RESPIPulse: Machine learning assisted sensory device for pulsed mode delivery of oxygen bolus using surface electromyography (sEMG) signals
Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and rest phases of the respiratory cycle. Pulse mode oxygen delivery can address the stated problem, however, it is required to determine the number...
        Saved in:
      
    
          | Published in | Sensors and actuators. A. Physical. Vol. 369; p. 115121 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        16.04.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0924-4247 1873-3069  | 
| DOI | 10.1016/j.sna.2024.115121 | 
Cover
| Abstract | Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and rest phases of the respiratory cycle. Pulse mode oxygen delivery can address the stated problem, however, it is required to determine the number of oxygen release pulses and the exact instant of inhalation or exhalation. Herein we report the design and development of an intelligent pulsed mode respiratory device- “RESPIPulse,” which is capable of delivering oxygen bolus by automatically sensing the inhalation and exhalation instances from body mount surface electromyography (sEMG) electrodes without manual intervention or settings. The device comprises a set of miniature single-channel sEMG electrodes, an embedded machine-learning algorithm, a normally open solenoid valve, an airflow sensor, and necessary driving electronics. The solenoid valve opens or closes depending on the muscular inhalation or exhalation effort determined from the sEMG signals, thus preventing the wastage of respiratory oxygen. The sEMG signals are subjected to envelop extraction followed by feature extraction. Performances of k-nearest neighbor (kNN), support vector regression (SVR), and random forests (RF) regressors are initially tested in Python IDE to identify the best learning algorithm that is deployed in the microcontroller for determination of the instances of inhalation and exhalation. Trials are conducted on 20 healthy subjects and 10 dyspnea-affected patients. Based on the computed performance measures and evaluation time, the kNN algorithm estimates the respiratory instances more accurately than the other two algorithms. A significant amount of oxygen savings, ranging between 35.48–82.35%, is obtained using the RESPIPulse device which is much higher than the pulse mode delivery devices employing manual settings exhibiting maximum conservation of 48.2%.
[Display omitted]
•Automated pulsed mode oxygen delivery device based on sEMG and airflow is developed.•The device can save up to 82% of medical oxygen.•The device acts as oxygen conservation system. | 
    
|---|---|
| AbstractList | Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and rest phases of the respiratory cycle. Pulse mode oxygen delivery can address the stated problem, however, it is required to determine the number of oxygen release pulses and the exact instant of inhalation or exhalation. Herein we report the design and development of an intelligent pulsed mode respiratory device- “RESPIPulse,” which is capable of delivering oxygen bolus by automatically sensing the inhalation and exhalation instances from body mount surface electromyography (sEMG) electrodes without manual intervention or settings. The device comprises a set of miniature single-channel sEMG electrodes, an embedded machine-learning algorithm, a normally open solenoid valve, an airflow sensor, and necessary driving electronics. The solenoid valve opens or closes depending on the muscular inhalation or exhalation effort determined from the sEMG signals, thus preventing the wastage of respiratory oxygen. The sEMG signals are subjected to envelop extraction followed by feature extraction. Performances of k-nearest neighbor (kNN), support vector regression (SVR), and random forests (RF) regressors are initially tested in Python IDE to identify the best learning algorithm that is deployed in the microcontroller for determination of the instances of inhalation and exhalation. Trials are conducted on 20 healthy subjects and 10 dyspnea-affected patients. Based on the computed performance measures and evaluation time, the kNN algorithm estimates the respiratory instances more accurately than the other two algorithms. A significant amount of oxygen savings, ranging between 35.48–82.35%, is obtained using the RESPIPulse device which is much higher than the pulse mode delivery devices employing manual settings exhibiting maximum conservation of 48.2%.
[Display omitted]
•Automated pulsed mode oxygen delivery device based on sEMG and airflow is developed.•The device can save up to 82% of medical oxygen.•The device acts as oxygen conservation system. | 
    
| ArticleNumber | 115121 | 
    
| Author | Mondal, Aruna Dutta, Debeshi Chanda, Nripen Mandal, Nilrudra Mandal, Soumen  | 
    
| Author_xml | – sequence: 1 givenname: Aruna surname: Mondal fullname: Mondal, Aruna organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India – sequence: 2 givenname: Debeshi surname: Dutta fullname: Dutta, Debeshi organization: Indian Institute of Technology, Hyderabad, Telangana, India – sequence: 3 givenname: Nripen surname: Chanda fullname: Chanda, Nripen organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India – sequence: 4 givenname: Nilrudra surname: Mandal fullname: Mandal, Nilrudra organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India – sequence: 5 givenname: Soumen surname: Mandal fullname: Mandal, Soumen email: somandal88@cmeri.res.in organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India  | 
    
| BookMark | eNp9kMtKAzEUhoMoWC8P4C5LXUxNMtfoSqRWwWLxsg6ZzJlpyjQpOW1xnsGXNqWuXf1wDt_POd8ZOXbeASFXnI0548XtcoxOjwUT2ZjznAt-REa8KtMkZYU8JiMmRZZkIitPyRnikjGWpmU5Ij_vk4_5y3zbI9zRmTYL64D2oIOzrqMa0eIGGorg0IeBNrCzBmjrA13vmYaufANx3NsdxL1vqf8eOnC09v0W6Rb3NbgNrY4Y9GA2wa8G3wW9Xgz0Giez6Q1F2znd4wU5aWPA5V-ek6-nyefjc_L6Nn15fHhNjMjkJpFpU7SV0HUuawaMFbXO87KQppU8q1JoJDPxXZG3Js1ZWXMOJde6qIQRRvI8PSf80GuCRwzQqnWwKx0GxZna21RLFW2qvU11sBmZ-wMD8bCdhaDQWHAGGhviU6rx9h_6F0TjgPQ | 
    
| Cites_doi | 10.4187/respcare.06359 10.1007/s11356-021-16385-x 10.4103/aer.aer_116_21 10.1109/CSPA.2017.8064950 10.1109/JSEN.2020.3010134 10.1109/JBHI.2013.2244901 10.1109/EMBC44109.2020.9176377 10.1109/TBME.2021.3110432 10.2147/COPD.S112473 10.1109/JBHI.2015.2398934 10.2147/COPD.S141976 10.1109/EMBC.2018.8513046 10.1109/EMBC.2014.6944073 10.1038/s41598-018-35024-z 10.1016/S0268-0033(03)00089-5 10.5664/jcsm.6122 10.1378/chest.106.3.854 10.1016/j.resp.2006.06.002 10.1109/EMBC.2018.8512953 10.1109/IEMBS.2001.1018896 10.1109/ICCSCE.2016.7893596 10.1109/EMBC.2019.8856767  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2024 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.sna.2024.115121 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-3069 | 
    
| ExternalDocumentID | 10_1016_j_sna_2024_115121 S0924424724001146  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ LY7 M36 R2- SCB SCH SET WUQ ~HD  | 
    
| ID | FETCH-LOGICAL-c249t-93d6f82ab59b0e006ba55769cf91483ed90c09225fc3507b11e71aa682c2c9153 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0924-4247 | 
    
| IngestDate | Thu Oct 16 04:30:08 EDT 2025 Sat Mar 23 16:29:36 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Inhalation effort SEMG Dyspnea COVID 19 Machine learning Pulse mode oxygen delivery  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c249t-93d6f82ab59b0e006ba55769cf91483ed90c09225fc3507b11e71aa682c2c9153 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_sna_2024_115121 elsevier_sciencedirect_doi_10_1016_j_sna_2024_115121  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-04-16 | 
    
| PublicationDateYYYYMMDD | 2024-04-16 | 
    
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-16 day: 16  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Sensors and actuators. A. Physical. | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Kaya, Guler, Kırmacı (bib24) 2022 Abushakra, Faezipour (bib4) 2013; 17 A.N. Morali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, V. Vijean, S.K. Nataraj, 2017. Classification of human breathing task based on electromyography signal of respiratory muscles. 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), 196–201. Pattanayak, Pattnaik, Udgata, Panda (bib26) 2020; 20 M.Rafols-de-Urquia, J.Estevez-Piorno, G.Prats-Boluda, L. Sarlabous, 2018. Assessment of Respiratory Muscle Activity with Surface Electromyographic Signals Acquired by Concentric Ring Electrodes. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3350–3353. J. Lee, J. Kim, G. Yoon, 2001. A digital envelope detection filter for blood pressure measurement. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 226–228 vol.1. McCoy (bib22) 2000; 45 Neupane, Jamil (bib8) 2023 M.Lozano-García, L.Sarlabous, J. Moxham, G.F.Rafferty, A.Torres, C.J.Jolley, R.Jané, 2018. Assessment of Inspiratory Muscle Activation using Surface Diaphragm Mechanomyography and Crural Diaphragm Electromyography. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3342–3345. Chen, Katz, Pichelin, Zhu, Caillibotte, Noga, Finlay, Martin (bib6) 2017; 12 L. Estrada, L. Sarlabous, M. Lozano-García, R. Jané, A. Torres, 2019. Neural Offset Time Evaluation in Surface Respiratory Signals during Controlled Respiration. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2344–2347. M.R.. Arefin, R. Fazel-Rezai, 2014. Computationally efficient QRS detection analysis based on dual-slope method. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2274–2277. Chen, Katz, Pichelin, Zhu, Caillibotte, Finlay, Martin (bib5) 2019; 64 Lozano-García, Estrada, Jané (bib14) 2019; 21.4 Berry, Ryals, Girdhar, Wagner (bib21) 2016; 12 Malik, Ravindra, Singh (bib2) 2021; 28 Hawkes, Nowicky, McConnell (bib15) 2007; 155 Ives, Wigglesworth (bib19) 2003; 18 A.N. Norali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, S.K. Nataraj, 2016. Human breathing assessment using Electromyography signal of respiratory muscles. 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 343–347. Yaeger, Goodman, Hoddes, Christoper (bib7) 1994; 106 Jain, Sharma (bib1) 2021; 15 Van De Bruaene, Claessen, La Gerche, Kung, Marsden, De Meester, Devroe, Bogaert, Claus, Heidbuchel, Budts, Gewillig (bib3) 2015; 9 Dutta, Aruchamy, Mandal, Sen (bib25) 2021; 69 Katz (bib27) 2016; 29 Lozano-García, Sarlabous, Moxham, Rafferty, Torres, Jané, Jolley (bib16) 2018; 8 L.Estrada-Petrocelli, R. Jané, A. Torres, 2020. Neural Resratory Drive Estimation in Respiratory sEMG with Cardiac Arrhythmias. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2748–2751. Estrada, Torres, Sarlabous, Jané (bib17) 2016; 20 Hawkes (10.1016/j.sna.2024.115121_bib15) 2007; 155 Abushakra (10.1016/j.sna.2024.115121_bib4) 2013; 17 Berry (10.1016/j.sna.2024.115121_bib21) 2016; 12 Jain (10.1016/j.sna.2024.115121_bib1) 2021; 15 10.1016/j.sna.2024.115121_bib23 10.1016/j.sna.2024.115121_bib20 Katz (10.1016/j.sna.2024.115121_bib27) 2016; 29 Kaya (10.1016/j.sna.2024.115121_bib24) 2022 10.1016/j.sna.2024.115121_bib18 Dutta (10.1016/j.sna.2024.115121_bib25) 2021; 69 Chen (10.1016/j.sna.2024.115121_bib5) 2019; 64 Chen (10.1016/j.sna.2024.115121_bib6) 2017; 12 Pattanayak (10.1016/j.sna.2024.115121_bib26) 2020; 20 Van De Bruaene (10.1016/j.sna.2024.115121_bib3) 2015; 9 Lozano-García (10.1016/j.sna.2024.115121_bib14) 2019; 21.4 McCoy (10.1016/j.sna.2024.115121_bib22) 2000; 45 10.1016/j.sna.2024.115121_bib11 10.1016/j.sna.2024.115121_bib10 10.1016/j.sna.2024.115121_bib13 Lozano-García (10.1016/j.sna.2024.115121_bib16) 2018; 8 Yaeger (10.1016/j.sna.2024.115121_bib7) 1994; 106 10.1016/j.sna.2024.115121_bib12 Estrada (10.1016/j.sna.2024.115121_bib17) 2016; 20 10.1016/j.sna.2024.115121_bib9 Neupane (10.1016/j.sna.2024.115121_bib8) 2023 Malik (10.1016/j.sna.2024.115121_bib2) 2021; 28 Ives (10.1016/j.sna.2024.115121_bib19) 2003; 18  | 
    
| References_xml | – year: 2023 ident: bib8 article-title: Physiology, Transpulmonary Pressure. [Updated 2023 May 1] publication-title: StatPearls – reference: A.N. Morali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, V. Vijean, S.K. Nataraj, 2017. Classification of human breathing task based on electromyography signal of respiratory muscles. 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), 196–201. – reference: J. Lee, J. Kim, G. Yoon, 2001. A digital envelope detection filter for blood pressure measurement. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 226–228 vol.1. – reference: L.Estrada-Petrocelli, R. Jané, A. Torres, 2020. Neural Resratory Drive Estimation in Respiratory sEMG with Cardiac Arrhythmias. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2748–2751. – volume: 28 start-page: 66519 year: 2021 end-page: 66521 ident: bib2 article-title: COVID-19 and increasing demand for medical oxygen: can impurity be a problem? publication-title: Environ. Sci. Pollut. Res. Int. – volume: 64 start-page: 117 year: 2019 end-page: 129 ident: bib5 article-title: In vitro–in silico comparison of pulsed oxygen delivery from portable oxygen concentrators versus continuous flow oxygen delivery publication-title: Respir. Care – volume: 15 start-page: 253 year: 2021 end-page: 256 ident: bib1 article-title: Oxygen supply in hospitals: requisites in the current pandemic publication-title: Anesth. Essays Res. – volume: 9 start-page: 100 year: 2015 end-page: 108 ident: bib3 article-title: Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: a clinical and computational modeling study publication-title: Int. J. Cardiol. Heart Vasc. – volume: 17 start-page: 493 year: 2013 end-page: 500 ident: bib4 article-title: Acoustic signal classification of breathing movements to virtually aid breath regulation publication-title: IEEE J. Biomed. Health Inform. – volume: 21.4 year: 2019 ident: bib14 article-title: Performance evaluation of fixed sample entropy in myographic signals for inspiratory muscle activity estimation publication-title: Entropy – year: 2022 ident: bib24 article-title: Prediction of temperature separation of a nitrogen-driven vortex tube with linear, kNN, SVR, and RF regression models publication-title: Neural Comput. Appl. – volume: 155 start-page: 213 year: 2007 end-page: 219 ident: bib15 article-title: Diaphragm and intercostal surface EMG and muscle performance after acute inspiratory muscle loading publication-title: Respir. Physiol. Neurobiol. – volume: 12 start-page: 2559 year: 2017 end-page: 2571 ident: bib6 article-title: Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas publication-title: Int. J. Chronic Obstr. Pulm. Dis. – volume: 69 start-page: 945 year: 2021 end-page: 954 ident: bib25 article-title: Poststroke grasp ability assessment using an intelligent data glove based on action research arm test: development, algorithms, and experiments publication-title: IEEE Trans. Biomed. Eng. – volume: 106 start-page: 854 year: 1994 end-page: 860 ident: bib7 article-title: Oxygen therapy using pulse and continuous flow with a transtracheal catheter and a nasal cannula publication-title: Chest – reference: M.Rafols-de-Urquia, J.Estevez-Piorno, G.Prats-Boluda, L. Sarlabous, 2018. Assessment of Respiratory Muscle Activity with Surface Electromyographic Signals Acquired by Concentric Ring Electrodes. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3350–3353. – reference: L. Estrada, L. Sarlabous, M. Lozano-García, R. Jané, A. Torres, 2019. Neural Offset Time Evaluation in Surface Respiratory Signals during Controlled Respiration. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2344–2347. – volume: 45 start-page: 95 year: 2000 end-page: 103 ident: bib22 article-title: Oxygen-conserving techniques and devices publication-title: Respir. Care – volume: 12 start-page: 1239 year: 2016 end-page: 1244 ident: bib21 article-title: Use of chest wall electromyography to detect respiratory effort during polysomnography publication-title: J. Clin. Sleep. Med. – volume: 20 start-page: 14892 year: 2020 end-page: 14902 ident: bib26 article-title: Development of chemical oxygen on demand (COD) soft sensor using edge intelligence publication-title: IEEE Sens. J. – reference: A.N. Norali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, S.K. Nataraj, 2016. Human breathing assessment using Electromyography signal of respiratory muscles. 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 343–347. – reference: M.Lozano-García, L.Sarlabous, J. Moxham, G.F.Rafferty, A.Torres, C.J.Jolley, R.Jané, 2018. Assessment of Inspiratory Muscle Activation using Surface Diaphragm Mechanomyography and Crural Diaphragm Electromyography. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3342–3345. – volume: 8 year: 2018 ident: bib16 article-title: Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects publication-title: Sci. Rep. – volume: 20 start-page: 476 year: 2016 end-page: 485 ident: bib17 article-title: Improvement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy publication-title: IEEE J. Biomed. Health Inform. – volume: 18 start-page: 543 year: 2003 end-page: 552 ident: bib19 article-title: Sampling rate effects on surface EMG timing and amplitude measures publication-title: Clin. Biomech. – volume: 29 start-page: 2427 year: 2016 end-page: 2434 ident: bib27 article-title: An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator publication-title: Int. J. Chron. Obstruct. Pulm. Dis. – reference: M.R.. Arefin, R. Fazel-Rezai, 2014. Computationally efficient QRS detection analysis based on dual-slope method. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2274–2277. – volume: 64 start-page: 117 year: 2019 ident: 10.1016/j.sna.2024.115121_bib5 article-title: In vitro–in silico comparison of pulsed oxygen delivery from portable oxygen concentrators versus continuous flow oxygen delivery publication-title: Respir. Care doi: 10.4187/respcare.06359 – volume: 28 start-page: 66519 year: 2021 ident: 10.1016/j.sna.2024.115121_bib2 article-title: COVID-19 and increasing demand for medical oxygen: can impurity be a problem? publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-021-16385-x – volume: 15 start-page: 253 year: 2021 ident: 10.1016/j.sna.2024.115121_bib1 article-title: Oxygen supply in hospitals: requisites in the current pandemic publication-title: Anesth. Essays Res. doi: 10.4103/aer.aer_116_21 – ident: 10.1016/j.sna.2024.115121_bib13 doi: 10.1109/CSPA.2017.8064950 – volume: 20 start-page: 14892 year: 2020 ident: 10.1016/j.sna.2024.115121_bib26 article-title: Development of chemical oxygen on demand (COD) soft sensor using edge intelligence publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3010134 – volume: 17 start-page: 493 year: 2013 ident: 10.1016/j.sna.2024.115121_bib4 article-title: Acoustic signal classification of breathing movements to virtually aid breath regulation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2244901 – ident: 10.1016/j.sna.2024.115121_bib11 doi: 10.1109/EMBC44109.2020.9176377 – volume: 69 start-page: 945 year: 2021 ident: 10.1016/j.sna.2024.115121_bib25 article-title: Poststroke grasp ability assessment using an intelligent data glove based on action research arm test: development, algorithms, and experiments publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3110432 – volume: 29 start-page: 2427 year: 2016 ident: 10.1016/j.sna.2024.115121_bib27 article-title: An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator publication-title: Int. J. Chron. Obstruct. Pulm. Dis. doi: 10.2147/COPD.S112473 – volume: 21.4 year: 2019 ident: 10.1016/j.sna.2024.115121_bib14 article-title: Performance evaluation of fixed sample entropy in myographic signals for inspiratory muscle activity estimation publication-title: Entropy – year: 2022 ident: 10.1016/j.sna.2024.115121_bib24 article-title: Prediction of temperature separation of a nitrogen-driven vortex tube with linear, kNN, SVR, and RF regression models publication-title: Neural Comput. Appl. – volume: 20 start-page: 476 year: 2016 ident: 10.1016/j.sna.2024.115121_bib17 article-title: Improvement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2398934 – volume: 12 start-page: 2559 year: 2017 ident: 10.1016/j.sna.2024.115121_bib6 article-title: Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas publication-title: Int. J. Chronic Obstr. Pulm. Dis. doi: 10.2147/COPD.S141976 – ident: 10.1016/j.sna.2024.115121_bib9 doi: 10.1109/EMBC.2018.8513046 – ident: 10.1016/j.sna.2024.115121_bib18 doi: 10.1109/EMBC.2014.6944073 – year: 2023 ident: 10.1016/j.sna.2024.115121_bib8 article-title: Physiology, Transpulmonary Pressure. [Updated 2023 May 1] – volume: 8 year: 2018 ident: 10.1016/j.sna.2024.115121_bib16 article-title: Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects publication-title: Sci. Rep. doi: 10.1038/s41598-018-35024-z – volume: 18 start-page: 543 issue: 6 year: 2003 ident: 10.1016/j.sna.2024.115121_bib19 article-title: Sampling rate effects on surface EMG timing and amplitude measures publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(03)00089-5 – volume: 12 start-page: 1239 issue: 9 year: 2016 ident: 10.1016/j.sna.2024.115121_bib21 article-title: Use of chest wall electromyography to detect respiratory effort during polysomnography publication-title: J. Clin. Sleep. Med. doi: 10.5664/jcsm.6122 – volume: 106 start-page: 854 issue: 3 year: 1994 ident: 10.1016/j.sna.2024.115121_bib7 article-title: Oxygen therapy using pulse and continuous flow with a transtracheal catheter and a nasal cannula publication-title: Chest doi: 10.1378/chest.106.3.854 – volume: 155 start-page: 213 year: 2007 ident: 10.1016/j.sna.2024.115121_bib15 article-title: Diaphragm and intercostal surface EMG and muscle performance after acute inspiratory muscle loading publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2006.06.002 – ident: 10.1016/j.sna.2024.115121_bib10 doi: 10.1109/EMBC.2018.8512953 – ident: 10.1016/j.sna.2024.115121_bib23 doi: 10.1109/IEMBS.2001.1018896 – volume: 45 start-page: 95 issue: 1 year: 2000 ident: 10.1016/j.sna.2024.115121_bib22 article-title: Oxygen-conserving techniques and devices publication-title: Respir. Care – volume: 9 start-page: 100 year: 2015 ident: 10.1016/j.sna.2024.115121_bib3 article-title: Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: a clinical and computational modeling study publication-title: Int. J. Cardiol. Heart Vasc. – ident: 10.1016/j.sna.2024.115121_bib12 doi: 10.1109/ICCSCE.2016.7893596 – ident: 10.1016/j.sna.2024.115121_bib20 doi: 10.1109/EMBC.2019.8856767  | 
    
| SSID | ssj0003377 | 
    
| Score | 2.43082 | 
    
| Snippet | Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 115121 | 
    
| SubjectTerms | COVID 19 Dyspnea Inhalation effort Machine learning Pulse mode oxygen delivery SEMG  | 
    
| Title | RESPIPulse: Machine learning assisted sensory device for pulsed mode delivery of oxygen bolus using surface electromyography (sEMG) signals | 
    
| URI | https://dx.doi.org/10.1016/j.sna.2024.115121 | 
    
| Volume | 369 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-yhw8qLB23228ldLaKi0FLfS2bDbZUtFu6bZgL_4B_7Qzu1msoBePCZllmZlMviFfZhi7jHmovNjH_e2GjkEQG_ecxMSVK8_nkSk022Lgd0fuw9gbl1ireAtDtEod-_OYnkVrPVPT2qzNp9Pak4mpg2u7dWJB0ttaesGOI_Tp249vmofjZN0XabFBq4ubzYzjlc6o9JDtYuDAg8_6_WzaOG86e2xXA0Vo5v-yz0pqdsB2NsoHHrJP1N6wN1zhF-6gn7EiFeg2EBNAVEwmlJBippos1iAVRQVAlApzkpFAbXBw-pW4GWtIYkje1-hQINAfUyBK_ATS1SIOUUz3y3lb6xrXcJW2-_fXQAQQdOEjNuq0n1tdQzdXMCLMuJYGd6QfN-xQeFyYCveeCD3MPXgUc8yQHCW5GaHSbC-OHMSMwrJU3QpDv2FHdsQxTh6z8iyZqRMGIUIoKT2pnAxdKe65Ag0R42wkuG1V2E2h1mCe19AICnLZS4A2CMgGQW6DCnMLxQc_HCHAGP-32On_xM7YNo3oesjyz1l5uVipC0QZS1HN3KjKtpq9x-7gC40k0Y0 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHIAD4ine-MABkMrWRzrCDU2MDdg0iU3arWqadAJBN62bRC_8Af40dpeKIcGFaxpHle04n5UvNmOnsQg1j33c317oWgSxcc8pTFyF5r6IKtKwLdp-o-fd93m_xGrFWxiiVZrYP4vpebQ2I2WjzfLo-bn8VMHUwXO8KrEg6W3tAlvyuFOlDOzy45vn4bp5-0WabdH04mozJ3mlCdUecjyMHHjy2b8fTnMHTn2drRmkCDezn9lgJZ1sstW5-oFb7BPV12l2prjCNbRyWqQG0wdiAAiLyYYKUkxVh-MMlKawAAhTYUQyCqgPDg6_Ejkjg2EMw_cMPQokOmQKxIkfQDodxyGKmYY5b5kpcg1n6W3r7hyIAYI-vM169dturWGZ7gpWhCnXxBKu8uMrJ5RcyIrGzSdDjsmHiGKBKZKrlahEqDSHx5GLoFHatq7aYehfOZETCQyUO2wxGSZ6l0GIGEoprrSbwystuCfRLjGORlI49h67KNQajGZFNIKCXfYSoA0CskEws8Ee8wrFBz88IcAg_7fY_v_ETthyo9t6DB6b7YcDtkJf6K7I9g_Z4mQ81UcIOSbyOHepL5JG0yI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RESPIPulse%3A+Machine+learning+assisted+sensory+device+for+pulsed+mode+delivery+of+oxygen+bolus+using+surface+electromyography+%28sEMG%29+signals&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Mondal%2C+Aruna&rft.au=Dutta%2C+Debeshi&rft.au=Chanda%2C+Nripen&rft.au=Mandal%2C+Nilrudra&rft.date=2024-04-16&rft.issn=0924-4247&rft.volume=369&rft.spage=115121&rft_id=info:doi/10.1016%2Fj.sna.2024.115121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2024_115121 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |