A tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity

•This is the first attempt to construct tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity.•The most distinguished feature of this new scheme is that it not only can ensure high accuracy and stability for solving subdiffusion equations with high ani...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 401; p. 125907
Main Authors Wang, Yihong, Cao, Jianxiong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.07.2021
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2020.125907

Cover

Abstract •This is the first attempt to construct tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity.•The most distinguished feature of this new scheme is that it not only can ensure high accuracy and stability for solving subdiffusion equations with high anisotropic diffusivity but also can efficiently resolve the high gradients near the side internal.•The unique solvability and unconditional stability of proposed scheme are strictly proved. In this paper, we first propose a tailored finite point method (TFPM) for solving time fractional subdiffusion problems with anisotropic and discontinuous diffusivity. This numerical scheme can perfectly capture the rapid transition of the solutions which contain sharp interface layers even with coarse meshes. Second, the accuracy and stability of the proposed scheme are strictly analyzed. Finally, some numerical examples are provided to show the accuracy and reliability of this new scheme.
AbstractList •This is the first attempt to construct tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity.•The most distinguished feature of this new scheme is that it not only can ensure high accuracy and stability for solving subdiffusion equations with high anisotropic diffusivity but also can efficiently resolve the high gradients near the side internal.•The unique solvability and unconditional stability of proposed scheme are strictly proved. In this paper, we first propose a tailored finite point method (TFPM) for solving time fractional subdiffusion problems with anisotropic and discontinuous diffusivity. This numerical scheme can perfectly capture the rapid transition of the solutions which contain sharp interface layers even with coarse meshes. Second, the accuracy and stability of the proposed scheme are strictly analyzed. Finally, some numerical examples are provided to show the accuracy and reliability of this new scheme.
ArticleNumber 125907
Author Cao, Jianxiong
Wang, Yihong
Author_xml – sequence: 1
  givenname: Yihong
  surname: Wang
  fullname: Wang, Yihong
  email: wyhlx2017@163.com
  organization: School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
– sequence: 2
  givenname: Jianxiong
  surname: Cao
  fullname: Cao, Jianxiong
  email: caojianxiong2007@126.com
  organization: School of Sciences, Lanzhou University of Technology, Lanzhou 730050, China
BookMark eNp9kMtOwzAQRS0EEm3hA9j5B1LGdpLGYlVVvKRKbGBtxY_QqVq72E5R_55E7ZrV3BnpjGbOlFz74B0hDwzmDFj9uJ23ezPnwIeeVxIWV2TCmoUoqrqU12QCIOtCAIhbMk1pCwCLmpUT8r2kucVdiM7SDj1mRw8BfaZ7lzdhmIVIU68tdl2fMHjqfvo2j-EX84a2HlPIMRzQDNlSi8kEn9H3oU_0Qh0xn-7ITdfukru_1Bn5enn-XL0V64_X99VyXRheylxoJgG4bnQppNaV5E5y1lhRNuNP1hpTCd1AzQTYylhtQFgHGoxsbFdpI2aEnfeaGFKKrlOHiPs2nhQDNZpSWzWYUqMpdTY1ME9nxg2HHdFFlQw6b5zF6ExWNuA_9B8PUHWd
Cites_doi 10.1016/j.jcp.2015.07.011
10.4208/cicp.2019.js60.04
10.1016/j.cam.2019.06.034
10.1016/j.jcp.2005.12.006
10.1016/S0098-3004(02)00073-0
10.1007/s10915-016-0254-1
10.1090/S0025-5718-2012-02616-0
10.1007/s10915-009-9292-2
10.1016/j.jcp.2007.02.001
10.1007/s10915-015-0152-y
10.1007/s10915-008-9187-7
10.1016/j.jcp.2014.10.018
10.1016/j.jcp.2020.109576
10.1007/s10915-017-0388-9
10.1016/j.mcm.2011.03.017
10.1016/j.apnum.2005.03.003
10.1080/00207160.2014.887702
10.1137/130934192
10.1109/TIP.2007.904971
10.1016/j.jcp.2014.09.012
10.1109/TGRS.2015.2490158
10.1016/j.camwa.2009.08.071
10.1016/j.jcp.2014.10.051
10.1016/j.jcp.2013.09.016
10.1007/s11075-015-0065-8
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2020.125907
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
ExternalDocumentID 10_1016_j_amc_2020_125907
S0096300320308602
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11901266
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c249t-b19002b8b439bb592e9218d3485907ddcc53b806130d5cdbc03de0b0c98df5bc3
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Thu Oct 02 04:33:10 EDT 2025
Fri Feb 23 02:46:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anisotropic
Discontinuous
Tailored finite point method
Subdiffusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-b19002b8b439bb592e9218d3485907ddcc53b806130d5cdbc03de0b0c98df5bc3
ParticipantIDs crossref_primary_10_1016_j_amc_2020_125907
elsevier_sciencedirect_doi_10_1016_j_amc_2020_125907
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bai, Feng (bib0010) 2007; 16
Jin, Lazarov, Liu, Zhou (bib0020) 2015; 281
Han, Huang, Kellogg (bib0001) 2008; 36
Li, Zeng (bib0030) 2015
Tang, Wang (bib0004) 2017; 70
Tan, Liu (bib0031) 2020; 364
Yang, Zhang, Xu (bib0027) 2014; 256
Hou (bib0026) 2019; 26
Han, Huang (bib0003) 2013; 82
Podlubny (bib0007) 1999
Yang, Wang (bib0005) 2019; 355
Cui (bib0015) 2015; 280
Zeng, Liu, Li, Burrage, Turner, Anh (bib0023) 2014; 52
Baseri, Abbasbandy, Babolian (bib0029) 2018; 322
Zheng, Li, Zhao (bib0019) 2010; 59
Luo, Huang, Wu, Gu (bib0028) 2016; 276
Gu, Huang, Ji, Carpentieri, Alikhanov (bib0017) 2017; 72
Wang, Zhang (bib0024) 2015; 281
Wang, Cao, Fu (bib0006) 2020
Han, Huang (bib0002) 2009; 49
Janev, Pilipovic, Atanackovic, Obradovic, Ralevic (bib0011) 2011; 54
Cao, Li, Chen (bib0016) 2015; 92
Feng, Zhuang, Liu, Turner, Gu (bib0021) 2016; 72
Zhao, Chen, Bu, Liu, Tang (bib0022) 2017; 70
Gu, Wu (bib0018) 2020; 417
Lu, Molz, Liu (bib0008) 2003; 29
Sun, Wu (bib0013) 2006; 56
Zhou, Gao, Wang, Li (bib0009) 2016; 54
Song, Xu (bib0025) 2015; 299
Yuste (bib0012) 2006; 216
Lin, Xu (bib0014) 2007; 225
Yang (10.1016/j.amc.2020.125907_bib0005) 2019; 355
Han (10.1016/j.amc.2020.125907_bib0002) 2009; 49
Lu (10.1016/j.amc.2020.125907_bib0008) 2003; 29
Tang (10.1016/j.amc.2020.125907_bib0004) 2017; 70
Janev (10.1016/j.amc.2020.125907_bib0011) 2011; 54
Yang (10.1016/j.amc.2020.125907_bib0027) 2014; 256
Han (10.1016/j.amc.2020.125907_bib0003) 2013; 82
Cui (10.1016/j.amc.2020.125907_bib0015) 2015; 280
Lin (10.1016/j.amc.2020.125907_bib0014) 2007; 225
Han (10.1016/j.amc.2020.125907_bib0001) 2008; 36
Sun (10.1016/j.amc.2020.125907_bib0013) 2006; 56
Podlubny (10.1016/j.amc.2020.125907_bib0007) 1999
Gu (10.1016/j.amc.2020.125907_bib0017) 2017; 72
Zheng (10.1016/j.amc.2020.125907_bib0019) 2010; 59
Wang (10.1016/j.amc.2020.125907_bib0006) 2020
Feng (10.1016/j.amc.2020.125907_bib0021) 2016; 72
Zeng (10.1016/j.amc.2020.125907_bib0023) 2014; 52
Zhao (10.1016/j.amc.2020.125907_bib0022) 2017; 70
Song (10.1016/j.amc.2020.125907_bib0025) 2015; 299
Hou (10.1016/j.amc.2020.125907_bib0026) 2019; 26
Zhou (10.1016/j.amc.2020.125907_bib0009) 2016; 54
Gu (10.1016/j.amc.2020.125907_bib0018) 2020; 417
Wang (10.1016/j.amc.2020.125907_bib0024) 2015; 281
Baseri (10.1016/j.amc.2020.125907_bib0029) 2018; 322
Cao (10.1016/j.amc.2020.125907_bib0016) 2015; 92
Tan (10.1016/j.amc.2020.125907_bib0031) 2020; 364
Luo (10.1016/j.amc.2020.125907_bib0028) 2016; 276
Jin (10.1016/j.amc.2020.125907_bib0020) 2015; 281
Li (10.1016/j.amc.2020.125907_bib0030) 2015
Yuste (10.1016/j.amc.2020.125907_bib0012) 2006; 216
Bai (10.1016/j.amc.2020.125907_bib0010) 2007; 16
References_xml – volume: 72
  start-page: 749
  year: 2016
  end-page: 767
  ident: bib0021
  article-title: Finite element method for space-time fractional diffusion equation
  publication-title: Numer. Algorithms
– volume: 299
  start-page: 196
  year: 2015
  end-page: 214
  ident: bib0025
  article-title: Spectral direction splitting methods for two-dimensional space fractional diffusion equations
  publication-title: J. Comput. Phys.
– volume: 52
  start-page: 2599
  year: 2014
  end-page: 2622
  ident: bib0023
  article-title: A crank-nicolson adi spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation
  publication-title: SIAM J. Numer. Anal.
– volume: 225
  start-page: 1533
  year: 2007
  end-page: 1552
  ident: bib0014
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
– volume: 281
  start-page: 67
  year: 2015
  end-page: 81
  ident: bib0024
  article-title: A high-accuracy preserving spectral Galerkin method for the dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations
  publication-title: J. Comput. Phys.
– volume: 29
  start-page: 15
  year: 2003
  end-page: 25
  ident: bib0008
  article-title: An efficient, three-dimensional, anisotropic, fractional brownian motion and truncated fractional levy motion simulation algorithm based on successive random additions
  publication-title: Comput. Geosci.
– volume: 70
  start-page: 272
  year: 2017
  end-page: 300
  ident: bib0004
  article-title: Uniform convergent tailored finite point method for advection-diffusion equation with discontinuous, anisotropic and vanishing diffusivity
  publication-title: J. Sci. Comput.
– volume: 92
  start-page: 167
  year: 2015
  end-page: 180
  ident: bib0016
  article-title: Compact difference method for solving the fractional reactioncsubdiffusion equation with neumann boundary value condition
  publication-title: Int. J. Comput. Math.
– volume: 82
  start-page: 213
  year: 2013
  end-page: 226
  ident: bib0003
  article-title: Tailored finite point method based on exponential bases for convection-diffusion-reaction equation
  publication-title: Math. Comput.
– volume: 54
  start-page: 1905
  year: 2016
  end-page: 1917
  ident: bib0009
  article-title: Adaptive variable time fractional anisotropic diffusion filtering for seismic data noise attenuation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 280
  start-page: 143
  year: 2015
  end-page: 163
  ident: bib0015
  article-title: Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients
  publication-title: J. Comput. Phys.
– volume: 72
  start-page: 957
  year: 2017
  end-page: 985
  ident: bib0017
  article-title: Fast iterative method with a second-order implicit difference scheme for time-space fractional convectioncdiffusion equation
  publication-title: J. Sci. Comput.
– year: 1999
  ident: bib0007
  article-title: Fractional Differential Equations
– year: 2015
  ident: bib0030
  article-title: Numerical Methods for Fractional Calculus
– volume: 59
  start-page: 1718
  year: 2010
  end-page: 1726
  ident: bib0019
  article-title: A note on the finite element method for the space-fractional advection diffusion equation
  publication-title: Comput. Math. Appl.
– volume: 216
  start-page: 264
  year: 2006
  end-page: 274
  ident: bib0012
  article-title: Weighted average finite difference methods for fractional diffusion equations
  publication-title: J. Comput. Phys.
– volume: 256
  start-page: 824
  year: 2014
  end-page: 837
  ident: bib0027
  article-title: Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation
  publication-title: J. Comput. Phys.
– volume: 417
  start-page: 109576
  year: 2020
  ident: bib0018
  article-title: A parallel-in-time iterative algorithm for volterra partial integro-differential problems with weakly singular kernel
  publication-title: J. Comput. Phys.
– volume: 49
  start-page: 200
  year: 2009
  end-page: 220
  ident: bib0002
  article-title: Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions
  publication-title: J. Sci. Comput.
– volume: 54
  start-page: 729
  year: 2011
  end-page: 741
  ident: bib0011
  article-title: Fully fractional anisotropic diffusion for image denoising
  publication-title: Math. Comput. Model
– volume: 281
  start-page: 825
  year: 2015
  end-page: 843
  ident: bib0020
  article-title: The galerkin finite element method for a multi-term time-fractional diffusion equation
  publication-title: J. Comput. Phys.
– volume: 70
  start-page: 407
  year: 2017
  end-page: 428
  ident: bib0022
  article-title: Two mixed finite element methods for time-fractional diffusion equations
  publication-title: J. Sci. Comput.
– volume: 16
  start-page: 2492
  year: 2007
  end-page: 2502
  ident: bib0010
  article-title: Fractional-order anisotropic diffusion for image denoising
  publication-title: IEEE Trans. Image Process
– volume: 276
  start-page: 252
  year: 2016
  end-page: 265
  ident: bib0028
  article-title: Quadratic spline collocation method for the time fractional subdiffusion equation
  publication-title: Appl. Math. Comput.
– year: 2020
  ident: bib0006
  article-title: Tailored finite point method for time fractional convection dominated diffusion problems with boundary layers
  publication-title: Math. Methods Appl. Sci.
– volume: 364
  start-page: 112318
  year: 2020
  ident: bib0031
  article-title: An efficient numerical solver for anisotropic subdiffusion problems
  publication-title: J. Comput. Appl. Math.
– volume: 56
  start-page: 193
  year: 2006
  end-page: 209
  ident: bib0013
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
– volume: 322
  start-page: 55
  year: 2018
  end-page: 65
  ident: bib0029
  article-title: A collocation method for fractional diffusion equation in a long time with chebyshev functions
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 1415
  year: 2019
  end-page: 1443
  ident: bib0026
  article-title: Mntz spectral method for two-dimensional space-fractional convection-diffusion equation
  publication-title: Commun. Comput. Phys.
– volume: 355
  start-page: 85
  year: 2019
  end-page: 95
  ident: bib0005
  article-title: A new tailored finite point method for strongly anisotropic diffusion equation on misaligned grids
  publication-title: Appl. Math. Comput.
– volume: 36
  start-page: 243
  year: 2008
  end-page: 261
  ident: bib0001
  article-title: A tailored finite point method for a singular perturbation problem on an unbounded domain
  publication-title: J. Sci. Comput.
– volume: 299
  start-page: 196
  year: 2015
  ident: 10.1016/j.amc.2020.125907_bib0025
  article-title: Spectral direction splitting methods for two-dimensional space fractional diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.07.011
– volume: 26
  start-page: 1415
  issue: 5
  year: 2019
  ident: 10.1016/j.amc.2020.125907_bib0026
  article-title: Mntz spectral method for two-dimensional space-fractional convection-diffusion equation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.2019.js60.04
– volume: 364
  start-page: 112318
  year: 2020
  ident: 10.1016/j.amc.2020.125907_bib0031
  article-title: An efficient numerical solver for anisotropic subdiffusion problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.06.034
– volume: 216
  start-page: 264
  issue: 1
  year: 2006
  ident: 10.1016/j.amc.2020.125907_bib0012
  article-title: Weighted average finite difference methods for fractional diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.12.006
– volume: 29
  start-page: 15
  issue: 1
  year: 2003
  ident: 10.1016/j.amc.2020.125907_bib0008
  article-title: An efficient, three-dimensional, anisotropic, fractional brownian motion and truncated fractional levy motion simulation algorithm based on successive random additions
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(02)00073-0
– year: 2015
  ident: 10.1016/j.amc.2020.125907_bib0030
– volume: 70
  start-page: 272
  issue: 1
  year: 2017
  ident: 10.1016/j.amc.2020.125907_bib0004
  article-title: Uniform convergent tailored finite point method for advection-diffusion equation with discontinuous, anisotropic and vanishing diffusivity
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0254-1
– volume: 82
  start-page: 213
  year: 2013
  ident: 10.1016/j.amc.2020.125907_bib0003
  article-title: Tailored finite point method based on exponential bases for convection-diffusion-reaction equation
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2012-02616-0
– year: 2020
  ident: 10.1016/j.amc.2020.125907_bib0006
  article-title: Tailored finite point method for time fractional convection dominated diffusion problems with boundary layers
  publication-title: Math. Methods Appl. Sci.
– volume: 322
  start-page: 55
  year: 2018
  ident: 10.1016/j.amc.2020.125907_bib0029
  article-title: A collocation method for fractional diffusion equation in a long time with chebyshev functions
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 200
  year: 2009
  ident: 10.1016/j.amc.2020.125907_bib0002
  article-title: Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9292-2
– volume: 225
  start-page: 1533
  issue: 2
  year: 2007
  ident: 10.1016/j.amc.2020.125907_bib0014
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.02.001
– volume: 70
  start-page: 407
  issue: 1
  year: 2017
  ident: 10.1016/j.amc.2020.125907_bib0022
  article-title: Two mixed finite element methods for time-fractional diffusion equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0152-y
– volume: 36
  start-page: 243
  year: 2008
  ident: 10.1016/j.amc.2020.125907_bib0001
  article-title: A tailored finite point method for a singular perturbation problem on an unbounded domain
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9187-7
– volume: 281
  start-page: 67
  year: 2015
  ident: 10.1016/j.amc.2020.125907_bib0024
  article-title: A high-accuracy preserving spectral Galerkin method for the dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.018
– volume: 355
  start-page: 85
  year: 2019
  ident: 10.1016/j.amc.2020.125907_bib0005
  article-title: A new tailored finite point method for strongly anisotropic diffusion equation on misaligned grids
  publication-title: Appl. Math. Comput.
– volume: 417
  start-page: 109576
  year: 2020
  ident: 10.1016/j.amc.2020.125907_bib0018
  article-title: A parallel-in-time iterative algorithm for volterra partial integro-differential problems with weakly singular kernel
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109576
– volume: 72
  start-page: 957
  issue: 3
  year: 2017
  ident: 10.1016/j.amc.2020.125907_bib0017
  article-title: Fast iterative method with a second-order implicit difference scheme for time-space fractional convectioncdiffusion equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0388-9
– volume: 54
  start-page: 729
  issue: 1
  year: 2011
  ident: 10.1016/j.amc.2020.125907_bib0011
  article-title: Fully fractional anisotropic diffusion for image denoising
  publication-title: Math. Comput. Model
  doi: 10.1016/j.mcm.2011.03.017
– volume: 56
  start-page: 193
  issue: 2
  year: 2006
  ident: 10.1016/j.amc.2020.125907_bib0013
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.03.003
– volume: 92
  start-page: 167
  issue: 1
  year: 2015
  ident: 10.1016/j.amc.2020.125907_bib0016
  article-title: Compact difference method for solving the fractional reactioncsubdiffusion equation with neumann boundary value condition
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2014.887702
– volume: 52
  start-page: 2599
  issue: 6
  year: 2014
  ident: 10.1016/j.amc.2020.125907_bib0023
  article-title: A crank-nicolson adi spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130934192
– year: 1999
  ident: 10.1016/j.amc.2020.125907_bib0007
– volume: 16
  start-page: 2492
  issue: 10
  year: 2007
  ident: 10.1016/j.amc.2020.125907_bib0010
  article-title: Fractional-order anisotropic diffusion for image denoising
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2007.904971
– volume: 280
  start-page: 143
  year: 2015
  ident: 10.1016/j.amc.2020.125907_bib0015
  article-title: Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.012
– volume: 276
  start-page: 252
  year: 2016
  ident: 10.1016/j.amc.2020.125907_bib0028
  article-title: Quadratic spline collocation method for the time fractional subdiffusion equation
  publication-title: Appl. Math. Comput.
– volume: 54
  start-page: 1905
  issue: 4
  year: 2016
  ident: 10.1016/j.amc.2020.125907_bib0009
  article-title: Adaptive variable time fractional anisotropic diffusion filtering for seismic data noise attenuation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2490158
– volume: 59
  start-page: 1718
  issue: 5
  year: 2010
  ident: 10.1016/j.amc.2020.125907_bib0019
  article-title: A note on the finite element method for the space-fractional advection diffusion equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.071
– volume: 281
  start-page: 825
  year: 2015
  ident: 10.1016/j.amc.2020.125907_bib0020
  article-title: The galerkin finite element method for a multi-term time-fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.051
– volume: 256
  start-page: 824
  year: 2014
  ident: 10.1016/j.amc.2020.125907_bib0027
  article-title: Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.016
– volume: 72
  start-page: 749
  issue: 3
  year: 2016
  ident: 10.1016/j.amc.2020.125907_bib0021
  article-title: Finite element method for space-time fractional diffusion equation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0065-8
SSID ssj0007614
Score 2.3617866
Snippet •This is the first attempt to construct tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity.•The most...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 125907
SubjectTerms Anisotropic
Discontinuous
Subdiffusion
Tailored finite point method
Title A tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity
URI https://dx.doi.org/10.1016/j.amc.2020.125907
Volume 401
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ6ehNjpZCbJHEuxVKU9WegtZJZIBJOY5epvd14WF9CLtxB4kHwZ3nsz-d73IXTt2wynNVGOH0fUYfF06gifaCeKeSSEklRHMCi8WnvLDXvY8u0AzftZGKBVdrm_zelNtu7uTDo0J3mSwIyvAL0ol4LkitcISjLmg4vB7fsXzcNu01slZgEcL-L2fzYbjlf0CiqGFDQWuABH2d9q07d6szhA-12jiGftsxyigUmP0N7qU2W1PEbPMwz8z6wwGscJNI84z5K0wq0tNLb9KC5rCR4oNRyKYfPWCntjOH3FUZqUWVVkeaLstcYwoJuBcUSd1SXuosBa4gRtFndP86XTGSc4yu6mKkfaKk-oDKTtNqTkghphK7l2WQBvqbVS3JUBVHKiudJSEVcbIokSgY65VO4pGqZZas5gpNt4mjNpa6lkQJkRgef62jYyEfWnzB-hmx6yMG_1McKeOPYSWnxDwDds8R0h1oMa_vjIoc3ff4ed_y_sAu1SIKCACia_RMOqqM2V7SAqOW6WyBjtzO4fl-sP81HHFw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aAejM9Yn3vwZILdLiywx6axqdr21Ca9bdgHBhMBC1z97e4U8JHoxRsh2QQ-NjPfLN98g9BNYCOc1kQ5QRxRx4sHA4cHRDtRzCLOlaQ6gkbh2dyfLL3HFVt10KjthQFZZRP765i-idbNnX6DZj9PEujx5eAX5VKwXPHBUHLLYzSACuzu_UvnYev02oqZg8iLuO2vzY3IK3oFG0MKJguMw0jZ35LTt4Qz3kd7DVPEw_phDlDHpIdod_Zps1ocoechBgFotjYaxwmwR5xnSVriei40toQUF5WEISgVnIph81Y7e2M4fsVRmhRZuc7yRNlrjaFDN4PJEVVWFbhZBbMljtFyfL8YTZxmcoKjbDlVOtKmeUJlKC3dkJJxarhN5dr1QnhLrZVirgwhlRPNlJaKuNoQSRQPdcykck9QN81Scwo93cbXzJM2mUoPNDM89N1AWyYT0WDgBT1020Im8togQ7TKsRdh8RWAr6jx7SGvBVX8-MrCBvC_l539b9k12p4sZlMxfZg_naMdCmoUsMRkF6hbritzaelEKa822-UDx7HIrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tailored+finite+point+method+for+subdiffusion+equation+with+anisotropic+and+discontinuous+diffusivity&rft.jtitle=Applied+mathematics+and+computation&rft.au=Wang%2C+Yihong&rft.au=Cao%2C+Jianxiong&rft.date=2021-07-15&rft.issn=0096-3003&rft.volume=401&rft.spage=125907&rft_id=info:doi/10.1016%2Fj.amc.2020.125907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2020_125907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon