CVRSF-Net: Image Emotion Recognition by Combining Visual Relationship Features and Scene Features
Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent years with the proliferation of social media. As human emotion is a highly complex and abstract cognitive process, simply extracting local or...
Saved in:
| Published in | IEEE transactions on emerging topics in computational intelligence Vol. 9; no. 3; pp. 2321 - 2333 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2471-285X 2471-285X |
| DOI | 10.1109/TETCI.2025.3543300 |
Cover
| Abstract | Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent years with the proliferation of social media. As human emotion is a highly complex and abstract cognitive process, simply extracting local or global features from an image is not sufficient for recognizing the emotion of an image. The psychologist Moshe proposed that visual objects are usually embedded in a scene with other related objects during human visual comprehension of images. Therefore, we propose a two-branch emotion-recognition network known as the combined visual relationship feature and scene feature network (CVRSF-Net). In the scene feature-extraction branch, a pretrained CLIP model is adopted to extract the visual features of images, with a feature channel weighting module to extract the scene features. In the visual relationship feature-extraction branch, a visual relationship detection model is used to extract the visual relationships in the images, and a semantic fusion module fuses the scenes and visual relationship features. Furthermore, we spatially weight the visual relationship features using class activation maps. Finally, the implicit relationships between different visual relationship features are obtained using a graph attention network, and a two-branch network loss function is designed to train the model. The experimental results showed that the recognition rates of the proposed network were 79.80%, 69.81%, and 36.72% for the FI-8, Emotion-6, and WEBEmo datasets, respectively. The proposed algorithm achieves state-of-the-art results compared to existing methods. |
|---|---|
| AbstractList | Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent years with the proliferation of social media. As human emotion is a highly complex and abstract cognitive process, simply extracting local or global features from an image is not sufficient for recognizing the emotion of an image. The psychologist Moshe proposed that visual objects are usually embedded in a scene with other related objects during human visual comprehension of images. Therefore, we propose a two-branch emotion-recognition network known as the combined visual relationship feature and scene feature network (CVRSF-Net). In the scene feature-extraction branch, a pretrained CLIP model is adopted to extract the visual features of images, with a feature channel weighting module to extract the scene features. In the visual relationship feature-extraction branch, a visual relationship detection model is used to extract the visual relationships in the images, and a semantic fusion module fuses the scenes and visual relationship features. Furthermore, we spatially weight the visual relationship features using class activation maps. Finally, the implicit relationships between different visual relationship features are obtained using a graph attention network, and a two-branch network loss function is designed to train the model. The experimental results showed that the recognition rates of the proposed network were 79.80%, 69.81%, and 36.72% for the FI-8, Emotion-6, and WEBEmo datasets, respectively. The proposed algorithm achieves state-of-the-art results compared to existing methods. |
| Author | Luo, Yutong Liu, Guangyuan Xie, Jialan Zhong, Xinyue |
| Author_xml | – sequence: 1 givenname: Yutong orcidid: 0000-0002-9975-1853 surname: Luo fullname: Luo, Yutong email: lyt252012778@email.swu.edu.cn organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China – sequence: 2 givenname: Xinyue surname: Zhong fullname: Zhong, Xinyue email: xzhong3@utas.edu.au organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China – sequence: 3 givenname: Jialan orcidid: 0000-0002-8068-2077 surname: Xie fullname: Xie, Jialan email: jialanxie@email.swu.edu.cn organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China – sequence: 4 givenname: Guangyuan orcidid: 0000-0002-8058-5947 surname: Liu fullname: Liu, Guangyuan email: liugy@swu.edu.cn organization: School of Electronic and Information Engineering, Southwest China University, Chongqing, China |
| BookMark | eNpNUMtOwzAQtFCRKKU_gDhE4pziVx7mhqIWKiGQ2lJxsxxnW1w1domTQ_8e9yHU0652ZnZn5xb1rLOA0D3BI0KweFqMF8V0RDFNRizhjGF8hfqUZySmefLdu-hv0ND7DcaYioQEbh-pYjmbT-IPaJ-jaa3WEI1r1xpnoxlot7bm2Jf7qHB1aayx62hpfKe2Ad-qA-h_zC6agGq7BnykbBXNNVj4H92h65Xaehie6wB9TYLht_j983VavLzHmnLRxprlTGRVlmYJB0oTrkRJVpWogtNUlCmnuiw5TzhRuoJMZwyzFBStsCYac8oG6PG0d9e43w58Kzeua2w4KRkl4XtGEhFY9MTSjfO-gZXcNaZWzV4SLA9pymOa8pCmPKcZRA8nkQGAC4EgeY45-wOAUHGz |
| CODEN | ITETCU |
| Cites_doi | 10.1145/2393347.2393384 10.1609/aaai.v32i1.11275 10.1177/0963721411422522 10.1007/978-3-642-24800-9_38 10.1109/WACV.2017.81 10.1109/TAFFC.2023.3331776 10.1007/s11063-019-10033-9 10.1109/ICIP.2016.7532434 10.1609/aaai.v33i01.33019185 10.1109/tcsvt.2021.3098712 10.24963/ijcai.2024/354 10.3758/bf03194073 10.1007/978-3-030-81465-6_4 10.1109/CVPR.2016.319 10.1145/3581783.3612186 10.1145/2733373.2806250 10.1109/CVPR.2017.331 10.1146/annurev-psych-020821-010855 10.1145/3136755.3143014 10.24963/ijcai.2017/503 10.1109/tmm.2022.3144804 10.1037/0033-295x.97.3.377 10.1109/tip.2021.3106813 10.1007/s00521-022-07139-y 10.24963/ijcai.2018/132 10.1177/1754073909103595 10.1145/3136755.3143007 10.1109/CVPR.2015.7298713 10.1016/j.neucom.2019.11.118 10.1007/s11760-024-03074-8 10.1109/ICSMC.2004.1401407 10.1038/nrn1476 10.1109/CVPR52688.2022.00520 10.1145/2733373.2806246 10.1109/tmm.2015.2491019 10.1109/taffc.2018.2818685 10.1145/3136755.3143017 10.1109/TMM.2022.3217414 10.1109/tip.2021.3118983 10.1109/ICIP.2008.4711705 10.1109/tmm.2020.3007352 10.1111/j.1469-8986.2008.00702.x 10.3758/bf03192732 10.1007/s11042-020-10480-w 10.1109/CVPR.2012.6247998 10.1109/CVPR.2015.7298687 10.1109/CVPR.2017.330 10.1016/j.jvcir.2023.103968 10.1109/tcyb.2020.2983860 10.1109/mis.2024.3441408 10.1007/978-3-319-46448-0_51 10.5555/3298023.3298188 10.1609/aaai.v29i1.9179 10.1145/2502069.2502079 10.1109/ICIP40778.2020.9191258 10.1016/j.neucom.2018.12.053 10.1080/02699939208411068 10.1109/ICIP42928.2021.9506701 10.1109/ICCV48922.2021.00061 10.1109/ICCV48922.2021.00009 10.1109/tpami.2021.3094362 10.1109/tmm.2019.2939744 10.1007/s11042-023-16081-7 10.1145/2647868.2654930 10.1007/s11042-018-6445-z 10.1109/ICSMC.2006.384667 10.1109/tmm.2018.2803520 10.1145/2502081.2502282 10.1109/tcsvt.2021.3080920 10.1109/ICCV48922.2021.00042 10.1145/1873951.1873965 10.1109/tcds.2021.3079278 10.1109/CVPR.2018.00718 10.1109/ICCV.2017.121 10.1007/s00530-022-00935-5 10.24963/ijcai.2017/456 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2025.3543300 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore digital library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 2471-285X |
| EndPage | 2333 |
| ExternalDocumentID | 10_1109_TETCI_2025_3543300 10918804 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Chongqing Social Science Planning Doctoral and Cultivation grantid: 2024BS052 – fundername: National Natural Science Foundation of China grantid: 61872301; 61472330 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c249t-c38397d76754e2254a9b1fd9d95169b642cbb44541acde7c73036ea2d0c1c0423 |
| IEDL.DBID | RIE |
| ISSN | 2471-285X |
| IngestDate | Sat Sep 27 05:40:49 EDT 2025 Wed Oct 01 05:56:20 EDT 2025 Wed Aug 27 01:50:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-c38397d76754e2254a9b1fd9d95169b642cbb44541acde7c73036ea2d0c1c0423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8068-2077 0000-0002-9975-1853 0000-0002-8058-5947 |
| PQID | 3212853159 |
| PQPubID | 4437216 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3212853159 crossref_primary_10_1109_TETCI_2025_3543300 ieee_primary_10918804 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 Vaswani (ref58) 2017 ref17 Radford (ref59) ref16 ref19 ref18 Chen (ref65) 2014 Mehrabian (ref28) 1974 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref2 ref1 Parrott (ref77) 2001 ref39 ref38 Chen (ref40) 2014 ref71 ref70 ref73 ref72 ref24 Frijda (ref29) 1986 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref27 ref60 ref62 ref61 |
| References_xml | – ident: ref14 doi: 10.1145/2393347.2393384 – year: 2014 ident: ref65 article-title: Deepsentibank: Visual sentiment concept classification with deep convolutional neural networks – ident: ref23 doi: 10.1609/aaai.v32i1.11275 – ident: ref44 doi: 10.1177/0963721411422522 – ident: ref13 doi: 10.1007/978-3-642-24800-9_38 – ident: ref39 doi: 10.1109/WACV.2017.81 – ident: ref74 doi: 10.1109/TAFFC.2023.3331776 – ident: ref68 doi: 10.1007/s11063-019-10033-9 – ident: ref21 doi: 10.1109/ICIP.2016.7532434 – ident: ref60 doi: 10.1609/aaai.v33i01.33019185 – ident: ref50 doi: 10.1109/tcsvt.2021.3098712 – ident: ref66 doi: 10.24963/ijcai.2024/354 – ident: ref31 doi: 10.3758/bf03194073 – ident: ref10 doi: 10.1007/978-3-030-81465-6_4 – ident: ref62 doi: 10.1109/CVPR.2016.319 – ident: ref75 doi: 10.1145/3581783.3612186 – ident: ref15 doi: 10.1145/2733373.2806250 – ident: ref56 doi: 10.1109/CVPR.2017.331 – ident: ref1 doi: 10.1146/annurev-psych-020821-010855 – ident: ref45 doi: 10.1145/3136755.3143014 – volume-title: An Approach to Environmental Psychology year: 1974 ident: ref28 – ident: ref22 doi: 10.24963/ijcai.2017/503 – ident: ref43 doi: 10.1109/tmm.2022.3144804 – ident: ref3 doi: 10.1037/0033-295x.97.3.377 – ident: ref41 doi: 10.1109/tip.2021.3106813 – ident: ref76 doi: 10.1007/s00521-022-07139-y – ident: ref54 doi: 10.24963/ijcai.2018/132 – ident: ref30 doi: 10.1177/1754073909103595 – ident: ref47 doi: 10.1145/3136755.3143007 – ident: ref55 doi: 10.1109/CVPR.2015.7298713 – start-page: 8748 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref59 article-title: Learning transferable visual models from natural language supervision – ident: ref19 doi: 10.1016/j.neucom.2019.11.118 – ident: ref72 doi: 10.1007/s11760-024-03074-8 – ident: ref11 doi: 10.1109/ICSMC.2004.1401407 – ident: ref33 doi: 10.1038/nrn1476 – ident: ref83 doi: 10.1109/CVPR52688.2022.00520 – ident: ref38 doi: 10.1145/2733373.2806246 – ident: ref9 doi: 10.1109/tmm.2015.2491019 – ident: ref25 doi: 10.1109/taffc.2018.2818685 – ident: ref46 doi: 10.1145/3136755.3143017 – ident: ref71 doi: 10.1109/TMM.2022.3217414 – ident: ref42 doi: 10.1109/tip.2021.3118983 – ident: ref6 doi: 10.1109/ICIP.2008.4711705 – ident: ref61 doi: 10.1109/tmm.2020.3007352 – ident: ref2 doi: 10.1111/j.1469-8986.2008.00702.x – ident: ref63 doi: 10.3758/bf03192732 – ident: ref8 doi: 10.1007/s11042-020-10480-w – ident: ref35 doi: 10.1109/CVPR.2012.6247998 – ident: ref34 doi: 10.1109/CVPR.2015.7298687 – ident: ref53 doi: 10.1109/CVPR.2017.330 – ident: ref73 doi: 10.1016/j.jvcir.2023.103968 – ident: ref18 doi: 10.1109/tcyb.2020.2983860 – ident: ref67 doi: 10.1109/mis.2024.3441408 – ident: ref32 doi: 10.1007/978-3-319-46448-0_51 – ident: ref78 doi: 10.5555/3298023.3298188 – ident: ref20 doi: 10.1609/aaai.v29i1.9179 – ident: ref36 doi: 10.1145/2502069.2502079 – ident: ref80 doi: 10.1109/ICIP40778.2020.9191258 – ident: ref49 doi: 10.1016/j.neucom.2018.12.053 – ident: ref64 doi: 10.1080/02699939208411068 – ident: ref81 doi: 10.1109/ICIP42928.2021.9506701 – ident: ref82 doi: 10.1109/ICCV48922.2021.00061 – ident: ref27 doi: 10.1109/ICCV48922.2021.00009 – ident: ref17 doi: 10.1109/tpami.2021.3094362 – volume-title: The Emotions year: 1986 ident: ref29 – ident: ref48 doi: 10.1109/tmm.2019.2939744 – ident: ref70 doi: 10.1007/s11042-023-16081-7 – ident: ref16 doi: 10.1145/2647868.2654930 – ident: ref7 doi: 10.1007/s11042-018-6445-z – ident: ref5 doi: 10.1109/ICSMC.2006.384667 – ident: ref24 doi: 10.1109/tmm.2018.2803520 – ident: ref37 doi: 10.1145/2502081.2502282 – ident: ref4 doi: 10.1109/tcsvt.2021.3080920 – ident: ref26 doi: 10.1109/ICCV48922.2021.00042 – volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref58 article-title: Attention is all you need – volume-title: Emotions in Social Psychology: Essential Readings year: 2001 ident: ref77 – ident: ref12 doi: 10.1145/1873951.1873965 – ident: ref51 doi: 10.1109/tcds.2021.3079278 – ident: ref52 doi: 10.1109/CVPR.2018.00718 – ident: ref57 doi: 10.1109/ICCV.2017.121 – year: 2014 ident: ref40 article-title: Deepsentibank: Visual sentiment concept classification with deep convolutional neural networks – ident: ref69 doi: 10.1007/s00530-022-00935-5 – ident: ref79 doi: 10.24963/ijcai.2017/456 |
| SSID | ssj0002951354 |
| Score | 2.302726 |
| Snippet | Image emotion recognition, which aims to analyze the emotional responses of people to various stimuli in images, has attracted substantial attention in recent... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2321 |
| SubjectTerms | Accuracy Algorithms Computational modeling Deep learning Emotion recognition Emotional factors Emotions Feature extraction graph attention network Image emotion recognition Modules Psychology Recurrent neural networks scene feature Semantics Social networking (online) visual relationship feature Visualization |
| Title | CVRSF-Net: Image Emotion Recognition by Combining Visual Relationship Features and Scene Features |
| URI | https://ieeexplore.ieee.org/document/10918804 https://www.proquest.com/docview/3212853159 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVoT72wFlEoyAduKGkWp0m4oaoVRaKHbuotiu2JqBBpRZND-XrGziIWIXGzsljWzHhmnj0LIbdewBn4CTOkLbnBuLQNHvt9Q3V_E06SgNStE54n_ccFe1p5qzJZXefCAIAOPgNTDfVdvtyIXB2V9VQRS5Q31iANP-gXyVr1gYqDvoLrsSoxxgp78-F8MEYI6HgmvkDgbn0zPrqbyi8VrO3K6IhMqhUV4SSvZp5xU3z8KNb47yUfk8PSw6QPhUickANIT0mrVnT7MxIPltPZyJhAdk_Hb6hQ6LBo5kOnVTgRjvmeorLguoEEXa53OU5ah869rLdUeY85onUap5LOBCrN-lGbLEZIlkejbLVgCMRfmSEQqIa-VJVdGOAWZ3HI7USGMlT3aBxBiuCcMY_ZsZDgC19ZPogdaQlbqNCac9JMNylcECoDQFjDEwE2Z66IObjckyKwcb9L1ws65K7iQbQtKmpEGolYYaQ5FimORSXHOqStiPrly4KeHdKt-BaVu24XuWiH0f1AD-3yj9-uSEvNXsR6dUkze8_hGr2KjN9oafoECuLKgg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHuTiEyOKugdvpkDbLW29GSIBBQ68wq3pPhqJEYi0B_z1zm4f8RETb5s-NzOzM_PtzgPg1vEYlW5EDWEKZlAmTIOFbstQ3d-4FUVS6NYJg2GrO6VPc2eeJavrXBgppQ4-k3U11Gf5YsUTtVXWUEUsUd7oLuw5lFInTdcqtlQs9BZsh-apMU2_MXmctHsIAi2njjcQuje_mR_dT-WXEtaWpXMIw3xOaUDJaz2JWZ1__CjX-O9JH8FB5mOSh1QojmFHLk-gXKi67SmE7dlo3DGGMr4nvTdUKeQxbedDRnlAEY7ZlqC6YLqFBJktNgl-tAiee1msifIfE8TrJFwKMuaoNotLFZh2kCxdI2u2YHBEYLHBEar6rlC1XajERU5Dn5mR8IWvTtIYwhTOGNKcmiEX0uWusn0ytESTm1wF15xBablaynMgwpMIbFjEpcmozUMmbeYI7pm44oXteFW4y3kQrNOaGoHGIk0_0BwLFMeCjGNVqCiifnkypWcVajnfgmzdbQIbLTE6IOijXfzx2g3sdyeDftDvDZ8voaz-lEZ-1aAUvyfyCn2MmF1ryfoE0MfNzw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CVRSF-Net%3A+Image+Emotion+Recognition+by+Combining+Visual+Relationship+Features+and+Scene+Features&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Luo%2C+Yutong&rft.au=Zhong%2C+Xinyue&rft.au=Xie%2C+Jialan&rft.au=Liu%2C+Guangyuan&rft.date=2025-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=9&rft.issue=5&rft.spage=2321&rft.epage=2333&rft_id=info:doi/10.1109%2FTETCI.2025.3543300&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |