991; 4 Le (10.1016/j.cma.2024.117532_b48) 2015; 104 Benner (10.1016/j.cma.2024.117532_b17) 2015; 57 Hesthaven (10.1016/j.cma.2024.117532_b6) 2016 Le Guennec (10.1016/j.cma.2024.117532_b32) 2018; 338 10.1016/j.cma.2024.117532_b28 Pinkus (10.1016/j.cma.2024.117532_b4) 2012 Benner (10.1016/j.cma.2024.117532_b25) 2020; 372 Leshno (10.1016/j.cma.2024.117532_b50) 1993; 6 Helnwein (10.1016/j.cma.2024.117532_b79) 1993; 14 Craig (10.1016/j.cma.2024.117532_b10) 1968; 6 Rizzi (10.1016/j.cma.2024.117532_b26) 2020 Hartmann (10.1016/j.cma.2024.117532_b1) 2020; vol. 3 Hesthaven (10.1016/j.cma.2024.117532_b29) 2018; 363 As’ ad (10.1016/j.cma.2024.117532_b57) 2022; 123 Moore (10.1016/j.cma.2024.117532_b9) 1981; 26 Amsallem (10.1016/j.cma.2024.117532_b12) 2012; 92 Sirovich (10.1016/j.cma.2024.117532_b8) 1987; 45 Klein (10.1016/j.cma.2024.117532_b69) 2022; 159 Farhat (10.1016/j.cma.2024.117532_b16) 2020; 2 Kneifl (10.1016/j.cma.2024.117532_b37) 2021; 122 Borrvall (10.1016/j.cma.2024.117532_b52) 2015 Rozza (10.1016/j.cma.2024.117532_b3) 2020; 2 De Gregoriis (10.1016/j.cma.2024.117532_b78) 2019; 452 Peherstorfer (10.1016/j.cma.2024.117532_b24) 2016; 306 Baker (10.1016/j.cma.2024.117532_b55) 2019 Carlberg (10.1016/j.cma.2024.117532_b15) 2011; 86 Eckart (10.1016/j.cma.2024.117532_b74) 1936; 1 Bathe (10.1016/j.cma.2024.117532_b76) 2006 Guo (10.1016/j.cma.2024.117532_b33) 2018; 341 Hartmann (10.1016/j.cma.2024.117532_b2) 2018 Amos (10.1016/j.cma.2024.117532_b73) 2017 Gao (10.1016/j.cma.2024.117532_b23) 2020; 412 Wang (10.1016/j.cma.2024.117532_b45) 2021; 7 10.1016/j.cma.2024.117532_b30 Gong (10.1016/j.cma.2024.117532_b38) 2022; 196 Yu (10.1016/j.cma.2024.117532_b27) 2019; 233 Cicci (10.1016/j.cma.2024.117532_b42) 2022; 93 Tac (10.1016/j.cma.2024.117532_b72) 2022; 398 Linka (10.1016/j.cma.2024.117532_b71) 2023; 403 Karniadakis (10.1016/j.cma.2024.117532_b56) 2021; 3 Klein (10.1016/j.cma.2024.117532_b58) 2022; 400 Czech (10.1016/j.cma.2024.117532_b39) 2022; 65 |
| References_xml | – volume: 53 start-page: 2237 year: 2008 end-page: 2251 ident: b21 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: IEEE Trans. Autom. Control – year: 2016 ident: b6 publication-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations – volume: 102 start-page: 1077 year: 2015 end-page: 1110 ident: b22 article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models publication-title: Int. J. Numer. Methods Eng. – start-page: 3707 year: 2019 ident: b43 article-title: Transform & learn: A data-driven approach to nonlinear model reduction publication-title: AIAA Aviation 2019 Forum – volume: 2 start-page: 1 year: 2020 end-page: 47 ident: b3 article-title: Basic ideas and tools for projection-based model reduction of parametric partial differential equations publication-title: Model Order Reduct. – volume: 38 start-page: 4167 year: 2022 end-page: 4182 ident: b54 article-title: Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue publication-title: Eng. Comput. – year: 2015 ident: b52 article-title: A fabric material model with stress map functionality in LS-DYNA publication-title: 10th European LS-DYNA Conference – year: 2012 ident: b7 article-title: Turbulence, Coherent Structures, Dynamical Systems and Symmetry – year: 2012 ident: b4 publication-title: N-widths in Approximation Theory – year: 2023 ident: b77 article-title: MATLAB version: 9.14.0 (r2023a) – year: 2015 ident: b5 publication-title: Reduced Basis Methods for Partial Differential Equations: an Introduction – volume: 26 start-page: 17 year: 1981 end-page: 32 ident: b9 article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction publication-title: IEEE Trans. Autom. Control – volume: 65 start-page: 190 year: 2022 ident: b39 article-title: Data-driven models for crashworthiness optimisation: intrusive and non-intrusive model order reduction techniques publication-title: Struct. Multidiscip. Optim. – volume: 86 start-page: 155 year: 2011 end-page: 181 ident: b15 article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations publication-title: Int. J. Numer. Methods Eng. – year: 2020 ident: b13 article-title: Introduction to Machine Learning – volume: 377 year: 2021 ident: b75 article-title: Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 5 start-page: 741 year: 2021 end-page: 760 ident: b53 article-title: On interpretability of artificial neural networks: A survey publication-title: IEEE Trans. Radiat. Plasma Med. Sci. – volume: 68 start-page: 1179 year: 2021 end-page: 1204 ident: b64 article-title: Constrained neural network training and its application to hyperelastic material modeling publication-title: Comput. Mech. – volume: 179 start-page: 704 year: 2019 end-page: 717 ident: b40 article-title: Projection-based model reduction: Formulations for physics-based machine learning publication-title: Comput. & Fluids – volume: 404 year: 2020 ident: b14 article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders publication-title: J. Comput. Phys. – volume: 372 year: 2020 ident: b25 article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 398 year: 2022 ident: b60 article-title: Multiscale modeling of inelastic materials with thermodynamics-based artificial neural networks (TANN) publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 57 start-page: 483 year: 2015 end-page: 531 ident: b17 article-title: A survey of projection-based model reduction methods for parametric dynamical systems publication-title: SIAM Rev. – volume: 159 year: 2022 ident: b69 article-title: Polyconvex anisotropic hyperelasticity with neural networks publication-title: J. Mech. Phys. Solids – volume: 14 start-page: 1 year: 1993 end-page: 16 ident: b79 article-title: A new 3-D finite element model for cord-reinforced rubber composites—application to analysis of automobile tires publication-title: Finite Elem. Anal. Des. – volume: 398 year: 2022 ident: b72 article-title: Data-driven tissue mechanics with polyconvex neural ordinary differential equations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 233 start-page: 5896 year: 2019 end-page: 5912 ident: b27 article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review publication-title: Proc. Inst. Mech. Eng. G – volume: 179 year: 2023 ident: b62 article-title: Neural networks meet hyperelasticity: A guide to enforcing physics publication-title: J. Mech. Phys. Solids – volume: 63 start-page: 337 year: 1976 end-page: 403 ident: b66 article-title: Convexity conditions and existence theorems in nonlinear elasticity publication-title: Arch. Ration. Mech. Anal. – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: b51 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. – year: 2020 ident: b26 article-title: Pressio: Enabling projection-based model reduction for large-scale nonlinear dynamical systems – volume: 7 start-page: eabi8605 year: 2021 ident: b45 article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets publication-title: Sci. Adv. – volume: Vol. 55973 year: 2013 ident: b20 article-title: A modified discrete empirical interpolation method for reducing non-linear structural finite element models publication-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference – volume: Vol. 1 start-page: 187 year: 1977 end-page: 241 ident: b67 article-title: Constitutive inequalities and existence theorems in nonlinear elastostatics publication-title: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium – reference: S.L. Brunton, J.N. Kutz, 7 Data-driven methods for reduced-order modeling, Model Order Reduct. 2, 307–344, 7. – volume: 372 year: 2020 ident: b65 article-title: A generic physics-informed neural network-based constitutive model for soft biological tissues publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 306 start-page: 196 year: 2016 end-page: 215 ident: b24 article-title: Data-driven operator inference for nonintrusive projection-based model reduction publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 2 start-page: 181 year: 2020 end-page: 244 ident: b16 article-title: Computational bottlenecks for PROMs: precomputation and hyperreduction publication-title: Model Order Reduct. – volume: 122 start-page: 4774 year: 2021 end-page: 4786 ident: b37 article-title: A nonintrusive nonlinear model reduction method for structural dynamical problems based on machine learning publication-title: Internat. J. Numer. Methods Engrg. – volume: 341 start-page: 807 year: 2018 end-page: 826 ident: b33 article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 6 start-page: 911 year: 1995 end-page: 917 ident: b46 article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems publication-title: IEEE Trans. Neural Netw. – volume: 339 start-page: 667 year: 2004 end-page: 672 ident: b18 article-title: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations publication-title: C. R. Math. – year: 2006 ident: b76 article-title: Finite Element Procedures – year: 2015 ident: b11 article-title: Reduced basis methods: Success, limitations and future challenges – year: 2023 ident: b61 article-title: Benchmarks for physics-informed data-driven hyperelasticity – volume: 45 start-page: 561 year: 1987 end-page: 571 ident: b8 article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures publication-title: Q. Appl. Math. – volume: 7 start-page: 121 year: 2021 end-page: 157 ident: b41 article-title: Model reduction and neural networks for parametric PDEs publication-title: SMAI J. Comput. Math. – volume: 196 start-page: 668 year: 2022 end-page: 693 ident: b38 article-title: Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics publication-title: Nucl. Sci. Eng. – volume: 104 start-page: 1061 year: 2015 end-page: 1084 ident: b48 article-title: Computational homogenization of nonlinear elastic materials using neural networks publication-title: Internat. J. Numer. Methods Engrg. – volume: 71 start-page: 827 year: 2023 end-page: 851 ident: b59 article-title: FE ANN: an efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining publication-title: Comput. Mech. – volume: 93 start-page: 57 year: 2022 ident: b42 article-title: Deep-HyROMnet: A deep learning-based operator approximation for hyper-reduction of nonlinear parametrized PDEs publication-title: J. Sci. Comput. – reference: T. Bui-Thanh, M. Damodaran, K. Willcox, Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics, in: 21st AIAA Applied Aerodynamics Conference, 2003, p. 4213. – volume: 32 start-page: 2737 year: 2010 end-page: 2764 ident: b19 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM J. Sci. Comput. – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: b56 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. – volume: vol. 3 start-page: 379 year: 2020 ident: b1 article-title: 12 Model order reduction and digital twins publication-title: Citation for Published Version (APA) – volume: 345 start-page: 75 year: 2019 end-page: 99 ident: b34 article-title: Data-driven reduced order modeling for time-dependent problems publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 167 year: 2018 end-page: 179 ident: b2 article-title: Model order reduction a key technology for digital twins publication-title: Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing – volume: 363 start-page: 55 year: 2018 end-page: 78 ident: b29 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. – volume: 123 start-page: 2738 year: 2022 end-page: 2759 ident: b57 article-title: A mechanics-informed artificial neural network approach in data-driven constitutive modeling publication-title: Internat. J. Numer. Methods Engrg. – reference: D. Fleres, D. De Gregoriis, O. Atak, F. Naets, Non-Intrusive Physics-Informed Neural Network Hyper Reduction approach for Nonlinear Structural Finite Elements, in: MORTech 2023–6th International Workshop on Model Reduction Techniques, Date: 2023/11/22-2023/11/24, Location: Paris, France, 2023. – start-page: 146 year: 2017 end-page: 155 ident: b73 article-title: Input convex neural networks publication-title: International Conference on Machine Learning – volume: 412 year: 2020 ident: b23 article-title: Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning publication-title: Physica D – volume: 400 year: 2022 ident: b58 article-title: Finite electro-elasticity with physics-augmented neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 64 start-page: 365 year: 2019 end-page: 379 ident: b49 article-title: Derivation of heterogeneous material laws via data-driven principal component expansions publication-title: Comput. Mech. – volume: 403 year: 2023 ident: b71 article-title: A new family of constitutive artificial neural networks towards automated model discovery publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 388 year: 2022 ident: b36 article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 125 year: 2022 ident: b70 article-title: Polyconvex neural networks for hyperelastic constitutive models: A rectification approach publication-title: Mech. Res. Commun. – volume: 6 start-page: 1313 year: 1968 end-page: 1319 ident: b10 article-title: Coupling of substructures for dynamic analyses publication-title: AIAA J. – volume: 6 start-page: 861 year: 1993 end-page: 867 ident: b50 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. – volume: 9 start-page: 171 year: 2018 end-page: 193 ident: b31 article-title: Reduced-order models for aerodynamic applications, loads and MDO publication-title: CEAS Aeronaut. J. – year: 2019 ident: b55 article-title: Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence – volume: 452 start-page: 147 year: 2019 end-page: 168 ident: b78 article-title: Development and validation of a fully predictive high-fidelity simulation approach for predicting coarse road dynamic tire/road rolling contact forces publication-title: J. Sound Vib. – volume: 3 start-page: 218 year: 2021 end-page: 229 ident: b44 article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators publication-title: Nat. Mach. Intell. – volume: 87 start-page: 1 year: 2021 end-page: 36 ident: b35 article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs publication-title: J. Sci. Comput. – volume: 428 year: 2021 ident: b68 article-title: Learning constitutive relations using symmetric positive definite neural networks publication-title: J. Comput. Phys. – volume: 1 start-page: 211 year: 1936 end-page: 218 ident: b74 article-title: The approximation of one matrix by another of lower rank publication-title: Psychometrika – volume: 92 start-page: 891 year: 2012 end-page: 916 ident: b12 article-title: Nonlinear model order reduction based on local reduced-order bases publication-title: Internat. J. Numer. Methods Engrg. – volume: 338 start-page: 186 year: 2018 end-page: 207 ident: b32 article-title: A parametric and non-intrusive reduced order model of car crash simulation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 381 year: 2021 ident: b47 article-title: Unsupervised discovery of interpretable hyperelastic constitutive laws publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 371 year: 2020 ident: b63 article-title: Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 86 start-page: 155 issue: 2 year: 2011 ident: 10.1016/j.cma.2024.117532_b15 article-title: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.3050 – year: 2016 ident: 10.1016/j.cma.2024.117532_b6 – volume: 398 year: 2022 ident: 10.1016/j.cma.2024.117532_b60 article-title: Multiscale modeling of inelastic materials with thermodynamics-based artificial neural networks (TANN) publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115190 – volume: 2 start-page: 1 year: 2020 ident: 10.1016/j.cma.2024.117532_b3 article-title: Basic ideas and tools for projection-based model reduction of parametric partial differential equations publication-title: Model Order Reduct. – volume: 87 start-page: 1 year: 2021 ident: 10.1016/j.cma.2024.117532_b35 article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01462-7 – volume: 64 start-page: 365 year: 2019 ident: 10.1016/j.cma.2024.117532_b49 article-title: Derivation of heterogeneous material laws via data-driven principal component expansions publication-title: Comput. Mech. doi: 10.1007/s00466-019-01728-w – volume: 2 start-page: 181 year: 2020 ident: 10.1016/j.cma.2024.117532_b16 article-title: Computational bottlenecks for PROMs: precomputation and hyperreduction publication-title: Model Order Reduct. – volume: 398 year: 2022 ident: 10.1016/j.cma.2024.117532_b72 article-title: Data-driven tissue mechanics with polyconvex neural ordinary differential equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115248 – volume: 412 year: 2020 ident: 10.1016/j.cma.2024.117532_b23 article-title: Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning publication-title: Physica D doi: 10.1016/j.physd.2020.132614 – volume: 381 year: 2021 ident: 10.1016/j.cma.2024.117532_b47 article-title: Unsupervised discovery of interpretable hyperelastic constitutive laws publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113852 – volume: 45 start-page: 561 issue: 3 year: 1987 ident: 10.1016/j.cma.2024.117532_b8 article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures publication-title: Q. Appl. Math. doi: 10.1090/qam/910462 – volume: 3 start-page: 422 issue: 6 year: 2021 ident: 10.1016/j.cma.2024.117532_b56 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 38 start-page: 4167 issue: 5 year: 2022 ident: 10.1016/j.cma.2024.117532_b54 article-title: Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue publication-title: Eng. Comput. doi: 10.1007/s00366-022-01733-3 – volume: 372 year: 2020 ident: 10.1016/j.cma.2024.117532_b65 article-title: A generic physics-informed neural network-based constitutive model for soft biological tissues publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113402 – volume: 6 start-page: 861 issue: 6 year: 1993 ident: 10.1016/j.cma.2024.117532_b50 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80131-5 – volume: 345 start-page: 75 year: 2019 ident: 10.1016/j.cma.2024.117532_b34 article-title: Data-driven reduced order modeling for time-dependent problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.10.029 – volume: 4 start-page: 251 issue: 2 year: 1991 ident: 10.1016/j.cma.2024.117532_b51 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90009-T – volume: 122 start-page: 4774 issue: 17 year: 2021 ident: 10.1016/j.cma.2024.117532_b37 article-title: A nonintrusive nonlinear model reduction method for structural dynamical problems based on machine learning publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6712 – ident: 10.1016/j.cma.2024.117532_b28 – volume: 372 year: 2020 ident: 10.1016/j.cma.2024.117532_b25 article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113433 – volume: 179 year: 2023 ident: 10.1016/j.cma.2024.117532_b62 article-title: Neural networks meet hyperelasticity: A guide to enforcing physics publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2023.105363 – year: 2015 ident: 10.1016/j.cma.2024.117532_b52 article-title: A fabric material model with stress map functionality in LS-DYNA – year: 2019 ident: 10.1016/j.cma.2024.117532_b55 – volume: Vol. 55973 year: 2013 ident: 10.1016/j.cma.2024.117532_b20 article-title: A modified discrete empirical interpolation method for reducing non-linear structural finite element models – ident: 10.1016/j.cma.2024.117532_b80 – year: 2015 ident: 10.1016/j.cma.2024.117532_b11 – volume: vol. 3 start-page: 379 year: 2020 ident: 10.1016/j.cma.2024.117532_b1 article-title: 12 Model order reduction and digital twins – volume: 159 year: 2022 ident: 10.1016/j.cma.2024.117532_b69 article-title: Polyconvex anisotropic hyperelasticity with neural networks publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104703 – volume: 1 start-page: 211 issue: 3 year: 1936 ident: 10.1016/j.cma.2024.117532_b74 article-title: The approximation of one matrix by another of lower rank publication-title: Psychometrika doi: 10.1007/BF02288367 – volume: 92 start-page: 891 issue: 10 year: 2012 ident: 10.1016/j.cma.2024.117532_b12 article-title: Nonlinear model order reduction based on local reduced-order bases publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4371 – year: 2020 ident: 10.1016/j.cma.2024.117532_b13 – year: 2020 ident: 10.1016/j.cma.2024.117532_b26 – volume: 68 start-page: 1179 year: 2021 ident: 10.1016/j.cma.2024.117532_b64 article-title: Constrained neural network training and its application to hyperelastic material modeling publication-title: Comput. Mech. doi: 10.1007/s00466-021-02064-8 – volume: 179 start-page: 704 year: 2019 ident: 10.1016/j.cma.2024.117532_b40 article-title: Projection-based model reduction: Formulations for physics-based machine learning publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2018.07.021 – volume: 53 start-page: 2237 issue: 10 year: 2008 ident: 10.1016/j.cma.2024.117532_b21 article-title: Missing point estimation in models described by proper orthogonal decomposition publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2006102 – volume: 306 start-page: 196 year: 2016 ident: 10.1016/j.cma.2024.117532_b24 article-title: Data-driven operator inference for nonintrusive projection-based model reduction publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.03.025 – volume: 32 start-page: 2737 issue: 5 year: 2010 ident: 10.1016/j.cma.2024.117532_b19 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM J. Sci. Comput. doi: 10.1137/090766498 – year: 2015 ident: 10.1016/j.cma.2024.117532_b5 – volume: 363 start-page: 55 year: 2018 ident: 10.1016/j.cma.2024.117532_b29 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.02.037 – volume: 123 start-page: 2738 issue: 12 year: 2022 ident: 10.1016/j.cma.2024.117532_b57 article-title: A mechanics-informed artificial neural network approach in data-driven constitutive modeling publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6957 – volume: 93 start-page: 57 issue: 2 year: 2022 ident: 10.1016/j.cma.2024.117532_b42 article-title: Deep-HyROMnet: A deep learning-based operator approximation for hyper-reduction of nonlinear parametrized PDEs publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-02001-8 – volume: 63 start-page: 337 year: 1976 ident: 10.1016/j.cma.2024.117532_b66 article-title: Convexity conditions and existence theorems in nonlinear elasticity publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00279992 – volume: Vol. 1 start-page: 187 year: 1977 ident: 10.1016/j.cma.2024.117532_b67 article-title: Constitutive inequalities and existence theorems in nonlinear elastostatics – volume: 14 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.cma.2024.117532_b79 article-title: A new 3-D finite element model for cord-reinforced rubber composites—application to analysis of automobile tires publication-title: Finite Elem. Anal. Des. doi: 10.1016/0168-874X(93)90075-2 – volume: 125 year: 2022 ident: 10.1016/j.cma.2024.117532_b70 article-title: Polyconvex neural networks for hyperelastic constitutive models: A rectification approach publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2022.103993 – volume: 196 start-page: 668 issue: 6 year: 2022 ident: 10.1016/j.cma.2024.117532_b38 article-title: Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics publication-title: Nucl. Sci. Eng. doi: 10.1080/00295639.2021.2014752 – volume: 403 year: 2023 ident: 10.1016/j.cma.2024.117532_b71 article-title: A new family of constitutive artificial neural networks towards automated model discovery publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115731 – volume: 7 start-page: 121 year: 2021 ident: 10.1016/j.cma.2024.117532_b41 article-title: Model reduction and neural networks for parametric PDEs publication-title: SMAI J. Comput. Math. doi: 10.5802/smai-jcm.74 – volume: 428 year: 2021 ident: 10.1016/j.cma.2024.117532_b68 article-title: Learning constitutive relations using symmetric positive definite neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110072 – volume: 452 start-page: 147 year: 2019 ident: 10.1016/j.cma.2024.117532_b78 article-title: Development and validation of a fully predictive high-fidelity simulation approach for predicting coarse road dynamic tire/road rolling contact forces publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.04.011 – volume: 341 start-page: 807 year: 2018 ident: 10.1016/j.cma.2024.117532_b33 article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.07.017 – volume: 102 start-page: 1077 issue: 5 year: 2015 ident: 10.1016/j.cma.2024.117532_b22 article-title: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4820 – volume: 6 start-page: 911 issue: 4 year: 1995 ident: 10.1016/j.cma.2024.117532_b46 article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.392253 – start-page: 167 year: 2018 ident: 10.1016/j.cma.2024.117532_b2 article-title: Model order reduction a key technology for digital twins – year: 2023 ident: 10.1016/j.cma.2024.117532_b77 – volume: 3 start-page: 218 issue: 3 year: 2021 ident: 10.1016/j.cma.2024.117532_b44 article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00302-5 – volume: 7 start-page: eabi8605 issue: 40 year: 2021 ident: 10.1016/j.cma.2024.117532_b45 article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets publication-title: Sci. Adv. doi: 10.1126/sciadv.abi8605 – volume: 65 start-page: 190 issue: 7 year: 2022 ident: 10.1016/j.cma.2024.117532_b39 article-title: Data-driven models for crashworthiness optimisation: intrusive and non-intrusive model order reduction techniques publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03282-1 – volume: 104 start-page: 1061 issue: 12 year: 2015 ident: 10.1016/j.cma.2024.117532_b48 article-title: Computational homogenization of nonlinear elastic materials using neural networks publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4953 – volume: 57 start-page: 483 issue: 4 year: 2015 ident: 10.1016/j.cma.2024.117532_b17 article-title: A survey of projection-based model reduction methods for parametric dynamical systems publication-title: SIAM Rev. doi: 10.1137/130932715 – volume: 377 year: 2021 ident: 10.1016/j.cma.2024.117532_b75 article-title: Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113695 – volume: 338 start-page: 186 year: 2018 ident: 10.1016/j.cma.2024.117532_b32 article-title: A parametric and non-intrusive reduced order model of car crash simulation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.03.005 – volume: 339 start-page: 667 issue: 9 year: 2004 ident: 10.1016/j.cma.2024.117532_b18 article-title: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations publication-title: C. R. Math. doi: 10.1016/j.crma.2004.08.006 – year: 2023 ident: 10.1016/j.cma.2024.117532_b61 – volume: 71 start-page: 827 issue: 5 year: 2023 ident: 10.1016/j.cma.2024.117532_b59 article-title: FE ANN: an efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining publication-title: Comput. Mech. doi: 10.1007/s00466-022-02260-0 – ident: 10.1016/j.cma.2024.117532_b30 doi: 10.2514/6.2003-4213 – volume: 404 year: 2020 ident: 10.1016/j.cma.2024.117532_b14 article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108973 – volume: 400 year: 2022 ident: 10.1016/j.cma.2024.117532_b58 article-title: Finite electro-elasticity with physics-augmented neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115501 – year: 2006 ident: 10.1016/j.cma.2024.117532_b76 – volume: 9 start-page: 171 issue: 1 year: 2018 ident: 10.1016/j.cma.2024.117532_b31 article-title: Reduced-order models for aerodynamic applications, loads and MDO publication-title: CEAS Aeronaut. J. doi: 10.1007/s13272-018-0283-6 – volume: 233 start-page: 5896 issue: 16 year: 2019 ident: 10.1016/j.cma.2024.117532_b27 article-title: Non-intrusive reduced-order modeling for fluid problems: A brief review publication-title: Proc. Inst. Mech. Eng. G doi: 10.1177/0954410019890721 – start-page: 3707 year: 2019 ident: 10.1016/j.cma.2024.117532_b43 article-title: Transform & learn: A data-driven approach to nonlinear model reduction – volume: 5 start-page: 741 issue: 6 year: 2021 ident: 10.1016/j.cma.2024.117532_b53 article-title: On interpretability of artificial neural networks: A survey publication-title: IEEE Trans. Radiat. Plasma Med. Sci. doi: 10.1109/TRPMS.2021.3066428 – volume: 26 start-page: 17 issue: 1 year: 1981 ident: 10.1016/j.cma.2024.117532_b9 article-title: Principal component analysis in linear systems: Controllability, observability, and model reduction publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1981.1102568 – year: 2012 ident: 10.1016/j.cma.2024.117532_b7 – year: 2012 ident: 10.1016/j.cma.2024.117532_b4 – volume: 371 year: 2020 ident: 10.1016/j.cma.2024.117532_b63 article-title: Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113299 – volume: 6 start-page: 1313 issue: 7 year: 1968 ident: 10.1016/j.cma.2024.117532_b10 article-title: Coupling of substructures for dynamic analyses publication-title: AIAA J. doi: 10.2514/3.4741 – start-page: 146 year: 2017 ident: 10.1016/j.cma.2024.117532_b73 article-title: Input convex neural networks – volume: 388 year: 2022 ident: 10.1016/j.cma.2024.117532_b36 article-title: POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114181 |
| SSID | ssj0000812 |
| Score | 2.4752133 |
| Snippet | Model Order Reduction (MOR) is a core technology for the creation of comprehensive executable Digital Twins, since it efficiently reduces the computational... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 117532 |
| SubjectTerms | Hyper-reduction Model order reduction Non-intrusive Physics-augmented neural network Scientific machine learning |
| Title | Non-intrusive parametric hyper-reduction for nonlinear structural finite element formulations |
| URI | https://dx.doi.org/10.1016/j.cma.2024.117532 |
| Volume | 434 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0045-7825 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0045-7825 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0045-7825 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0045-7825 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0045-7825 databaseCode: AKRWK dateStart: 19720601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvTgoyrWR8nBk5B2d5Ps41iKpSr2ZKEXWfJaXKG1tD37253Z7GIFvXhdEghfdme-2Xz5hpBbE0dOS4OSxihmIgsCprkzLHUydNj0KCjwP-TzNJ7MxONczltk1NyFQVllHft9TK-idf1kUKM5WJUl3vEV6MUuUQWZpFUcFiLBLgb9z2-ZB6Q87xguJMPRzclmpfEylfVQJPqVYWX0e27ayTfjY3JYE0U69Gs5IS237JCjmjTS-pPcdMjBjqPgKXmdfixZucSbFBDGKBp7L7BnlqFvUHCu2RqdWnEvKJBVuvQ-GWpNvY0sWnDQokQaSp3XleO4Rd3ia3NGZuP7l9GE1R0UmIGyasusM8oq4RIFtEJLncbOOJ3xQmRWuFhxK62WkPELl0Gp6oBvpFATG2W4THTM-Tlpw1LcBaEqsVGAh3pGWxFmKnXcArlUlqdahkXYJXcNdvnKG2XkjYLsPQegcwQ690B3iWjQzX_sdg6B_O9pl_-bdkX2I-zaW2mtr0kbEHU3QCW2ule9Kz2yN3x4mky_ANbXyfs |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lLtSFj6pYn1m4EtLOI5nHUoqlattVC91IyGuwQsfSdu23mzvJYAXduB0SCCcz9547OTkXoTuVREYyBZLGKCE0DwIiY6NIZlhooOlRUMB_yNE4GUzp84zNGqhX34UBWaWP_S6mV9HaP-l6NLvL-Rzu-FLwYmeggkwziMM7lEUpVGCdz2-dh815zjKcMgLD66PNSuSlKu-hiHYqx8ro9-S0lXD6R-jAM0X84BZzjBqmbKFDzxqx_ybXLbS_ZSl4gl7HHyWZl3CVwsYxDM7eC2iapfCbrThXZAVWrbAZ2LJVXDqjDLHCzkcWPDhwMQceio0TlsO4he_xtT5F0_7jpDcgvoUCUbau2hBtlNCCmlRYXiGZzBKjjMzjguaamkTEmmnJbMovTG5rVWMJR2aLYiVUzFKZxPEZatqlmHOERaqjAE71lNQ0zEVmYm3ZpdBxJllYhG10X2PHl84pg9cSsndugeYANHdAtxGt0eU_tpvbSP73tIv_TbtFu4PJaMiHT-OXS7QXQQvfSnh9hZoWXXNtecVG3lTvzRe4JsuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+parametric+hyper-reduction+for+nonlinear+structural+finite+element+formulations&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Fleres%2C+Davide&rft.au=De+Gregoriis%2C+Daniel&rft.au=Atak%2C+Onur&rft.au=Naets%2C+Frank&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.volume=434&rft_id=info:doi/10.1016%2Fj.cma.2024.117532&rft.externalDocID=S0045782524007862 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |