CVRSF-Net: Image Emotion Recognition by Combining Visual Relationship Features and Scene Features

Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent years with the proliferation of social media. As human emotion is a highly complex and abstract cognitive process, simply extracting local or...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computational intelligence Vol. 9; no. 3; pp. 2321 - 2333
Main Authors Luo, Yutong, Zhong, Xinyue, Xie, Jialan, Liu, Guangyuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2471-285X
2471-285X
DOI10.1109/TETCI.2025.3543300

Cover

Abstract Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent years with the proliferation of social media. As human emotion is a highly complex and abstract cognitive process, simply extracting local or global features from an image is not sufficient for recognizing the emotion of an image. The psychologist Moshe proposed that visual objects are usually embedded in a scene with other related objects during human visual comprehension of images. Therefore, we propose a two-branch emotion-recognition network known as the combined visual relationship feature and scene feature network (CVRSF-Net). In the scene feature-extraction branch, a pretrained CLIP model is adopted to extract the visual features of images, with a feature channel weighting module to extract the scene features. In the visual relationship feature-extraction branch, a visual relationship detection model is used to extract the visual relationships in the images, and a semantic fusion module fuses the scenes and visual relationship features. Furthermore, we spatially weight the visual relationship features using class activation maps. Finally, the implicit relationships between different visual relationship features are obtained using a graph attention network, and a two-branch network loss function is designed to train the model. The experimental results showed that the recognition rates of the proposed network were 79.80%, 69.81%, and 36.72% for the FI-8, Emotion-6, and WEBEmo datasets, respectively. The proposed algorithm achieves state-of-the-art results compared to existing methods.
AbstractList Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent years with the proliferation of social media. As human emotion is a highly complex and abstract cognitive process, simply extracting local or global features from an image is not sufficient for recognizing the emotion of an image. The psychologist Moshe proposed that visual objects are usually embedded in a scene with other related objects during human visual comprehension of images. Therefore, we propose a two-branch emotion-recognition network known as the combined visual relationship feature and scene feature network (CVRSF-Net). In the scene feature-extraction branch, a pretrained CLIP model is adopted to extract the visual features of images, with a feature channel weighting module to extract the scene features. In the visual relationship feature-extraction branch, a visual relationship detection model is used to extract the visual relationships in the images, and a semantic fusion module fuses the scenes and visual relationship features. Furthermore, we spatially weight the visual relationship features using class activation maps. Finally, the implicit relationships between different visual relationship features are obtained using a graph attention network, and a two-branch network loss function is designed to train the model. The experimental results showed that the recognition rates of the proposed network were 79.80%, 69.81%, and 36.72% for the FI-8, Emotion-6, and WEBEmo datasets, respectively. The proposed algorithm achieves state-of-the-art results compared to existing methods.
Author Luo, Yutong
Liu, Guangyuan
Xie, Jialan
Zhong, Xinyue
Author_xml – sequence: 1
  givenname: Yutong
  orcidid: 0000-0002-9975-1853
  surname: Luo
  fullname: Luo, Yutong
  email: lyt252012778@email.swu.edu.cn
  organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China
– sequence: 2
  givenname: Xinyue
  surname: Zhong
  fullname: Zhong, Xinyue
  email: xzhong3@utas.edu.au
  organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China
– sequence: 3
  givenname: Jialan
  orcidid: 0000-0002-8068-2077
  surname: Xie
  fullname: Xie, Jialan
  email: jialanxie@email.swu.edu.cn
  organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China
– sequence: 4
  givenname: Guangyuan
  orcidid: 0000-0002-8058-5947
  surname: Liu
  fullname: Liu, Guangyuan
  email: liugy@swu.edu.cn
  organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China
BookMark eNpNUMtOwzAQtFCRKKU_gDhE4pziVx7mhqIWKiGQ2lJxsxxnW1w1domTQ_8e9yHU0652ZnZn5xb1rLOA0D3BI0KweFqMF8V0RDFNRizhjGF8hfqUZySmefLdu-hv0ND7DcaYioQEbh-pYjmbT-IPaJ-jaa3WEI1r1xpnoxlot7bm2Jf7qHB1aayx62hpfKe2Ad-qA-h_zC6agGq7BnykbBXNNVj4H92h65Xaehie6wB9TYLht_j983VavLzHmnLRxprlTGRVlmYJB0oTrkRJVpWogtNUlCmnuiw5TzhRuoJMZwyzFBStsCYac8oG6PG0d9e43w58Kzeua2w4KRkl4XtGEhFY9MTSjfO-gZXcNaZWzV4SLA9pymOa8pCmPKcZRA8nkQGAC4EgeY45-wOAUHGz
CODEN ITETCU
Cites_doi 10.1145/2393347.2393384
10.1609/aaai.v32i1.11275
10.1177/0963721411422522
10.1007/978-3-642-24800-9_38
10.1109/WACV.2017.81
10.1109/TAFFC.2023.3331776
10.1007/s11063-019-10033-9
10.1109/ICIP.2016.7532434
10.1609/aaai.v33i01.33019185
10.1109/tcsvt.2021.3098712
10.24963/ijcai.2024/354
10.3758/bf03194073
10.1007/978-3-030-81465-6_4
10.1109/CVPR.2016.319
10.1145/3581783.3612186
10.1145/2733373.2806250
10.1109/CVPR.2017.331
10.1146/annurev-psych-020821-010855
10.1145/3136755.3143014
10.24963/ijcai.2017/503
10.1109/tmm.2022.3144804
10.1037/0033-295x.97.3.377
10.1109/tip.2021.3106813
10.1007/s00521-022-07139-y
10.24963/ijcai.2018/132
10.1177/1754073909103595
10.1145/3136755.3143007
10.1109/CVPR.2015.7298713
10.1016/j.neucom.2019.11.118
10.1007/s11760-024-03074-8
10.1109/ICSMC.2004.1401407
10.1038/nrn1476
10.1109/CVPR52688.2022.00520
10.1145/2733373.2806246
10.1109/tmm.2015.2491019
10.1109/taffc.2018.2818685
10.1145/3136755.3143017
10.1109/TMM.2022.3217414
10.1109/tip.2021.3118983
10.1109/ICIP.2008.4711705
10.1109/tmm.2020.3007352
10.1111/j.1469-8986.2008.00702.x
10.3758/bf03192732
10.1007/s11042-020-10480-w
10.1109/CVPR.2012.6247998
10.1109/CVPR.2015.7298687
10.1109/CVPR.2017.330
10.1016/j.jvcir.2023.103968
10.1109/tcyb.2020.2983860
10.1109/mis.2024.3441408
10.1007/978-3-319-46448-0_51
10.5555/3298023.3298188
10.1609/aaai.v29i1.9179
10.1145/2502069.2502079
10.1109/ICIP40778.2020.9191258
10.1016/j.neucom.2018.12.053
10.1080/02699939208411068
10.1109/ICIP42928.2021.9506701
10.1109/ICCV48922.2021.00061
10.1109/ICCV48922.2021.00009
10.1109/tpami.2021.3094362
10.1109/tmm.2019.2939744
10.1007/s11042-023-16081-7
10.1145/2647868.2654930
10.1007/s11042-018-6445-z
10.1109/ICSMC.2006.384667
10.1109/tmm.2018.2803520
10.1145/2502081.2502282
10.1109/tcsvt.2021.3080920
10.1109/ICCV48922.2021.00042
10.1145/1873951.1873965
10.1109/tcds.2021.3079278
10.1109/CVPR.2018.00718
10.1109/ICCV.2017.121
10.1007/s00530-022-00935-5
10.24963/ijcai.2017/456
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2025.3543300
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore digital library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 2471-285X
EndPage 2333
ExternalDocumentID 10_1109_TETCI_2025_3543300
10918804
Genre orig-research
GrantInformation_xml – fundername: Chongqing Social Science Planning Doctoral and Cultivation
  grantid: 2024BS052
– fundername: National Natural Science Foundation of China
  grantid: 61872301; 61472330
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c249t-c38397d76754e2254a9b1fd9d95169b642cbb44541acde7c73036ea2d0c1c0423
IEDL.DBID RIE
ISSN 2471-285X
IngestDate Sat Sep 27 05:40:49 EDT 2025
Wed Oct 01 05:56:20 EDT 2025
Wed Aug 27 01:50:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-c38397d76754e2254a9b1fd9d95169b642cbb44541acde7c73036ea2d0c1c0423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8068-2077
0000-0002-9975-1853
0000-0002-8058-5947
PQID 3212853159
PQPubID 4437216
PageCount 13
ParticipantIDs proquest_journals_3212853159
crossref_primary_10_1109_TETCI_2025_3543300
ieee_primary_10918804
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
Vaswani (ref58) 2017
ref17
Radford (ref59)
ref16
ref19
ref18
Chen (ref65) 2014
Mehrabian (ref28) 1974
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
Parrott (ref77) 2001
ref39
ref38
Chen (ref40) 2014
ref71
ref70
ref73
ref72
ref24
Frijda (ref29) 1986
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref27
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.1145/2393347.2393384
– year: 2014
  ident: ref65
  article-title: Deepsentibank: Visual sentiment concept classification with deep convolutional neural networks
– ident: ref23
  doi: 10.1609/aaai.v32i1.11275
– ident: ref44
  doi: 10.1177/0963721411422522
– ident: ref13
  doi: 10.1007/978-3-642-24800-9_38
– ident: ref39
  doi: 10.1109/WACV.2017.81
– ident: ref74
  doi: 10.1109/TAFFC.2023.3331776
– ident: ref68
  doi: 10.1007/s11063-019-10033-9
– ident: ref21
  doi: 10.1109/ICIP.2016.7532434
– ident: ref60
  doi: 10.1609/aaai.v33i01.33019185
– ident: ref50
  doi: 10.1109/tcsvt.2021.3098712
– ident: ref66
  doi: 10.24963/ijcai.2024/354
– ident: ref31
  doi: 10.3758/bf03194073
– ident: ref10
  doi: 10.1007/978-3-030-81465-6_4
– ident: ref62
  doi: 10.1109/CVPR.2016.319
– ident: ref75
  doi: 10.1145/3581783.3612186
– ident: ref15
  doi: 10.1145/2733373.2806250
– ident: ref56
  doi: 10.1109/CVPR.2017.331
– ident: ref1
  doi: 10.1146/annurev-psych-020821-010855
– ident: ref45
  doi: 10.1145/3136755.3143014
– volume-title: An Approach to Environmental Psychology
  year: 1974
  ident: ref28
– ident: ref22
  doi: 10.24963/ijcai.2017/503
– ident: ref43
  doi: 10.1109/tmm.2022.3144804
– ident: ref3
  doi: 10.1037/0033-295x.97.3.377
– ident: ref41
  doi: 10.1109/tip.2021.3106813
– ident: ref76
  doi: 10.1007/s00521-022-07139-y
– ident: ref54
  doi: 10.24963/ijcai.2018/132
– ident: ref30
  doi: 10.1177/1754073909103595
– ident: ref47
  doi: 10.1145/3136755.3143007
– ident: ref55
  doi: 10.1109/CVPR.2015.7298713
– start-page: 8748
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref59
  article-title: Learning transferable visual models from natural language supervision
– ident: ref19
  doi: 10.1016/j.neucom.2019.11.118
– ident: ref72
  doi: 10.1007/s11760-024-03074-8
– ident: ref11
  doi: 10.1109/ICSMC.2004.1401407
– ident: ref33
  doi: 10.1038/nrn1476
– ident: ref83
  doi: 10.1109/CVPR52688.2022.00520
– ident: ref38
  doi: 10.1145/2733373.2806246
– ident: ref9
  doi: 10.1109/tmm.2015.2491019
– ident: ref25
  doi: 10.1109/taffc.2018.2818685
– ident: ref46
  doi: 10.1145/3136755.3143017
– ident: ref71
  doi: 10.1109/TMM.2022.3217414
– ident: ref42
  doi: 10.1109/tip.2021.3118983
– ident: ref6
  doi: 10.1109/ICIP.2008.4711705
– ident: ref61
  doi: 10.1109/tmm.2020.3007352
– ident: ref2
  doi: 10.1111/j.1469-8986.2008.00702.x
– ident: ref63
  doi: 10.3758/bf03192732
– ident: ref8
  doi: 10.1007/s11042-020-10480-w
– ident: ref35
  doi: 10.1109/CVPR.2012.6247998
– ident: ref34
  doi: 10.1109/CVPR.2015.7298687
– ident: ref53
  doi: 10.1109/CVPR.2017.330
– ident: ref73
  doi: 10.1016/j.jvcir.2023.103968
– ident: ref18
  doi: 10.1109/tcyb.2020.2983860
– ident: ref67
  doi: 10.1109/mis.2024.3441408
– ident: ref32
  doi: 10.1007/978-3-319-46448-0_51
– ident: ref78
  doi: 10.5555/3298023.3298188
– ident: ref20
  doi: 10.1609/aaai.v29i1.9179
– ident: ref36
  doi: 10.1145/2502069.2502079
– ident: ref80
  doi: 10.1109/ICIP40778.2020.9191258
– ident: ref49
  doi: 10.1016/j.neucom.2018.12.053
– ident: ref64
  doi: 10.1080/02699939208411068
– ident: ref81
  doi: 10.1109/ICIP42928.2021.9506701
– ident: ref82
  doi: 10.1109/ICCV48922.2021.00061
– ident: ref27
  doi: 10.1109/ICCV48922.2021.00009
– ident: ref17
  doi: 10.1109/tpami.2021.3094362
– volume-title: The Emotions
  year: 1986
  ident: ref29
– ident: ref48
  doi: 10.1109/tmm.2019.2939744
– ident: ref70
  doi: 10.1007/s11042-023-16081-7
– ident: ref16
  doi: 10.1145/2647868.2654930
– ident: ref7
  doi: 10.1007/s11042-018-6445-z
– ident: ref5
  doi: 10.1109/ICSMC.2006.384667
– ident: ref24
  doi: 10.1109/tmm.2018.2803520
– ident: ref37
  doi: 10.1145/2502081.2502282
– ident: ref4
  doi: 10.1109/tcsvt.2021.3080920
– ident: ref26
  doi: 10.1109/ICCV48922.2021.00042
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref58
  article-title: Attention is all you need
– volume-title: Emotions in Social Psychology: Essential Readings
  year: 2001
  ident: ref77
– ident: ref12
  doi: 10.1145/1873951.1873965
– ident: ref51
  doi: 10.1109/tcds.2021.3079278
– ident: ref52
  doi: 10.1109/CVPR.2018.00718
– ident: ref57
  doi: 10.1109/ICCV.2017.121
– year: 2014
  ident: ref40
  article-title: Deepsentibank: Visual sentiment concept classification with deep convolutional neural networks
– ident: ref69
  doi: 10.1007/s00530-022-00935-5
– ident: ref79
  doi: 10.24963/ijcai.2017/456
SSID ssj0002951354
Score 2.302726
Snippet Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2321
SubjectTerms Accuracy
Algorithms
Computational modeling
Deep learning
Emotion recognition
Emotional factors
Emotions
Feature extraction
graph attention network
Image emotion recognition
Modules
Psychology
Recurrent neural networks
scene feature
Semantics
Social networking (online)
visual relationship feature
Visualization
Title CVRSF-Net: Image Emotion Recognition by Combining Visual Relationship Features and Scene Features
URI https://ieeexplore.ieee.org/document/10918804
https://www.proquest.com/docview/3212853159
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVoT72wFlEoyAduKGkWp0m4oaoVRaKHbuotiu2JqBBpRZND-XrGziIWIXGzsljWzHhmnj0LIbdewBn4CTOkLbnBuLQNHvt9Q3V_E06SgNStE54n_ccFe1p5qzJZXefCAIAOPgNTDfVdvtyIXB2V9VQRS5Q31iANP-gXyVr1gYqDvoLrsSoxxgp78-F8MEYI6HgmvkDgbn0zPrqbyi8VrO3K6IhMqhUV4SSvZp5xU3z8KNb47yUfk8PSw6QPhUickANIT0mrVnT7MxIPltPZyJhAdk_Hb6hQ6LBo5kOnVTgRjvmeorLguoEEXa53OU5ah869rLdUeY85onUap5LOBCrN-lGbLEZIlkejbLVgCMRfmSEQqIa-VJVdGOAWZ3HI7USGMlT3aBxBiuCcMY_ZsZDgC19ZPogdaQlbqNCac9JMNylcECoDQFjDEwE2Z66IObjckyKwcb9L1ws65K7iQbQtKmpEGolYYaQ5FimORSXHOqStiPrly4KeHdKt-BaVu24XuWiH0f1AD-3yj9-uSEvNXsR6dUkze8_hGr2KjN9oafoECuLKgg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHuTiEyOKugdvpkDbLW29GSIBBQ68wq3pPhqJEYi0B_z1zm4f8RETb5s-NzOzM_PtzgPg1vEYlW5EDWEKZlAmTIOFbstQ3d-4FUVS6NYJg2GrO6VPc2eeJavrXBgppQ4-k3U11Gf5YsUTtVXWUEUsUd7oLuw5lFInTdcqtlQs9BZsh-apMU2_MXmctHsIAi2njjcQuje_mR_dT-WXEtaWpXMIw3xOaUDJaz2JWZ1__CjX-O9JH8FB5mOSh1QojmFHLk-gXKi67SmE7dlo3DGGMr4nvTdUKeQxbedDRnlAEY7ZlqC6YLqFBJktNgl-tAiee1msifIfE8TrJFwKMuaoNotLFZh2kCxdI2u2YHBEYLHBEar6rlC1XajERU5Dn5mR8IWvTtIYwhTOGNKcmiEX0uWusn0ytESTm1wF15xBablaynMgwpMIbFjEpcmozUMmbeYI7pm44oXteFW4y3kQrNOaGoHGIk0_0BwLFMeCjGNVqCiifnkypWcVajnfgmzdbQIbLTE6IOijXfzx2g3sdyeDftDvDZ8voaz-lEZ-1aAUvyfyCn2MmF1ryfoE0MfNzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVRSF-Net%3A+Image+Emotion+Recognition+by+Combining+Visual+Relationship+Features+and+Scene+Features&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Luo%2C+Yutong&rft.au=Zhong%2C+Xinyue&rft.au=Xie%2C+Jialan&rft.au=Liu%2C+Guangyuan&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=9&rft.issue=5&rft.spage=2321&rft.epage=2333&rft_id=info:doi/10.1109%2FTETCI.2025.3543300&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon