Advancements in AI-Driven detection and localisation of solar panel defects
Renewable energy production has experienced rapid growth over the past three decades and is projected to triple its global capacity by 2030. Given that the utilisation of solar photovoltaic (PV) technology plays a vital role in generating renewable electricity, it is crucial to continuously monitor...
Saved in:
| Published in | Advanced engineering informatics Vol. 64; p. 103104 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1474-0346 |
| DOI | 10.1016/j.aei.2024.103104 |
Cover
| Abstract | Renewable energy production has experienced rapid growth over the past three decades and is projected to triple its global capacity by 2030. Given that the utilisation of solar photovoltaic (PV) technology plays a vital role in generating renewable electricity, it is crucial to continuously monitor the condition of solar panels because a variety of defects can significantly reduce their power production. In this paper, we review the latest artificial intelligence (AI) algorithms developed for inspecting solar panels. We also discuss various low-resource hardware systems used to execute these algorithms. AI algorithms are trained using datasets and images, including optical, infrared, and electroluminescence images of solar panels. These images can be captured by unmanned aerial vehicles (UAVs), ground vehicles, and fixed cameras. In this paper, we compare the precision, accuracy, and recall rates of a selection of reviewed AI algorithms. To gain a deeper understanding of these AI algorithms, we introduce a generic framework of AI-driven systems that can autonomously detect and localise solar panel defects and we analyse the literature based on this framework. Some of the main AI and image processing algorithms reviewed are YOLO V5 BDL, weight imprinting, custom-designed CNN, modified edge detection, fuzzy-based edge detection, and the modified Canny algorithm. We also discuss the main hardware systems used to execute image processing algorithms to localise and detect defects in solar panels: the central processing unit (CPU), field programmable gate array (FPGA), and graphics processing unit (GPU). Finally, as a future direction, we suggest developing image processing algorithms specifically designed for hardware systems tailored for machine learning, such as tensor processing units (TPUs). This development would further enhance the capabilities of solar panel inspection and defect detection. |
|---|---|
| AbstractList | Renewable energy production has experienced rapid growth over the past three decades and is projected to triple its global capacity by 2030. Given that the utilisation of solar photovoltaic (PV) technology plays a vital role in generating renewable electricity, it is crucial to continuously monitor the condition of solar panels because a variety of defects can significantly reduce their power production. In this paper, we review the latest artificial intelligence (AI) algorithms developed for inspecting solar panels. We also discuss various low-resource hardware systems used to execute these algorithms. AI algorithms are trained using datasets and images, including optical, infrared, and electroluminescence images of solar panels. These images can be captured by unmanned aerial vehicles (UAVs), ground vehicles, and fixed cameras. In this paper, we compare the precision, accuracy, and recall rates of a selection of reviewed AI algorithms. To gain a deeper understanding of these AI algorithms, we introduce a generic framework of AI-driven systems that can autonomously detect and localise solar panel defects and we analyse the literature based on this framework. Some of the main AI and image processing algorithms reviewed are YOLO V5 BDL, weight imprinting, custom-designed CNN, modified edge detection, fuzzy-based edge detection, and the modified Canny algorithm. We also discuss the main hardware systems used to execute image processing algorithms to localise and detect defects in solar panels: the central processing unit (CPU), field programmable gate array (FPGA), and graphics processing unit (GPU). Finally, as a future direction, we suggest developing image processing algorithms specifically designed for hardware systems tailored for machine learning, such as tensor processing units (TPUs). This development would further enhance the capabilities of solar panel inspection and defect detection. |
| ArticleNumber | 103104 |
| Author | Ghahremani, Ali Adams, Scott D. Norton, Michael Khoo, Sui Yang Kouzani, Abbas Z. |
| Author_xml | – sequence: 1 givenname: Ali surname: Ghahremani fullname: Ghahremani, Ali – sequence: 2 givenname: Scott D. surname: Adams fullname: Adams, Scott D. – sequence: 3 givenname: Michael surname: Norton fullname: Norton, Michael – sequence: 4 givenname: Sui Yang surname: Khoo fullname: Khoo, Sui Yang – sequence: 5 givenname: Abbas Z. surname: Kouzani fullname: Kouzani, Abbas Z. email: kouzani@deakin.edu.au |
| BookMark | eNp9kM9OwzAMxnMYEhvwANzyAh1Om6apOE3j38QkLnCOvMSVMnXJlFSTeHsyxpmLLVvfZ33-LdgsxECM3QtYChDqYb9E8ssaalnmRoCcsbmQnaygkeqaLXLeQ9Hpvpuz95U7YbB0oDBl7gNfbaqn5E8UuKOJ7ORj4BgcH6PF0Wf8XcSB5zhi4kcMNBblUJT5ll0NOGa6--s37Ovl-XP9Vm0_Xjfr1bayteynUm2rnGw01ULBToFqoG-Fpp3rlGrB1dAJ2fYDKHCgLWoNiEqiwxobbZsbJi53bYo5JxrMMfkDpm8jwJwJmL0pBMyZgLkQKJ7Hi4dKsJOnZLL1VB53PpXsxkX_j_sH85lmeQ |
| Cites_doi | 10.1016/j.rser.2016.11.125 10.1016/j.renene.2021.02.166 10.1016/j.measurement.2023.112466 10.1007/s10845-021-01878-w 10.1109/ACCESS.2020.3025860 10.1016/j.renene.2023.119389 10.1007/s10462-023-10453-z 10.1016/j.neucom.2010.03.021 10.1016/j.procs.2022.08.084 10.47839/ijc.21.2.2583 10.3390/electronics13081467 10.1007/s12652-019-01212-6 10.1016/j.renene.2020.01.148 10.12785/ijcds/080409 10.1016/j.solener.2023.03.005 10.3390/s23052381 10.1088/1755-1315/354/1/012106 10.1007/s10845-018-1458-z 10.1109/ACCESS.2023.3284043 10.1016/j.solener.2022.06.031 10.1109/JSEN.2023.3300350 10.3390/electronics12214397 10.1016/j.measurement.2023.113135 10.1016/j.engappai.2024.107866 10.3390/su122410295 10.1016/j.solener.2017.05.014 10.1109/MIE.2018.2824843 10.3390/su142417005 10.1007/s10845-022-01930-3 10.1109/JPHOTOV.2015.2397599 10.3390/electronics11152469 10.1016/j.renene.2016.01.036 10.1016/j.solener.2021.05.029 10.1016/j.rser.2017.04.046 10.1134/S1061830922100230 10.1007/s00170-021-06592-8 10.1016/j.eswa.2023.120382 10.1109/TIA.2023.3255227 10.1109/JPHOTOV.2022.3150725 10.1016/j.solener.2021.11.016 10.3390/en13246512 10.1016/j.ref.2022.09.002 10.1016/j.heliyon.2023.e18826 10.1016/j.jobe.2023.106375 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.aei.2024.103104 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| ExternalDocumentID | 10_1016_j_aei_2024_103104 S1474034624007559 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c249t-c2c56d438e2160b606309518ebd76650d2071459f060d08ca880aa64ada2a38c3 |
| IEDL.DBID | .~1 |
| ISSN | 1474-0346 |
| IngestDate | Wed Oct 01 06:42:02 EDT 2025 Sat Mar 08 15:42:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Localisation Detection Solar panels Artificial intelligence Defects |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-c2c56d438e2160b606309518ebd76650d2071459f060d08ca880aa64ada2a38c3 |
| ParticipantIDs | crossref_primary_10_1016_j_aei_2024_103104 elsevier_sciencedirect_doi_10_1016_j_aei_2024_103104 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering informatics |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu (b0265) 2021 Monicka, Manimegalai, Karthikeyan (b0225) 2022; 43 Baji (b0350) 2018 Molanes (b0385) 2018; 12 Flicker, Johnson (b0055) 2013 Mehta (b0015) 2018 Wang, Y., et al. Oviedo (b0010) 2022; 53 Mohammad, Mahjabeen (b0060) 2023; 2 Cao (b0315) 2023; 70 Afroz. 2024; Available from: https://www.kaggle.com/datasets/pythonafroz/solar-panel-images. Bordihn (b0220) 2022; 12 Muñoz-Ccuro, Mamani, Hernandez (b0250) 2021 Kermadi, Berkouk (b0070) 2017; 69 Tang (b0290) 2022; 231 2024; Available from: https://universe.roboflow.com/roboflow-100/solar-panels-taxvb. Cao (b0300) 2024; 131 Buerhop-Lutz (b0170) 2018 Sizkouhi, Aghaei, Esmailifar (b0125) 2021; 223 Sun (b0370) 2017 Ma (b0165) 2023; 34 Ismail (b0275) 2020 Gusa (b0020) 2018 Renewables 2023. 2023, IEA (2024): IEA, Paris. Alam (b0050) 2015; 5 Le, Le, Vu (b0185) 2023; 218 Yusri (b0040) 2020; 2 Han, S., H. Mao, and W.J. Dally Jainuddin (b0360) 2020 Youssef, El-Telbany, Zekry (b0065) 2017; 78 Ramírez, Chaparro, Márquez (b0150) 2022; 188 Zyout, Oatawneh (b0270) 2020 NVIDIA Jetson Nano. [cited 2024; Available from Duranay (b0330) 2023; 12 Patel, McLauchlan, Mehrubeoglu (b0280) 2020 in 2019. IOP Publishing. Chen, Karin, Jain (b0160) 2022; 242 Deng (b0260) 2021 Amhani, Attia (b0030) 2017 Park (b0210) 2023 . Ruan (b0255) 2021 Teng (b0335) 2023 Pathak, Patil, Patel (b0230) 2022; 204 Mallor (b0035) 2017; 153 Tovar, Robles, Rashid (b0380) 2020; 13 Huang (b0245) 2021 Li (b0375) 2014 NVIDIA Jetson Xavier. [cited 2024; Available from Jouppi (b0365) 2017 Al-Otum (b0205) 2023; 58 AMD ALVEO™ U50. [cited 2024; Available from Goceri (b0340) 2023; 56 Milidonis (b0115) 2023; 254 Huang (b0175) 2023; 9 Singh, Desai (b0140) 2023; 34 Sun, Sun (b0095) 2022; 21 Hassan, Dhimish (b0200) 2023; 219 arXiv preprint arXiv:2210.12247, 2022. Mellit, Pavan, Lughi (b0100) 2021; 172 Perarasi, Ramadas (b0180) 2023; 59 Carletti (b0240) 2020; 11 Chine (b0075) 2016; 90 Li (b0325) 2020; 8 López Gómez (b0320) 2020; 12 Balzategui, Eciolaza (b0195) 2023; 228 Leva, Aghaei, Grimaccia (b0120) 2015 Kurukuru (b0235) 2022; 13 Prabhakaran, Uthra, Preetharoselyn (b0305) 2023; 44 Jiang (b0310) 2023 Zheng (b0135) 2021; 113 Iheanetu (b0090) 2022; 14 Pawłowski, Wróblewska, Sysko-Romańczuk (b0110) 2023; 23 Mazen, Seoud, Shaker (b0215) 2023 Herraiz, Marugán, Márquez (b0080) 2020; 153 Misra, Saha (b0345) 2010; 74 Kodali, John (b0025) 2020 Meribout (b0045) 2023 Premkumar, Sowmya (b0085) 2019; 8 arXiv preprint arXiv:1510.00149, 2015. Tribak, Zaz (b0190) 2018 Raspberry Pi 5. [cited 2024; Available from Luo, Z., S. Cheng, and Q. Zheng. Wang (b0295) 2024; 13 Boubakr (b0390) 2022; 11 Chen (b0285) 2020; 31 Ramírez (10.1016/j.aei.2024.103104_b0150) 2022; 188 Perarasi (10.1016/j.aei.2024.103104_b0180) 2023; 59 Bordihn (10.1016/j.aei.2024.103104_b0220) 2022; 12 Pawłowski (10.1016/j.aei.2024.103104_b0110) 2023; 23 Leva (10.1016/j.aei.2024.103104_b0120) 2015 Prabhakaran (10.1016/j.aei.2024.103104_b0305) 2023; 44 Misra (10.1016/j.aei.2024.103104_b0345) 2010; 74 Meribout (10.1016/j.aei.2024.103104_b0045) 2023 Amhani (10.1016/j.aei.2024.103104_b0030) 2017 Baji (10.1016/j.aei.2024.103104_b0350) 2018 Kurukuru (10.1016/j.aei.2024.103104_b0235) 2022; 13 Sun (10.1016/j.aei.2024.103104_b0370) 2017 Cao (10.1016/j.aei.2024.103104_b0315) 2023; 70 10.1016/j.aei.2024.103104_b0355 Tovar (10.1016/j.aei.2024.103104_b0380) 2020; 13 10.1016/j.aei.2024.103104_b0395 Jouppi (10.1016/j.aei.2024.103104_b0365) 2017 Mehta (10.1016/j.aei.2024.103104_b0015) 2018 10.1016/j.aei.2024.103104_b0155 Park (10.1016/j.aei.2024.103104_b0210) 2023 Duranay (10.1016/j.aei.2024.103104_b0330) 2023; 12 Al-Otum (10.1016/j.aei.2024.103104_b0205) 2023; 58 Chen (10.1016/j.aei.2024.103104_b0160) 2022; 242 Muñoz-Ccuro (10.1016/j.aei.2024.103104_b0250) 2021 Sun (10.1016/j.aei.2024.103104_b0095) 2022; 21 Huang (10.1016/j.aei.2024.103104_b0175) 2023; 9 Mallor (10.1016/j.aei.2024.103104_b0035) 2017; 153 Ruan (10.1016/j.aei.2024.103104_b0255) 2021 Cao (10.1016/j.aei.2024.103104_b0300) 2024; 131 Herraiz (10.1016/j.aei.2024.103104_b0080) 2020; 153 Carletti (10.1016/j.aei.2024.103104_b0240) 2020; 11 Li (10.1016/j.aei.2024.103104_b0325) 2020; 8 Ma (10.1016/j.aei.2024.103104_b0165) 2023; 34 Tribak (10.1016/j.aei.2024.103104_b0190) 2018 10.1016/j.aei.2024.103104_b0105 Buerhop-Lutz (10.1016/j.aei.2024.103104_b0170) 2018 Le (10.1016/j.aei.2024.103104_b0185) 2023; 218 Milidonis (10.1016/j.aei.2024.103104_b0115) 2023; 254 Ismail (10.1016/j.aei.2024.103104_b0275) 2020 10.1016/j.aei.2024.103104_b0145 Molanes (10.1016/j.aei.2024.103104_b0385) 2018; 12 Pathak (10.1016/j.aei.2024.103104_b0230) 2022; 204 López Gómez (10.1016/j.aei.2024.103104_b0320) 2020; 12 Gusa (10.1016/j.aei.2024.103104_b0020) 2018 Hassan (10.1016/j.aei.2024.103104_b0200) 2023; 219 Mellit (10.1016/j.aei.2024.103104_b0100) 2021; 172 Zyout (10.1016/j.aei.2024.103104_b0270) 2020 Jiang (10.1016/j.aei.2024.103104_b0310) 2023 Alam (10.1016/j.aei.2024.103104_b0050) 2015; 5 Goceri (10.1016/j.aei.2024.103104_b0340) 2023; 56 Mazen (10.1016/j.aei.2024.103104_b0215) 2023 10.1016/j.aei.2024.103104_b0130 Oviedo (10.1016/j.aei.2024.103104_b0010) 2022; 53 Deng (10.1016/j.aei.2024.103104_b0260) 2021 Jainuddin (10.1016/j.aei.2024.103104_b0360) 2020 Singh (10.1016/j.aei.2024.103104_b0140) 2023; 34 Monicka (10.1016/j.aei.2024.103104_b0225) 2022; 43 10.1016/j.aei.2024.103104_b0410 Kodali (10.1016/j.aei.2024.103104_b0025) 2020 Chen (10.1016/j.aei.2024.103104_b0285) 2020; 31 Tang (10.1016/j.aei.2024.103104_b0290) 2022; 231 Youssef (10.1016/j.aei.2024.103104_b0065) 2017; 78 Chine (10.1016/j.aei.2024.103104_b0075) 2016; 90 Flicker (10.1016/j.aei.2024.103104_b0055) 2013 Huang (10.1016/j.aei.2024.103104_b0245) 2021 10.1016/j.aei.2024.103104_b0405 Zheng (10.1016/j.aei.2024.103104_b0135) 2021; 113 Boubakr (10.1016/j.aei.2024.103104_b0390) 2022; 11 Teng (10.1016/j.aei.2024.103104_b0335) 2023 Mohammad (10.1016/j.aei.2024.103104_b0060) 2023; 2 Wang (10.1016/j.aei.2024.103104_b0295) 2024; 13 Premkumar (10.1016/j.aei.2024.103104_b0085) 2019; 8 Sizkouhi (10.1016/j.aei.2024.103104_b0125) 2021; 223 Iheanetu (10.1016/j.aei.2024.103104_b0090) 2022; 14 Li (10.1016/j.aei.2024.103104_b0375) 2014 Patel (10.1016/j.aei.2024.103104_b0280) 2020 Yusri (10.1016/j.aei.2024.103104_b0040) 2020; 2 10.1016/j.aei.2024.103104_b0400 10.1016/j.aei.2024.103104_b0005 Kermadi (10.1016/j.aei.2024.103104_b0070) 2017; 69 Balzategui (10.1016/j.aei.2024.103104_b0195) 2023; 228 Liu (10.1016/j.aei.2024.103104_b0265) 2021 |
| References_xml | – volume: 13 start-page: 6512 year: 2020 ident: b0380 publication-title: Energies – reference: . in – year: 2017 ident: b0365 publication-title: In – volume: 231 start-page: 527 year: 2022 end-page: 535 ident: b0290 publication-title: Sol. Energy – reference: Luo, Z., S. Cheng, and Q. Zheng. – volume: 23 start-page: 2381 year: 2023 ident: b0110 publication-title: Sensors – year: 2023 ident: b0310 publication-title: IEEE Sens. J. – year: 2023 ident: b0045 publication-title: Measurement – reference: Renewables 2023. 2023, IEA (2024): IEA, Paris. – volume: 34 start-page: 1995 year: 2023 end-page: 2011 ident: b0140 publication-title: J. Intell. Manuf. – volume: 219 year: 2023 ident: b0200 publication-title: Renew. Energy – reference: Raspberry Pi 5. [cited 2024; Available from: – volume: 34 start-page: 2431 year: 2023 end-page: 2447 ident: b0165 publication-title: J. Intell. Manuf. – volume: 43 start-page: 183 year: 2022 end-page: 190 ident: b0225 publication-title: Renewable Energy Focus – volume: 113 start-page: 35 year: 2021 end-page: 58 ident: b0135 publication-title: Int. J. Adv. Manuf. Technol. – volume: 188 year: 2022 ident: b0150 publication-title: Measurement – year: 2020 ident: b0025 – year: 2018 ident: b0170 publication-title: In – reference: NVIDIA Jetson Xavier. [cited 2024; Available from: – volume: 53 year: 2022 ident: b0010 publication-title: Adv. Eng. Inf. – volume: 204 start-page: 698 year: 2022 end-page: 705 ident: b0230 publication-title: Procedia Comput. Sci. – year: 2018 ident: b0020 – volume: 2 start-page: 1174 year: 2023 end-page: 1187 ident: b0060 publication-title: BULLET: Jurnal Multidisiplin Ilmu – volume: 56 start-page: 12561 year: 2023 end-page: 12605 ident: b0340 publication-title: Artif. Intell. Rev. – reference: arXiv preprint arXiv:2210.12247, 2022. – volume: 172 start-page: 276 year: 2021 end-page: 288 ident: b0100 publication-title: Renew. Energy – year: 2023 ident: b0215 article-title: IEEE publication-title: Access – volume: 228 year: 2023 ident: b0195 publication-title: Expert Syst. Appl. – volume: 74 start-page: 239 year: 2010 end-page: 255 ident: b0345 publication-title: Neurocomputing – year: 2017 ident: b0030 – volume: 44 year: 2023 ident: b0305 publication-title: Comput. Syst. Sci. Eng. – volume: 153 start-page: 334 year: 2020 end-page: 348 ident: b0080 publication-title: Renew. Energy – year: 2018 ident: b0015 – year: 2021 ident: b0250 – reference: Wang, Y., et al., – volume: 11 start-page: 2027 year: 2020 end-page: 2040 ident: b0240 publication-title: J. Ambient Intell. Hum. Comput. – volume: 31 start-page: 453 year: 2020 end-page: 468 ident: b0285 publication-title: J. Intell. Manuf. – year: 2021 ident: b0265 – year: 2020 ident: b0280 – reference: Afroz. – year: 2023 ident: b0335 – year: 2020 ident: b0360 – volume: 14 start-page: 17005 year: 2022 ident: b0090 publication-title: Sustainability – reference: . 2024; Available from: https://www.kaggle.com/datasets/pythonafroz/solar-panel-images. – year: 2020 ident: b0270 – year: 2020 ident: b0275 – volume: 78 start-page: 72 year: 2017 end-page: 79 ident: b0065 publication-title: Renew. Sustain. Energy Rev. – volume: 69 start-page: 369 year: 2017 end-page: 386 ident: b0070 publication-title: Renew. Sustain. Energy Rev. – year: 2015 ident: b0120 – volume: 13 start-page: 1771 year: 2022 end-page: 1787 ident: b0235 publication-title: International Journal of System Assurance Engineering and Management – reference: . 2024; Available from: https://universe.roboflow.com/roboflow-100/solar-panels-taxvb. – volume: 12 start-page: 4397 year: 2023 ident: b0330 publication-title: Electronics – volume: 12 start-page: 10295 year: 2020 ident: b0320 publication-title: Sustainability – year: 2017 ident: b0370 – volume: 5 start-page: 982 year: 2015 end-page: 997 ident: b0050 publication-title: IEEE J. Photovoltaics – volume: 90 start-page: 501 year: 2016 end-page: 512 ident: b0075 publication-title: Renew. Energy – volume: 8 start-page: 405 year: 2019 end-page: 416 ident: b0085 publication-title: International Journal of Computing and Digital Systems – volume: 9 year: 2023 ident: b0175 publication-title: Heliyon – reference: arXiv preprint arXiv:1510.00149, 2015. – year: 2013 ident: b0055 – volume: 59 start-page: 251 year: 2023 end-page: 263 ident: b0180 publication-title: Russ. J. Nondestr. Test. – volume: 218 year: 2023 ident: b0185 publication-title: Measurement – volume: 12 start-page: 827 year: 2022 end-page: 832 ident: b0220 publication-title: IEEE J. Photovoltaics – year: 2018 ident: b0190 – reference: . 2019. IOP Publishing. – year: 2014 ident: b0375 – volume: 58 year: 2023 ident: b0205 publication-title: Adv. Eng. Inf. – volume: 11 start-page: 2469 year: 2022 ident: b0390 publication-title: Electronics – volume: 254 start-page: 182 year: 2023 end-page: 194 ident: b0115 publication-title: Sol. Energy – volume: 153 start-page: 51 year: 2017 end-page: 63 ident: b0035 publication-title: Sol. Energy – volume: 2 start-page: 1 year: 2020 end-page: 24 ident: b0040 publication-title: International Journal of Recent Technology and Applied Science (IJORTAS) – year: 2021 ident: b0260 – volume: 13 start-page: 1467 year: 2024 ident: b0295 publication-title: Electronics – volume: 8 start-page: 175871 year: 2020 end-page: 175880 ident: b0325 publication-title: IEEE Access – reference: AMD ALVEO™ U50. [cited 2024; Available from: – year: 2021 ident: b0245 – reference: NVIDIA Jetson Nano. [cited 2024; Available from: – volume: 242 start-page: 20 year: 2022 end-page: 29 ident: b0160 publication-title: Sol. Energy – volume: 70 year: 2023 ident: b0315 publication-title: Journal of Building Engineering – reference: . – volume: 131 year: 2024 ident: b0300 publication-title: Eng. Appl. Artif. Intel. – volume: 223 start-page: 217 year: 2021 end-page: 228 ident: b0125 publication-title: Sol. Energy – year: 2018 ident: b0350 – reference: Han, S., H. Mao, and W.J. Dally, – year: 2021 ident: b0255 – volume: 21 start-page: 153 year: 2022 end-page: 158 ident: b0095 publication-title: International Journal of Computing – volume: 12 start-page: 36 year: 2018 end-page: 49 ident: b0385 publication-title: IEEE Ind. Electron. Mag. – year: 2023 ident: b0210 publication-title: IEEE Trans. Ind. Appl. – volume: 69 start-page: 369 year: 2017 ident: 10.1016/j.aei.2024.103104_b0070 article-title: Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.125 – volume: 172 start-page: 276 year: 2021 ident: 10.1016/j.aei.2024.103104_b0100 article-title: Deep learning neural networks for short-term photovoltaic power forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2021.02.166 – year: 2020 ident: 10.1016/j.aei.2024.103104_b0280 – year: 2023 ident: 10.1016/j.aei.2024.103104_b0045 article-title: Solar panel inspection techniques and prospects publication-title: Measurement doi: 10.1016/j.measurement.2023.112466 – volume: 34 start-page: 1995 issue: 4 year: 2023 ident: 10.1016/j.aei.2024.103104_b0140 article-title: Automated surface defect detection framework using machine vision and convolutional neural networks publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01878-w – volume: 8 start-page: 175871 year: 2020 ident: 10.1016/j.aei.2024.103104_b0325 article-title: Photovoltaic power forecasting with a hybrid deep learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025860 – year: 2020 ident: 10.1016/j.aei.2024.103104_b0360 – volume: 219 year: 2023 ident: 10.1016/j.aei.2024.103104_b0200 article-title: Enhancing solar photovoltaic modules quality assurance through convolutional neural network-aided automated defect detection publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119389 – volume: 56 start-page: 12561 issue: 11 year: 2023 ident: 10.1016/j.aei.2024.103104_b0340 article-title: Medical image data augmentation: techniques, comparisons and interpretations publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10453-z – volume: 74 start-page: 239 issue: 1–3 year: 2010 ident: 10.1016/j.aei.2024.103104_b0345 article-title: Artificial neural networks in hardware: A survey of two decades of progress publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.03.021 – year: 2020 ident: 10.1016/j.aei.2024.103104_b0025 – volume: 204 start-page: 698 year: 2022 ident: 10.1016/j.aei.2024.103104_b0230 article-title: Solar panel hotspot localization and fault classification using deep learning approach publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.08.084 – volume: 21 start-page: 153 issue: 2 year: 2022 ident: 10.1016/j.aei.2024.103104_b0095 article-title: Photovoltaic Power Forecasting based on Artificial Neural Network and Ultraviolet Index publication-title: International Journal of Computing doi: 10.47839/ijc.21.2.2583 – ident: 10.1016/j.aei.2024.103104_b0105 – volume: 13 start-page: 1467 issue: 8 year: 2024 ident: 10.1016/j.aei.2024.103104_b0295 article-title: Pushing the Boundaries of Solar Panel Inspection: Elevated Defect Detection with YOLOv7-GX Technology publication-title: Electronics doi: 10.3390/electronics13081467 – year: 2017 ident: 10.1016/j.aei.2024.103104_b0030 – year: 2017 ident: 10.1016/j.aei.2024.103104_b0370 – year: 2013 ident: 10.1016/j.aei.2024.103104_b0055 – volume: 11 start-page: 2027 year: 2020 ident: 10.1016/j.aei.2024.103104_b0240 article-title: An intelligent flying system for automatic detection of faults in photovoltaic plants publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-019-01212-6 – volume: 153 start-page: 334 year: 2020 ident: 10.1016/j.aei.2024.103104_b0080 article-title: Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure publication-title: Renew. Energy doi: 10.1016/j.renene.2020.01.148 – volume: 8 start-page: 405 issue: 04 year: 2019 ident: 10.1016/j.aei.2024.103104_b0085 article-title: Certain study on MPPT algorithms to track the global MPP under partial shading on solar PV module/array publication-title: International Journal of Computing and Digital Systems doi: 10.12785/ijcds/080409 – year: 2014 ident: 10.1016/j.aei.2024.103104_b0375 – volume: 188 year: 2022 ident: 10.1016/j.aei.2024.103104_b0150 article-title: Unmanned aerial vehicle integrated real time kinematic in infrared inspection of photovoltaic panels publication-title: Measurement – volume: 254 start-page: 182 year: 2023 ident: 10.1016/j.aei.2024.103104_b0115 article-title: Unmanned Aerial Vehicles (UAVs) in the planning, operation and maintenance of concentrating solar thermal systems: A review publication-title: Sol. Energy doi: 10.1016/j.solener.2023.03.005 – year: 2018 ident: 10.1016/j.aei.2024.103104_b0020 – volume: 58 year: 2023 ident: 10.1016/j.aei.2024.103104_b0205 article-title: Deep learning-based automated defect classification in Electroluminescence images of solar panels publication-title: Adv. Eng. Inf. – volume: 13 start-page: 1771 issue: 4 year: 2022 ident: 10.1016/j.aei.2024.103104_b0235 article-title: Machine learning framework for photovoltaic module defect detection with infrared images publication-title: International Journal of System Assurance Engineering and Management – year: 2021 ident: 10.1016/j.aei.2024.103104_b0250 – year: 2018 ident: 10.1016/j.aei.2024.103104_b0015 – volume: 23 start-page: 2381 issue: 5 year: 2023 ident: 10.1016/j.aei.2024.103104_b0110 article-title: Effective techniques for multimodal data fusion: A comparative analysis publication-title: Sensors doi: 10.3390/s23052381 – ident: 10.1016/j.aei.2024.103104_b0130 doi: 10.1088/1755-1315/354/1/012106 – year: 2023 ident: 10.1016/j.aei.2024.103104_b0335 article-title: Improved Solar Photovoltaic Panel Defect Detection Technology Based on YOLOv5 – year: 2021 ident: 10.1016/j.aei.2024.103104_b0245 – ident: 10.1016/j.aei.2024.103104_b0400 – volume: 31 start-page: 453 year: 2020 ident: 10.1016/j.aei.2024.103104_b0285 article-title: Solar cell surface defect inspection based on multispectral convolutional neural network publication-title: J. Intell. Manuf. doi: 10.1007/s10845-018-1458-z – ident: 10.1016/j.aei.2024.103104_b0005 – year: 2020 ident: 10.1016/j.aei.2024.103104_b0270 – year: 2023 ident: 10.1016/j.aei.2024.103104_b0215 article-title: Deep Learning for Automatic Defect Detection in PV modules using Electroluminescence Images. IEEE publication-title: Access doi: 10.1109/ACCESS.2023.3284043 – ident: 10.1016/j.aei.2024.103104_b0410 – year: 2017 ident: 10.1016/j.aei.2024.103104_b0365 article-title: In-datacenter performance analysis of a tensor processing unit – ident: 10.1016/j.aei.2024.103104_b0395 – volume: 2 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.aei.2024.103104_b0040 article-title: Solar panel remote monitoring and control system on miniature weather stations based on web server and ESP32 publication-title: International Journal of Recent Technology and Applied Science (IJORTAS) – volume: 242 start-page: 20 year: 2022 ident: 10.1016/j.aei.2024.103104_b0160 article-title: Automated defect identification in electroluminescence images of solar modules publication-title: Sol. Energy doi: 10.1016/j.solener.2022.06.031 – year: 2023 ident: 10.1016/j.aei.2024.103104_b0310 article-title: An enhancement generative adversarial networks based on feature moving for solar panel defect identification publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3300350 – volume: 12 start-page: 4397 issue: 21 year: 2023 ident: 10.1016/j.aei.2024.103104_b0330 article-title: Fault detection in solar energy systems: A deep learning approach publication-title: Electronics doi: 10.3390/electronics12214397 – volume: 218 year: 2023 ident: 10.1016/j.aei.2024.103104_b0185 article-title: Thermal inspection of photovoltaic modules with deep convolutional neural networks on edge devices in AUV publication-title: Measurement doi: 10.1016/j.measurement.2023.113135 – year: 2021 ident: 10.1016/j.aei.2024.103104_b0260 – volume: 131 year: 2024 ident: 10.1016/j.aei.2024.103104_b0300 article-title: Improved yolov8-gd deep learning model for defect detection in electroluminescence images of solar photovoltaic modules publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2024.107866 – ident: 10.1016/j.aei.2024.103104_b0145 – ident: 10.1016/j.aei.2024.103104_b0405 – volume: 12 start-page: 10295 issue: 24 year: 2020 ident: 10.1016/j.aei.2024.103104_b0320 article-title: Photovoltaic power prediction using artificial neural networks and numerical weather data publication-title: Sustainability doi: 10.3390/su122410295 – year: 2018 ident: 10.1016/j.aei.2024.103104_b0350 – volume: 153 start-page: 51 year: 2017 ident: 10.1016/j.aei.2024.103104_b0035 article-title: A method for detecting malfunctions in PV solar panels based on electricity production monitoring publication-title: Sol. Energy doi: 10.1016/j.solener.2017.05.014 – volume: 12 start-page: 36 issue: 2 year: 2018 ident: 10.1016/j.aei.2024.103104_b0385 article-title: Deep learning and reconfigurable platforms in the internet of things: Challenges and opportunities in algorithms and hardware publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2018.2824843 – volume: 14 start-page: 17005 issue: 24 year: 2022 ident: 10.1016/j.aei.2024.103104_b0090 article-title: Solar photovoltaic power forecasting: A review publication-title: Sustainability doi: 10.3390/su142417005 – year: 2018 ident: 10.1016/j.aei.2024.103104_b0190 – volume: 53 year: 2022 ident: 10.1016/j.aei.2024.103104_b0010 article-title: Feature extraction and health status prediction in PV systems publication-title: Adv. Eng. Inf. – volume: 34 start-page: 2431 issue: 5 year: 2023 ident: 10.1016/j.aei.2024.103104_b0165 article-title: Automated real-time detection of surface defects in manufacturing processes of aluminum alloy strip using a lightweight network architecture publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-01930-3 – ident: 10.1016/j.aei.2024.103104_b0155 – year: 2018 ident: 10.1016/j.aei.2024.103104_b0170 article-title: A benchmark for visual identification of defective solar cells in electroluminescence imagery – volume: 5 start-page: 982 issue: 3 year: 2015 ident: 10.1016/j.aei.2024.103104_b0050 article-title: A comprehensive review of catastrophic faults in PV arrays: types, detection, and mitigation techniques publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2015.2397599 – volume: 11 start-page: 2469 issue: 15 year: 2022 ident: 10.1016/j.aei.2024.103104_b0390 article-title: Enhancing virtual real-time monitoring of photovoltaic power systems based on the internet of things publication-title: Electronics doi: 10.3390/electronics11152469 – volume: 90 start-page: 501 year: 2016 ident: 10.1016/j.aei.2024.103104_b0075 article-title: A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2016.01.036 – year: 2021 ident: 10.1016/j.aei.2024.103104_b0265 – volume: 223 start-page: 217 year: 2021 ident: 10.1016/j.aei.2024.103104_b0125 article-title: A deep convolutional encoder-decoder architecture for autonomous fault detection of PV plants using multi-copters publication-title: Sol. Energy doi: 10.1016/j.solener.2021.05.029 – volume: 78 start-page: 72 year: 2017 ident: 10.1016/j.aei.2024.103104_b0065 article-title: The role of artificial intelligence in photo-voltaic systems design and control: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.046 – volume: 44 issue: 3 year: 2023 ident: 10.1016/j.aei.2024.103104_b0305 article-title: Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels publication-title: Comput. Syst. Sci. Eng. – year: 2015 ident: 10.1016/j.aei.2024.103104_b0120 – volume: 59 start-page: 251 issue: 2 year: 2023 ident: 10.1016/j.aei.2024.103104_b0180 article-title: Detection of Cracks in Solar Panel Images Using Improved AlexNet Classification Method publication-title: Russ. J. Nondestr. Test. doi: 10.1134/S1061830922100230 – volume: 113 start-page: 35 issue: 1 year: 2021 ident: 10.1016/j.aei.2024.103104_b0135 article-title: Recent advances in surface defect inspection of industrial products using deep learning techniques publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-06592-8 – volume: 228 year: 2023 ident: 10.1016/j.aei.2024.103104_b0195 article-title: Few-shot incremental learning in the context of solar cell quality inspection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120382 – ident: 10.1016/j.aei.2024.103104_b0355 – year: 2021 ident: 10.1016/j.aei.2024.103104_b0255 – year: 2023 ident: 10.1016/j.aei.2024.103104_b0210 article-title: Boost-up Efficiency of Defective Solar Panel Detection with Pre-trained Attention Recycling publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2023.3255227 – volume: 2 start-page: 1174 issue: 4 year: 2023 ident: 10.1016/j.aei.2024.103104_b0060 article-title: Revolutionizing solar energy with ai-driven enhancements in photovoltaic technology publication-title: BULLET: Jurnal Multidisiplin Ilmu – volume: 12 start-page: 827 issue: 3 year: 2022 ident: 10.1016/j.aei.2024.103104_b0220 article-title: Machine learning based identification and classification of field-operation caused solar panel failures observed in electroluminescence images publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2022.3150725 – volume: 231 start-page: 527 year: 2022 ident: 10.1016/j.aei.2024.103104_b0290 article-title: Deep learning-based linear defects detection system for large-scale photovoltaic plants based on an edge-cloud computing infrastructure publication-title: Sol. Energy doi: 10.1016/j.solener.2021.11.016 – volume: 13 start-page: 6512 issue: 24 year: 2020 ident: 10.1016/j.aei.2024.103104_b0380 article-title: PV power prediction, using CNN-LSTM hybrid neural network model. Case of study: Temixco-Morelos publication-title: México. Energies doi: 10.3390/en13246512 – volume: 43 start-page: 183 year: 2022 ident: 10.1016/j.aei.2024.103104_b0225 article-title: Detection of microcracks in silicon solar cells using Otsu-Canny edge detection algorithm publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2022.09.002 – year: 2020 ident: 10.1016/j.aei.2024.103104_b0275 – volume: 9 issue: 8 year: 2023 ident: 10.1016/j.aei.2024.103104_b0175 article-title: Solar panel defect detection design based on YOLO v5 algorithm publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e18826 – volume: 70 year: 2023 ident: 10.1016/j.aei.2024.103104_b0315 article-title: A photovoltaic surface defect detection method for building based on deep learning publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2023.106375 |
| SSID | ssj0016897 |
| Score | 2.4566636 |
| SecondaryResourceType | review_article |
| Snippet | Renewable energy production has experienced rapid growth over the past three decades and is projected to triple its global capacity by 2030. Given that the... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 103104 |
| SubjectTerms | Artificial intelligence Defects Detection Localisation Solar panels |
| Title | Advancements in AI-Driven detection and localisation of solar panel defects |
| URI | https://dx.doi.org/10.1016/j.aei.2024.103104 |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1474-0346 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016897 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1474-0346 databaseCode: .~1 dateStart: 20020101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016897 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1474-0346 databaseCode: ACRLP dateStart: 20020101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016897 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1474-0346 databaseCode: AIKHN dateStart: 20020101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016897 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1474-0346 databaseCode: AKRWK dateStart: 20020101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016897 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamceHCGzEeUw6ckMKaNk3bYzWYNiZ2gUm7VWmSSUOoTFu58ttx0hSBEBcuPVR2Vbm1_Vn-HANcY1WFoCOKqYozQblJGc00i2iJudFoLSLlOrqPMzGe84dFvOjAsJ2FsbRKH_ubmO6itb8z8NYcrFerwRPjCQ8iLiwLMkFgbCfYeWK3GNx-fNE8mEibBSsoTK1029l0HC9pVlgihtyOnjO_q-1XbvqWb0YHsOeBIsmbdzmEjqmOYN-DRuJdcnsM07zp4rtRNbKqSD6hdxsbw4g2tSNaVURWmris5ck75G1JtraoJRgMzCtKOlbHCcxH98_DMfUbEqjCsqnGq4qF5lFqQiaCUtgDtBAypabUiUDspUM7nxRny0AEOkiVRG-VUnCpZSijVEWn0K3eKnMGROqML3Ws0QsVZ4plSip8QshKgXoy7MFNa5ti3RyEUbQMsZcCDVlYQxaNIXvAW-sVP75mgYH6b7Xz_6ldwG5ot_I6ZtgldOvNu7lCqFCXffcv9GEnn0zHs0-6gLrn |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD0xIpnHiOMlYFaqWPhZaqZvl2K5UhFLUhpXfztlxEAixsGSI7qLokrv7TvedD6FbqKoAdEQxUXHGCTMpJZmmEckhNxqteaRcR3c84f0Ze5rH8wbq1rMwllbpY38V01209nfa3prtt-Wy_UxZwoKIccuCTAAYb6FtFoeJrcDuP754HpSn1YYVkCZWvG5tOpKXNEuoEUNmZ8-pX9b2Kzl9Szi9A7TnkSLuVC9ziBqmOEL7HjVi75ObYzTsVG18N6uGlwXuDMjD2gYxrE3pmFYFloXGLm159g5eLfDGVrUYooF5BUlH6zhBs97jtNsnfkUCUVA3lXBVMdcsSk1IeZBze4IWYKbU5DrhAL50aAeU4mwR8EAHqZLgrlJyJrUMZZSq6BQ1i1VhzhCWOmMLHWtwQ8WoopmSCp4Q0pyDngxb6K62jXirTsIQNUXsRYAhhTWkqAzZQqy2nvjxOQVE6r_Vzv-ndoN2-tPxSIwGk-EF2g3til5HE7tEzXL9bq4AN5T5tfsvPgFYHLx8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+AI-Driven+detection+and+localisation+of+solar+panel+defects&rft.jtitle=Advanced+engineering+informatics&rft.au=Ghahremani%2C+Ali&rft.au=Adams%2C+Scott+D.&rft.au=Norton%2C+Michael&rft.au=Khoo%2C+Sui+Yang&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=1474-0346&rft.volume=64&rft_id=info:doi/10.1016%2Fj.aei.2024.103104&rft.externalDocID=S1474034624007559 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |