Zn(Li)O nanorods for direct conversion X-ray sensors in the intra-oral energy range
X-ray sensor has a significant application in numerous fields. It creates a high demand for achieving an X-ray sensor with high sensitivity at a low detection limit. Here, ZnO is incorporated with different concentrations of Li (Zn-0.99: Li-0.01, Zn-99: Li-1, Zn-95: Li-5, Zn-90: Li-10) by thermal de...
Saved in:
Published in | Applied physics. A, Materials science & processing Vol. 128; no. 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0947-8396 1432-0630 |
DOI | 10.1007/s00339-022-06205-5 |
Cover
Abstract | X-ray sensor has a significant application in numerous fields. It creates a high demand for achieving an X-ray sensor with high sensitivity at a low detection limit. Here, ZnO is incorporated with different concentrations of Li (Zn-0.99: Li-0.01, Zn-99: Li-1, Zn-95: Li-5, Zn-90: Li-10) by thermal decomposition route. The obtained products were characterized for its structure and purity form using X-ray diffraction and Raman spectroscopy, respectively. A scanning electron microscope detects all the samples that exist in rod morphology. The doctor blading technique employs a thick film X-ray sensor development for different concentrated Zn(Li)O nanorods above the interdigitated electrode substrate. The photocurrent instigated by the Zn(Li)O thick films at different X-ray doses using a pulsed intra-oral machine was measured under a two-volt bias with the help of a source meter. Further, the attenuation effect on an incremental addition of Li in the ZnO lattice alters the sensing nature of all the different doses. The appreciable sensitivity of Zn(Li)O nanorods obtained against pulsed X-ray doses explores the applicability of Zn(Li)O nanorods for X-ray imaging sensor fabrication. |
---|---|
AbstractList | X-ray sensor has a significant application in numerous fields. It creates a high demand for achieving an X-ray sensor with high sensitivity at a low detection limit. Here, ZnO is incorporated with different concentrations of Li (Zn-0.99: Li-0.01, Zn-99: Li-1, Zn-95: Li-5, Zn-90: Li-10) by thermal decomposition route. The obtained products were characterized for its structure and purity form using X-ray diffraction and Raman spectroscopy, respectively. A scanning electron microscope detects all the samples that exist in rod morphology. The doctor blading technique employs a thick film X-ray sensor development for different concentrated Zn(Li)O nanorods above the interdigitated electrode substrate. The photocurrent instigated by the Zn(Li)O thick films at different X-ray doses using a pulsed intra-oral machine was measured under a two-volt bias with the help of a source meter. Further, the attenuation effect on an incremental addition of Li in the ZnO lattice alters the sensing nature of all the different doses. The appreciable sensitivity of Zn(Li)O nanorods obtained against pulsed X-ray doses explores the applicability of Zn(Li)O nanorods for X-ray imaging sensor fabrication. |
ArticleNumber | 1048 |
Author | Karthieka, R. R. Prakash, T. |
Author_xml | – sequence: 1 givenname: R. R. surname: Karthieka fullname: Karthieka, R. R. organization: National Centre for Nanoscience and Nanotechnology, University of Madras – sequence: 2 givenname: T. surname: Prakash fullname: Prakash, T. email: thanigaiprakash@gmail.com organization: National Centre for Nanoscience and Nanotechnology, University of Madras |
BookMark | eNp9kEtLAzEQgINUsK3-AU8BL3qIZjPZzeYoxRcUelBBvISYZuuWmtTJVui_N3UFwUPnMgzMN49vRAYhBk_IacEvC87VVeIcQDMuBOOV4CUrD8iwkLArgQ_IkGupWA26OiKjlJY8hxRiSB5fw_m0vZjRYEPEOE-0iUjnLXrXURfDl8fUxkBfGNotTT6kiIm2gXbvPqcOLYtoV9QHj4stRRsW_pgcNnaV_MlvHpPn25unyT2bzu4eJtdT5oTUHdNK-cL5WjmpS1U3ZamghEZrUKAqcLqWCqyAhs-l90VRuzfhSts4qJQW1sOYnPVz1xg_Nz51Zhk3GPJKIxTISgLnOneJvsthTAl9Y9bYfljcmoKbnTzTyzNZnvmRZ8oM1f8g13a2yybyx-1qPwo9mvKebAP_rtpDfQO4RoRP |
CitedBy_id | crossref_primary_10_1016_j_sna_2023_114200 |
Cites_doi | 10.1088/1361-6641/abb71e 10.1364/AO.55.008494 10.1016/j.mssp.2020.105289 10.1007/s13391-018-0033-2 10.1186/2228-5326-3-1 10.1016/j.molliq.2012.11.012 10.1021/acssuschemeng.5b00044 10.1063/1.4947085 10.1016/j.nima.2011.11.009 10.1149/2.0071907jss 10.1002/admt.202000475 10.1016/j.sna.2019.111801 10.1016/j.jrras.2015.08.005 10.1021/acs.iecr.7b02711 10.1016/j.apsusc.2015.02.197 10.1021/nl070111x 10.1177/1559325818796331 10.1007/s10854-016-5863-9 10.1016/j.spmi.2009.03.006 10.1038/s41467-018-05301-6 10.1016/j.matchar.2018.06.024 10.1142/S0219581X15500180 10.1088/0256-307X/36/11/110701 10.3390/app9224878 10.1016/j.sna.2019.111544 10.1016/j.matchemphys.2010.09.030 10.1021/nl060867g 10.1016/j.cjph.2021.02.017 10.1088/0957-4484/20/33/332001 10.1038/s41377-020-00353-0 10.1016/j.mssp.2017.01.013 10.1016/j.sna.2021.113310 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00339-022-06205-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1432-0630 |
ExternalDocumentID | 10_1007_s00339_022_06205_5 |
GroupedDBID | -54 -5F -5G -BR -EM -XW -XX -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WIP WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZE2 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c249t-977e1ce87c49578f557353f99373763c98473a23f0d4ee118cb2c5afc36792ae3 |
IEDL.DBID | AGYKE |
ISSN | 0947-8396 |
IngestDate | Wed Sep 17 23:59:20 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Tue Jul 01 00:39:37 EDT 2025 Fri Feb 21 02:45:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Attenuation effect X-ray sensor Photocurrent measurement Low dose Zn(Li)O nanorods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-977e1ce87c49578f557353f99373763c98473a23f0d4ee118cb2c5afc36792ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2734643009 |
PQPubID | 2043608 |
ParticipantIDs | proquest_journals_2734643009 crossref_primary_10_1007_s00339_022_06205_5 crossref_citationtrail_10_1007_s00339_022_06205_5 springer_journals_10_1007_s00339_022_06205_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Materials Science & Processing |
PublicationTitle | Applied physics. A, Materials science & processing |
PublicationTitleAbbrev | Appl. Phys. A |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | SambandamBSurenjanAPhilipLPradeepTACS Sustain. Chem. Eng.201531321132910.1021/acssuschemeng.5b00044 EndoHChibaTMeguroKTakahashiKFujisawaMSugimuraSNaritaSKashiwabaYSatoENucl. Instrum. Methods Phys Res. Sect. A.201166515182011NIMPA.665...15E10.1016/j.nima.2011.11.009 SarmaMPKalitaJMWaryGMater. Sci. Semicond. Proc.20176113113610.1016/j.mssp.2017.01.013 KhanGRKhanRAInt. J. Nanosci.201514155001810.1142/S0219581X15500180 JieJSZhangWJJiangYMengXMLiYQLeeNano Lett.20066188718922006NanoL...6.1887J10.1021/nl060867g Balachandra KumarKRajiPRecent Res Sci. Technol.201134852 ThirimanneHMJayawardenaKDGIParnellAJBandaraRMIKaralasingamAPaniSHuerdlerJELidzeyDGTeddeSFNisbetAMillsCASilvaSRPNat. Commun.2018929262018NatCo...9.2926T10.1038/s41467-018-05301-6 BayatAEbrahimiMMohammadiANMoshfeghAZAppl. Surf. Sci.201534192992015ApSS..341...92B10.1016/j.apsusc.2015.02.197 ZhaoXChenLHeYLiuJPengWHuangZQiXPanZZhangWZhangZOuyangXAppl. Phys. Lett.20161082016ApPhL.108q1103Z10.1063/1.4947085 WillanderMNurOZhaoQXYangLLLorenzMCaoBQPérezJZCzekallaCZimmermannGGrundmannMBakinABehrendsASuleimanMAShaerAEMoforACPostelsBWaagABoukosNTravlosAKwackHSGuinardJDangDLSNanotechnol.20092010.1088/0957-4484/20/33/332001 EndoHChibaTMeguroKTakahashiKFujisawaMSugimuraSNaritaSKashiwabaYSatoENucl. Instrum. Methods Phys. Res. A201166515182011NIMPA.665...15E10.1016/j.nima.2011.11.009 LuXZhouLChenLOuyangXTangHLiuBXuJECS J. Solid State Sci. Technol.201983046304910.1149/2.0071907jss ZhaoXHuangDLiGHeYPengWLiGSens. Actuator. Phys. A.202233410.1016/j.sna.2021.113310 BiswasPRSahadathHMollahASFazlul HuqMdJ. Radiat. Res. Appl. Sci.20169263410.1016/j.jrras.2015.08.005 MirzaeiAHuhJSKimSSKimHWElectron. Mater. Lett.2018142612872018EML....14..261M10.1007/s13391-018-0033-2 ZhuWMaWSuYChenZChenXMaYBaiLXiaoWLiuTZhuHLiuXLiuHLiuXYangYLight Sci. Appl.202091122020LSA.....9..112Z10.1038/s41377-020-00353-0 SaravananRGuptaVKPrakashTNarayananVStephenAJ. Mol. Liq.2013187889310.1016/j.molliq.2012.11.012 PrakashTChandrasekarPInt. Nano Lett.201331510.1186/2228-5326-3-1 BoudjouanFCheloucheATouamTDjouadiDMahiouRChadeyronGFischerABoudriouaAJ Mater Sci: Mater Electron.20162780408046 ViegasJPSilvaLABatistaAMSFurtadoCANascimentoJPFariaLODInd. Eng. Chem. Res.201756117821179010.1021/acs.iecr.7b02711 KarthiekaRRDevanand VenkatasubbuGPrakashTMat. Sci. Semicon Proc.202012010528910.1016/j.mssp.2020.105289 VaisermanAKoliadaAZabugaOSocolYDose Response.20181612710.1177/1559325818796331 AjalaFLachhebHBouaziziNHouasAJ. Mater Sci. Mater Electron2017282817282510.1007/s10854-016-5863-9 BasiricoLCiavattiAFraboniBAdv. Mater. Technol.20206200047510.1002/admt.202000475 Suraiya BegumSNKarthiekaRRAjith KumarBSJuliana LaetishaJPrakashTSemicond. Sci. Technol.2020351250022020SeScT..35l5002S10.1088/1361-6641/abb71e PraveenkumarPSubashiniTDevanand VenkatasubbuGPrakashTSens. Actuator. Phys. A.201929711154410.1016/j.sna.2019.111544 SaravananRShankarHPrakashTNarayananVStephenAMat. Chem. Phys.201112527728010.1016/j.matchemphys.2010.09.030 ZhangXQinJXueYYuPZhangBWangLLiuRSci. Rep.20144459618 KimJHMirzaeiAKimHWKimHJVuongPQKimSSAppl. Sci.20199487810.3390/app9224878 Dehdashti JahromiHMahMoodiASheikhiMHZarifkarAAppl. opt.20165584942016ApOpt..55.8494J10.1364/AO.55.008494 LiangHLCuiSJHuoWXWangTZhangYHQuanBGDuXLMeiZXChin. Phys. Lett.2019362019ChPhL..36k0701L10.1088/0256-307X/36/11/110701 KumarPYadavAKJoshiAGBhattacharyyDJhaSNPandeyPCMater. Charact.201814259360110.1016/j.matchar.2018.06.024 SociCZhangAXiangBDayehSAAplinDPRParkJBaoXYLoYHWangDNano Lett.20077100310092007NanoL...7.1003S10.1021/nl070111x KarthiekaRRNafeesa BegumRPrakashTChin. J. Phys.20217164365010.1016/j.cjph.2021.02.017 MajumdarSBanerjiPSuperlattices Microstruct.2009455835892009SuMi...45..583M10.1016/j.spmi.2009.03.006 KarthiekaRRSubashiniTLakshmi DeviSPrakashTSens. Actuator. A202030211180110.1016/j.sna.2019.111801 L Basirico (6205_CR28) 2020; 6 T Prakash (6205_CR2) 2013; 3 H Dehdashti Jahromi (6205_CR27) 2016; 55 P Praveenkumar (6205_CR16) 2019; 297 PR Biswas (6205_CR13) 2016; 9 A Vaiserman (6205_CR12) 2018; 16 P Kumar (6205_CR20) 2018; 142 HL Liang (6205_CR33) 2019; 36 F Boudjouan (6205_CR24) 2016; 27 R Saravanan (6205_CR4) 2011; 125 M Willander (6205_CR26) 2009; 20 W Zhu (6205_CR36) 2020; 9 A Bayat (6205_CR25) 2015; 341 SN Suraiya Begum (6205_CR18) 2020; 35 S Majumdar (6205_CR22) 2009; 45 JP Viegas (6205_CR15) 2017; 56 X Zhang (6205_CR5) 2014; 44596 MP Sarma (6205_CR9) 2017; 61 K Balachandra Kumar (6205_CR21) 2011; 3 A Mirzaei (6205_CR8) 2018; 14 R Saravanan (6205_CR3) 2013; 187 JH Kim (6205_CR29) 2019; 9 X Zhao (6205_CR6) 2016; 108 RR Karthieka (6205_CR14) 2021; 71 HM Thirimanne (6205_CR31) 2018; 9 JS Jie (6205_CR10) 2006; 6 RR Karthieka (6205_CR17) 2020; 302 C Soci (6205_CR11) 2007; 7 B Sambandam (6205_CR1) 2015; 3 H Endo (6205_CR34) 2011; 665 X Zhao (6205_CR35) 2022; 334 RR Karthieka (6205_CR30) 2020; 120 X Lu (6205_CR32) 2019; 8 GR Khan (6205_CR23) 2015; 14 H Endo (6205_CR7) 2011; 665 F Ajala (6205_CR19) 2017; 28 |
References_xml | – reference: SociCZhangAXiangBDayehSAAplinDPRParkJBaoXYLoYHWangDNano Lett.20077100310092007NanoL...7.1003S10.1021/nl070111x – reference: BayatAEbrahimiMMohammadiANMoshfeghAZAppl. Surf. Sci.201534192992015ApSS..341...92B10.1016/j.apsusc.2015.02.197 – reference: LiangHLCuiSJHuoWXWangTZhangYHQuanBGDuXLMeiZXChin. Phys. Lett.2019362019ChPhL..36k0701L10.1088/0256-307X/36/11/110701 – reference: BiswasPRSahadathHMollahASFazlul HuqMdJ. Radiat. Res. Appl. Sci.20169263410.1016/j.jrras.2015.08.005 – reference: KarthiekaRRNafeesa BegumRPrakashTChin. J. Phys.20217164365010.1016/j.cjph.2021.02.017 – reference: ZhaoXHuangDLiGHeYPengWLiGSens. Actuator. Phys. A.202233410.1016/j.sna.2021.113310 – reference: KimJHMirzaeiAKimHWKimHJVuongPQKimSSAppl. Sci.20199487810.3390/app9224878 – reference: SambandamBSurenjanAPhilipLPradeepTACS Sustain. Chem. Eng.201531321132910.1021/acssuschemeng.5b00044 – reference: EndoHChibaTMeguroKTakahashiKFujisawaMSugimuraSNaritaSKashiwabaYSatoENucl. Instrum. Methods Phys Res. Sect. A.201166515182011NIMPA.665...15E10.1016/j.nima.2011.11.009 – reference: JieJSZhangWJJiangYMengXMLiYQLeeNano Lett.20066188718922006NanoL...6.1887J10.1021/nl060867g – reference: Suraiya BegumSNKarthiekaRRAjith KumarBSJuliana LaetishaJPrakashTSemicond. Sci. Technol.2020351250022020SeScT..35l5002S10.1088/1361-6641/abb71e – reference: WillanderMNurOZhaoQXYangLLLorenzMCaoBQPérezJZCzekallaCZimmermannGGrundmannMBakinABehrendsASuleimanMAShaerAEMoforACPostelsBWaagABoukosNTravlosAKwackHSGuinardJDangDLSNanotechnol.20092010.1088/0957-4484/20/33/332001 – reference: ZhuWMaWSuYChenZChenXMaYBaiLXiaoWLiuTZhuHLiuXLiuHLiuXYangYLight Sci. Appl.202091122020LSA.....9..112Z10.1038/s41377-020-00353-0 – reference: ViegasJPSilvaLABatistaAMSFurtadoCANascimentoJPFariaLODInd. Eng. Chem. Res.201756117821179010.1021/acs.iecr.7b02711 – reference: KumarPYadavAKJoshiAGBhattacharyyDJhaSNPandeyPCMater. Charact.201814259360110.1016/j.matchar.2018.06.024 – reference: ZhaoXChenLHeYLiuJPengWHuangZQiXPanZZhangWZhangZOuyangXAppl. Phys. Lett.20161082016ApPhL.108q1103Z10.1063/1.4947085 – reference: MirzaeiAHuhJSKimSSKimHWElectron. Mater. Lett.2018142612872018EML....14..261M10.1007/s13391-018-0033-2 – reference: LuXZhouLChenLOuyangXTangHLiuBXuJECS J. Solid State Sci. Technol.201983046304910.1149/2.0071907jss – reference: ZhangXQinJXueYYuPZhangBWangLLiuRSci. Rep.20144459618 – reference: KarthiekaRRSubashiniTLakshmi DeviSPrakashTSens. Actuator. A202030211180110.1016/j.sna.2019.111801 – reference: Balachandra KumarKRajiPRecent Res Sci. Technol.201134852 – reference: EndoHChibaTMeguroKTakahashiKFujisawaMSugimuraSNaritaSKashiwabaYSatoENucl. Instrum. Methods Phys. Res. A201166515182011NIMPA.665...15E10.1016/j.nima.2011.11.009 – reference: VaisermanAKoliadaAZabugaOSocolYDose Response.20181612710.1177/1559325818796331 – reference: PrakashTChandrasekarPInt. Nano Lett.201331510.1186/2228-5326-3-1 – reference: PraveenkumarPSubashiniTDevanand VenkatasubbuGPrakashTSens. Actuator. Phys. A.201929711154410.1016/j.sna.2019.111544 – reference: SarmaMPKalitaJMWaryGMater. Sci. Semicond. Proc.20176113113610.1016/j.mssp.2017.01.013 – reference: AjalaFLachhebHBouaziziNHouasAJ. Mater Sci. Mater Electron2017282817282510.1007/s10854-016-5863-9 – reference: MajumdarSBanerjiPSuperlattices Microstruct.2009455835892009SuMi...45..583M10.1016/j.spmi.2009.03.006 – reference: KarthiekaRRDevanand VenkatasubbuGPrakashTMat. Sci. Semicon Proc.202012010528910.1016/j.mssp.2020.105289 – reference: BasiricoLCiavattiAFraboniBAdv. Mater. Technol.20206200047510.1002/admt.202000475 – reference: ThirimanneHMJayawardenaKDGIParnellAJBandaraRMIKaralasingamAPaniSHuerdlerJELidzeyDGTeddeSFNisbetAMillsCASilvaSRPNat. Commun.2018929262018NatCo...9.2926T10.1038/s41467-018-05301-6 – reference: SaravananRShankarHPrakashTNarayananVStephenAMat. Chem. Phys.201112527728010.1016/j.matchemphys.2010.09.030 – reference: Dehdashti JahromiHMahMoodiASheikhiMHZarifkarAAppl. opt.20165584942016ApOpt..55.8494J10.1364/AO.55.008494 – reference: BoudjouanFCheloucheATouamTDjouadiDMahiouRChadeyronGFischerABoudriouaAJ Mater Sci: Mater Electron.20162780408046 – reference: KhanGRKhanRAInt. J. Nanosci.201514155001810.1142/S0219581X15500180 – reference: SaravananRGuptaVKPrakashTNarayananVStephenAJ. Mol. Liq.2013187889310.1016/j.molliq.2012.11.012 – volume: 35 start-page: 125002 year: 2020 ident: 6205_CR18 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/abb71e – volume: 55 start-page: 8494 year: 2016 ident: 6205_CR27 publication-title: Appl. opt. doi: 10.1364/AO.55.008494 – volume: 120 start-page: 105289 year: 2020 ident: 6205_CR30 publication-title: Mat. Sci. Semicon Proc. doi: 10.1016/j.mssp.2020.105289 – volume: 14 start-page: 261 year: 2018 ident: 6205_CR8 publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-018-0033-2 – volume: 3 start-page: 1 year: 2013 ident: 6205_CR2 publication-title: Int. Nano Lett. doi: 10.1186/2228-5326-3-1 – volume: 187 start-page: 88 year: 2013 ident: 6205_CR3 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2012.11.012 – volume: 3 start-page: 1321 year: 2015 ident: 6205_CR1 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00044 – volume: 108 year: 2016 ident: 6205_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4947085 – volume: 665 start-page: 15 year: 2011 ident: 6205_CR7 publication-title: Nucl. Instrum. Methods Phys Res. Sect. A. doi: 10.1016/j.nima.2011.11.009 – volume: 8 start-page: 3046 year: 2019 ident: 6205_CR32 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0071907jss – volume: 6 start-page: 2000475 year: 2020 ident: 6205_CR28 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000475 – volume: 302 start-page: 111801 year: 2020 ident: 6205_CR17 publication-title: Sens. Actuator. A doi: 10.1016/j.sna.2019.111801 – volume: 27 start-page: 8040 year: 2016 ident: 6205_CR24 publication-title: J Mater Sci: Mater Electron. – volume: 9 start-page: 26 year: 2016 ident: 6205_CR13 publication-title: J. Radiat. Res. Appl. Sci. doi: 10.1016/j.jrras.2015.08.005 – volume: 3 start-page: 48 year: 2011 ident: 6205_CR21 publication-title: Recent Res Sci. Technol. – volume: 56 start-page: 11782 year: 2017 ident: 6205_CR15 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02711 – volume: 341 start-page: 92 year: 2015 ident: 6205_CR25 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.02.197 – volume: 7 start-page: 1003 year: 2007 ident: 6205_CR11 publication-title: Nano Lett. doi: 10.1021/nl070111x – volume: 16 start-page: 1 year: 2018 ident: 6205_CR12 publication-title: Dose Response. doi: 10.1177/1559325818796331 – volume: 28 start-page: 2817 year: 2017 ident: 6205_CR19 publication-title: J. Mater Sci. Mater Electron doi: 10.1007/s10854-016-5863-9 – volume: 45 start-page: 583 year: 2009 ident: 6205_CR22 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2009.03.006 – volume: 44596 start-page: 1 year: 2014 ident: 6205_CR5 publication-title: Sci. Rep. – volume: 9 start-page: 2926 year: 2018 ident: 6205_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05301-6 – volume: 665 start-page: 15 year: 2011 ident: 6205_CR34 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2011.11.009 – volume: 142 start-page: 593 year: 2018 ident: 6205_CR20 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.06.024 – volume: 14 start-page: 1550018 year: 2015 ident: 6205_CR23 publication-title: Int. J. Nanosci. doi: 10.1142/S0219581X15500180 – volume: 36 year: 2019 ident: 6205_CR33 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/36/11/110701 – volume: 9 start-page: 4878 year: 2019 ident: 6205_CR29 publication-title: Appl. Sci. doi: 10.3390/app9224878 – volume: 297 start-page: 111544 year: 2019 ident: 6205_CR16 publication-title: Sens. Actuator. Phys. A. doi: 10.1016/j.sna.2019.111544 – volume: 125 start-page: 277 year: 2011 ident: 6205_CR4 publication-title: Mat. Chem. Phys. doi: 10.1016/j.matchemphys.2010.09.030 – volume: 6 start-page: 1887 year: 2006 ident: 6205_CR10 publication-title: Nano Lett. doi: 10.1021/nl060867g – volume: 71 start-page: 643 year: 2021 ident: 6205_CR14 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.02.017 – volume: 20 year: 2009 ident: 6205_CR26 publication-title: Nanotechnol. doi: 10.1088/0957-4484/20/33/332001 – volume: 9 start-page: 112 year: 2020 ident: 6205_CR36 publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-00353-0 – volume: 61 start-page: 131 year: 2017 ident: 6205_CR9 publication-title: Mater. Sci. Semicond. Proc. doi: 10.1016/j.mssp.2017.01.013 – volume: 334 year: 2022 ident: 6205_CR35 publication-title: Sens. Actuator. Phys. A. doi: 10.1016/j.sna.2021.113310 |
SSID | ssj0000422 |
Score | 2.3964987 |
Snippet | X-ray sensor has a significant application in numerous fields. It creates a high demand for achieving an X-ray sensor with high sensitivity at a low detection... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Blade coating Characterization and Evaluation of Materials Condensed Matter Physics Direct conversion Machines Manufacturing Materials science Nanorods Nanotechnology Optical and Electronic Materials Photoelectric effect Physics Physics and Astronomy Processes Raman spectroscopy Sensitivity Sensors Substrates Surfaces and Interfaces Thermal decomposition Thick films Thin Films X ray imagery Zinc oxide |
Title | Zn(Li)O nanorods for direct conversion X-ray sensors in the intra-oral energy range |
URI | https://link.springer.com/article/10.1007/s00339-022-06205-5 https://www.proquest.com/docview/2734643009 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BERIMvBHlUXlgAIFRG8d5jC1QECAYoFJhiVz3IiFQipIwwK_n7CQtIEBiyhDHSnz23Xfxd58BdlHKuDWMfT4MlS3JcXmgfcEJvGIwVK6RKDNsi2vvvOde9GW_LArLKrZ7tSVpPfW42M0cOxZywz5vek5TcjkNM5ISFFqOM-2z-8vTiQd2i92D0CUPLEKvLJb5uZevAWmCMr9tjNp4012EXvWmBc3k6eg1Hxzp928ijv_9lCVYKAEoaxczZhmmMFmB-U-yhCswa2mhOluF24dk7-px_4YlKhmRq80YYVxWhEFmCev2bxvr81S9sYxS4lGasceEEaykS54qbhQAGNoKQ5aaSoY16HVP747PeXkMA9eUm-WcECK2NAa-pmTKD2IpfSFFbICN8U46pAAnlCPi5tBFpIRFDxwtVayF54eOQrEOtWSU4AawQElPUdyU4UC7vsQQm-gqgZ5uBYg6rkOrskWkS41yc1TGczRWV7ZDF9HQRXboIlmHg_EzL4VCx5-ttysTR-VqzSIj8UPIjOBmHQ4ri01u_97b5v-ab8GcY4xu2TDbUMvTV9whTJMPGjSFOyedbqOcyg2Y7jntD6Uu6zg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAEHBAPEeObAAQSR1qbp4zghpgFjHNikiUuVZa40CXWoHQf-PU7aboAAiVMPTXOwE_tz7c8GOEMpE2ecBHwcKUvJ8XioA8EJvGI4Vp5pUWaqLXp-Z-DdDeWwJIXlVbV7lZK0lnpOdjNjxyJuqs-bvtuUXC7DikkzmpBr4LYW9tcrcgeRR_ZXRH5Jlfl5j6_uaIExv6VFrbdpb8FmCRNZq9DrNixhWoeNT80D67Bqizd1vgNPz-l5d3LxyFKVTskg5oyQKCucFbNl5fafGBvyTL2znALXaZazScoI_NFjliluePoMLQ-QZYZvsAuD9k3_usPLYQlcUwQ144Tj0NEYBppCniBMpAyEFImBH8aG6IjckFCuSJpjD5HCCj1ytVSJFn4QuQrFHtTSaYr7wEIlfUXeTUYj7QUSI2yipwT62gkRddIAp5JZrMtO4magxUs874Fs5RyTnGMr51g24HL-zWvRR-PP1UeVKuLyTuWxacRD-IlAYQOuKvUsXv--28H_lp_CWqf_0I27t737Q1h3zWmx9StHUJtlb3hMKGQ2OrGH7gMxi87Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BoiJ6AMpDXR7Fhx5agZfd2M7jiIAtL9FKLdLCJfI6Ewm1yqIkHODXM3aSXUAFCXHKIYmVeJyZb-JvvgH4ikqlvSQNeBJpV5IjeWgCwQm8YphoaSXKLNvi3D-6kCcDNXhUxe_Y7s2WZFXTYFWasnL3Jkl3x4VvtgVZxC0Tvet7XcXVNMxI20OiBTN7Py5PDyfeWFY7CZEkbywivy6c-f8oT4PTBHE-2yR1sae_ALp56opy8rdzWw475v6ZoON7XmsR5mtgyvaqlfQJpjBbgo-P5AqX4IOji5piGX5fZd_Orr__ZJnORuSCC0bYl1XhkTkiu_sLxwY813esoFR5lBfsOmMEN-lQ5ppbZQCGrvKQ5bbCYQUu-od_9o943Z6BG8rZSk7IEXsGw8BQkhWEqVKBUCK1gMd6LRNR4BPaE2k3kYiUyJihZ5ROjfCDyNMoVqGVjTL8DCzUytcUT1U0NDJQGGEXpRbom16IaNI29Bq7xKbWLrctNP7FY9VlN3UxTV3spi5Wbdge33NTKXe8evVGY-64_oqL2Er_EGIjGNqGncZ6k9Mvj7b2tsu3YPbXQT8-Oz4_XYc5z9rfEWY2oFXmt7hJsKccfqlX9gOw8fSp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zn%28Li%29O+nanorods+for+direct+conversion+X-ray+sensors+in+the+intra-oral+energy+range&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Karthieka%2C+R.+R.&rft.au=Prakash%2C+T.&rft.date=2022-12-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=128&rft.issue=12&rft_id=info:doi/10.1007%2Fs00339-022-06205-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00339_022_06205_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon |