RESPIPulse: Machine learning assisted sensory device for pulsed mode delivery of oxygen bolus using surface electromyography (sEMG) signals

Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and rest phases of the respiratory cycle. Pulse mode oxygen delivery can address the stated problem, however, it is required to determine the number...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 369; p. 115121
Main Authors Mondal, Aruna, Dutta, Debeshi, Chanda, Nripen, Mandal, Nilrudra, Mandal, Soumen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 16.04.2024
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2024.115121

Cover

Abstract Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and rest phases of the respiratory cycle. Pulse mode oxygen delivery can address the stated problem, however, it is required to determine the number of oxygen release pulses and the exact instant of inhalation or exhalation. Herein we report the design and development of an intelligent pulsed mode respiratory device- “RESPIPulse,” which is capable of delivering oxygen bolus by automatically sensing the inhalation and exhalation instances from body mount surface electromyography (sEMG) electrodes without manual intervention or settings. The device comprises a set of miniature single-channel sEMG electrodes, an embedded machine-learning algorithm, a normally open solenoid valve, an airflow sensor, and necessary driving electronics. The solenoid valve opens or closes depending on the muscular inhalation or exhalation effort determined from the sEMG signals, thus preventing the wastage of respiratory oxygen. The sEMG signals are subjected to envelop extraction followed by feature extraction. Performances of k-nearest neighbor (kNN), support vector regression (SVR), and random forests (RF) regressors are initially tested in Python IDE to identify the best learning algorithm that is deployed in the microcontroller for determination of the instances of inhalation and exhalation. Trials are conducted on 20 healthy subjects and 10 dyspnea-affected patients. Based on the computed performance measures and evaluation time, the kNN algorithm estimates the respiratory instances more accurately than the other two algorithms. A significant amount of oxygen savings, ranging between 35.48–82.35%, is obtained using the RESPIPulse device which is much higher than the pulse mode delivery devices employing manual settings exhibiting maximum conservation of 48.2%. [Display omitted] •Automated pulsed mode oxygen delivery device based on sEMG and airflow is developed.•The device can save up to 82% of medical oxygen.•The device acts as oxygen conservation system.
AbstractList Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and rest phases of the respiratory cycle. Pulse mode oxygen delivery can address the stated problem, however, it is required to determine the number of oxygen release pulses and the exact instant of inhalation or exhalation. Herein we report the design and development of an intelligent pulsed mode respiratory device- “RESPIPulse,” which is capable of delivering oxygen bolus by automatically sensing the inhalation and exhalation instances from body mount surface electromyography (sEMG) electrodes without manual intervention or settings. The device comprises a set of miniature single-channel sEMG electrodes, an embedded machine-learning algorithm, a normally open solenoid valve, an airflow sensor, and necessary driving electronics. The solenoid valve opens or closes depending on the muscular inhalation or exhalation effort determined from the sEMG signals, thus preventing the wastage of respiratory oxygen. The sEMG signals are subjected to envelop extraction followed by feature extraction. Performances of k-nearest neighbor (kNN), support vector regression (SVR), and random forests (RF) regressors are initially tested in Python IDE to identify the best learning algorithm that is deployed in the microcontroller for determination of the instances of inhalation and exhalation. Trials are conducted on 20 healthy subjects and 10 dyspnea-affected patients. Based on the computed performance measures and evaluation time, the kNN algorithm estimates the respiratory instances more accurately than the other two algorithms. A significant amount of oxygen savings, ranging between 35.48–82.35%, is obtained using the RESPIPulse device which is much higher than the pulse mode delivery devices employing manual settings exhibiting maximum conservation of 48.2%. [Display omitted] •Automated pulsed mode oxygen delivery device based on sEMG and airflow is developed.•The device can save up to 82% of medical oxygen.•The device acts as oxygen conservation system.
ArticleNumber 115121
Author Mondal, Aruna
Dutta, Debeshi
Chanda, Nripen
Mandal, Nilrudra
Mandal, Soumen
Author_xml – sequence: 1
  givenname: Aruna
  surname: Mondal
  fullname: Mondal, Aruna
  organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
– sequence: 2
  givenname: Debeshi
  surname: Dutta
  fullname: Dutta, Debeshi
  organization: Indian Institute of Technology, Hyderabad, Telangana, India
– sequence: 3
  givenname: Nripen
  surname: Chanda
  fullname: Chanda, Nripen
  organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
– sequence: 4
  givenname: Nilrudra
  surname: Mandal
  fullname: Mandal, Nilrudra
  organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
– sequence: 5
  givenname: Soumen
  surname: Mandal
  fullname: Mandal, Soumen
  email: somandal88@cmeri.res.in
  organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
BookMark eNp9kMtKAzEUhoMoWC8P4C5LXUxNMtfoSqRWwWLxsg6ZzJlpyjQpOW1xnsGXNqWuXf1wDt_POd8ZOXbeASFXnI0548XtcoxOjwUT2ZjznAt-REa8KtMkZYU8JiMmRZZkIitPyRnikjGWpmU5Ij_vk4_5y3zbI9zRmTYL64D2oIOzrqMa0eIGGorg0IeBNrCzBmjrA13vmYaufANx3NsdxL1vqf8eOnC09v0W6Rb3NbgNrY4Y9GA2wa8G3wW9Xgz0Giez6Q1F2znd4wU5aWPA5V-ek6-nyefjc_L6Nn15fHhNjMjkJpFpU7SV0HUuawaMFbXO87KQppU8q1JoJDPxXZG3Js1ZWXMOJde6qIQRRvI8PSf80GuCRwzQqnWwKx0GxZna21RLFW2qvU11sBmZ-wMD8bCdhaDQWHAGGhviU6rx9h_6F0TjgPQ
Cites_doi 10.4187/respcare.06359
10.1007/s11356-021-16385-x
10.4103/aer.aer_116_21
10.1109/CSPA.2017.8064950
10.1109/JSEN.2020.3010134
10.1109/JBHI.2013.2244901
10.1109/EMBC44109.2020.9176377
10.1109/TBME.2021.3110432
10.2147/COPD.S112473
10.1109/JBHI.2015.2398934
10.2147/COPD.S141976
10.1109/EMBC.2018.8513046
10.1109/EMBC.2014.6944073
10.1038/s41598-018-35024-z
10.1016/S0268-0033(03)00089-5
10.5664/jcsm.6122
10.1378/chest.106.3.854
10.1016/j.resp.2006.06.002
10.1109/EMBC.2018.8512953
10.1109/IEMBS.2001.1018896
10.1109/ICCSCE.2016.7893596
10.1109/EMBC.2019.8856767
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sna.2024.115121
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2024_115121
S0924424724001146
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
LY7
M36
R2-
SCB
SCH
SET
WUQ
~HD
ID FETCH-LOGICAL-c249t-93d6f82ab59b0e006ba55769cf91483ed90c09225fc3507b11e71aa682c2c9153
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Thu Oct 16 04:30:08 EDT 2025
Sat Mar 23 16:29:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Inhalation effort
SEMG
Dyspnea
COVID 19
Machine learning
Pulse mode oxygen delivery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-93d6f82ab59b0e006ba55769cf91483ed90c09225fc3507b11e71aa682c2c9153
ParticipantIDs crossref_primary_10_1016_j_sna_2024_115121
elsevier_sciencedirect_doi_10_1016_j_sna_2024_115121
PublicationCentury 2000
PublicationDate 2024-04-16
PublicationDateYYYYMMDD 2024-04-16
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-16
  day: 16
PublicationDecade 2020
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kaya, Guler, Kırmacı (bib24) 2022
Abushakra, Faezipour (bib4) 2013; 17
A.N. Morali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, V. Vijean, S.K. Nataraj, 2017. Classification of human breathing task based on electromyography signal of respiratory muscles. 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), 196–201.
Pattanayak, Pattnaik, Udgata, Panda (bib26) 2020; 20
M.Rafols-de-Urquia, J.Estevez-Piorno, G.Prats-Boluda, L. Sarlabous, 2018. Assessment of Respiratory Muscle Activity with Surface Electromyographic Signals Acquired by Concentric Ring Electrodes. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3350–3353.
J. Lee, J. Kim, G. Yoon, 2001. A digital envelope detection filter for blood pressure measurement. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 226–228 vol.1.
McCoy (bib22) 2000; 45
Neupane, Jamil (bib8) 2023
M.Lozano-García, L.Sarlabous, J. Moxham, G.F.Rafferty, A.Torres, C.J.Jolley, R.Jané, 2018. Assessment of Inspiratory Muscle Activation using Surface Diaphragm Mechanomyography and Crural Diaphragm Electromyography. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3342–3345.
Chen, Katz, Pichelin, Zhu, Caillibotte, Noga, Finlay, Martin (bib6) 2017; 12
L. Estrada, L. Sarlabous, M. Lozano-García, R. Jané, A. Torres, 2019. Neural Offset Time Evaluation in Surface Respiratory Signals during Controlled Respiration. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2344–2347.
M.R.. Arefin, R. Fazel-Rezai, 2014. Computationally efficient QRS detection analysis based on dual-slope method. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2274–2277.
Chen, Katz, Pichelin, Zhu, Caillibotte, Finlay, Martin (bib5) 2019; 64
Lozano-García, Estrada, Jané (bib14) 2019; 21.4
Berry, Ryals, Girdhar, Wagner (bib21) 2016; 12
Malik, Ravindra, Singh (bib2) 2021; 28
Hawkes, Nowicky, McConnell (bib15) 2007; 155
Ives, Wigglesworth (bib19) 2003; 18
A.N. Norali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, S.K. Nataraj, 2016. Human breathing assessment using Electromyography signal of respiratory muscles. 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 343–347.
Yaeger, Goodman, Hoddes, Christoper (bib7) 1994; 106
Jain, Sharma (bib1) 2021; 15
Van De Bruaene, Claessen, La Gerche, Kung, Marsden, De Meester, Devroe, Bogaert, Claus, Heidbuchel, Budts, Gewillig (bib3) 2015; 9
Dutta, Aruchamy, Mandal, Sen (bib25) 2021; 69
Katz (bib27) 2016; 29
Lozano-García, Sarlabous, Moxham, Rafferty, Torres, Jané, Jolley (bib16) 2018; 8
L.Estrada-Petrocelli, R. Jané, A. Torres, 2020. Neural Resratory Drive Estimation in Respiratory sEMG with Cardiac Arrhythmias. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2748–2751.
Estrada, Torres, Sarlabous, Jané (bib17) 2016; 20
Hawkes (10.1016/j.sna.2024.115121_bib15) 2007; 155
Abushakra (10.1016/j.sna.2024.115121_bib4) 2013; 17
Berry (10.1016/j.sna.2024.115121_bib21) 2016; 12
Jain (10.1016/j.sna.2024.115121_bib1) 2021; 15
10.1016/j.sna.2024.115121_bib23
10.1016/j.sna.2024.115121_bib20
Katz (10.1016/j.sna.2024.115121_bib27) 2016; 29
Kaya (10.1016/j.sna.2024.115121_bib24) 2022
10.1016/j.sna.2024.115121_bib18
Dutta (10.1016/j.sna.2024.115121_bib25) 2021; 69
Chen (10.1016/j.sna.2024.115121_bib5) 2019; 64
Chen (10.1016/j.sna.2024.115121_bib6) 2017; 12
Pattanayak (10.1016/j.sna.2024.115121_bib26) 2020; 20
Van De Bruaene (10.1016/j.sna.2024.115121_bib3) 2015; 9
Lozano-García (10.1016/j.sna.2024.115121_bib14) 2019; 21.4
McCoy (10.1016/j.sna.2024.115121_bib22) 2000; 45
10.1016/j.sna.2024.115121_bib11
10.1016/j.sna.2024.115121_bib10
10.1016/j.sna.2024.115121_bib13
Lozano-García (10.1016/j.sna.2024.115121_bib16) 2018; 8
Yaeger (10.1016/j.sna.2024.115121_bib7) 1994; 106
10.1016/j.sna.2024.115121_bib12
Estrada (10.1016/j.sna.2024.115121_bib17) 2016; 20
10.1016/j.sna.2024.115121_bib9
Neupane (10.1016/j.sna.2024.115121_bib8) 2023
Malik (10.1016/j.sna.2024.115121_bib2) 2021; 28
Ives (10.1016/j.sna.2024.115121_bib19) 2003; 18
References_xml – year: 2023
  ident: bib8
  article-title: Physiology, Transpulmonary Pressure. [Updated 2023 May 1]
  publication-title: StatPearls
– reference: A.N. Morali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, V. Vijean, S.K. Nataraj, 2017. Classification of human breathing task based on electromyography signal of respiratory muscles. 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), 196–201.
– reference: J. Lee, J. Kim, G. Yoon, 2001. A digital envelope detection filter for blood pressure measurement. 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 226–228 vol.1.
– reference: L.Estrada-Petrocelli, R. Jané, A. Torres, 2020. Neural Resratory Drive Estimation in Respiratory sEMG with Cardiac Arrhythmias. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2748–2751.
– volume: 28
  start-page: 66519
  year: 2021
  end-page: 66521
  ident: bib2
  article-title: COVID-19 and increasing demand for medical oxygen: can impurity be a problem?
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 64
  start-page: 117
  year: 2019
  end-page: 129
  ident: bib5
  article-title: In vitro–in silico comparison of pulsed oxygen delivery from portable oxygen concentrators versus continuous flow oxygen delivery
  publication-title: Respir. Care
– volume: 15
  start-page: 253
  year: 2021
  end-page: 256
  ident: bib1
  article-title: Oxygen supply in hospitals: requisites in the current pandemic
  publication-title: Anesth. Essays Res.
– volume: 9
  start-page: 100
  year: 2015
  end-page: 108
  ident: bib3
  article-title: Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: a clinical and computational modeling study
  publication-title: Int. J. Cardiol. Heart Vasc.
– volume: 17
  start-page: 493
  year: 2013
  end-page: 500
  ident: bib4
  article-title: Acoustic signal classification of breathing movements to virtually aid breath regulation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 21.4
  year: 2019
  ident: bib14
  article-title: Performance evaluation of fixed sample entropy in myographic signals for inspiratory muscle activity estimation
  publication-title: Entropy
– year: 2022
  ident: bib24
  article-title: Prediction of temperature separation of a nitrogen-driven vortex tube with linear, kNN, SVR, and RF regression models
  publication-title: Neural Comput. Appl.
– volume: 155
  start-page: 213
  year: 2007
  end-page: 219
  ident: bib15
  article-title: Diaphragm and intercostal surface EMG and muscle performance after acute inspiratory muscle loading
  publication-title: Respir. Physiol. Neurobiol.
– volume: 12
  start-page: 2559
  year: 2017
  end-page: 2571
  ident: bib6
  article-title: Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas
  publication-title: Int. J. Chronic Obstr. Pulm. Dis.
– volume: 69
  start-page: 945
  year: 2021
  end-page: 954
  ident: bib25
  article-title: Poststroke grasp ability assessment using an intelligent data glove based on action research arm test: development, algorithms, and experiments
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 106
  start-page: 854
  year: 1994
  end-page: 860
  ident: bib7
  article-title: Oxygen therapy using pulse and continuous flow with a transtracheal catheter and a nasal cannula
  publication-title: Chest
– reference: M.Rafols-de-Urquia, J.Estevez-Piorno, G.Prats-Boluda, L. Sarlabous, 2018. Assessment of Respiratory Muscle Activity with Surface Electromyographic Signals Acquired by Concentric Ring Electrodes. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3350–3353.
– reference: L. Estrada, L. Sarlabous, M. Lozano-García, R. Jané, A. Torres, 2019. Neural Offset Time Evaluation in Surface Respiratory Signals during Controlled Respiration. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2344–2347.
– volume: 45
  start-page: 95
  year: 2000
  end-page: 103
  ident: bib22
  article-title: Oxygen-conserving techniques and devices
  publication-title: Respir. Care
– volume: 12
  start-page: 1239
  year: 2016
  end-page: 1244
  ident: bib21
  article-title: Use of chest wall electromyography to detect respiratory effort during polysomnography
  publication-title: J. Clin. Sleep. Med.
– volume: 20
  start-page: 14892
  year: 2020
  end-page: 14902
  ident: bib26
  article-title: Development of chemical oxygen on demand (COD) soft sensor using edge intelligence
  publication-title: IEEE Sens. J.
– reference: A.N. Norali, A.H. Abdullah, Z. Zakaria, N.A. Rahim, S.K. Nataraj, 2016. Human breathing assessment using Electromyography signal of respiratory muscles. 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 343–347.
– reference: M.Lozano-García, L.Sarlabous, J. Moxham, G.F.Rafferty, A.Torres, C.J.Jolley, R.Jané, 2018. Assessment of Inspiratory Muscle Activation using Surface Diaphragm Mechanomyography and Crural Diaphragm Electromyography. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3342–3345.
– volume: 8
  year: 2018
  ident: bib16
  article-title: Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects
  publication-title: Sci. Rep.
– volume: 20
  start-page: 476
  year: 2016
  end-page: 485
  ident: bib17
  article-title: Improvement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 18
  start-page: 543
  year: 2003
  end-page: 552
  ident: bib19
  article-title: Sampling rate effects on surface EMG timing and amplitude measures
  publication-title: Clin. Biomech.
– volume: 29
  start-page: 2427
  year: 2016
  end-page: 2434
  ident: bib27
  article-title: An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator
  publication-title: Int. J. Chron. Obstruct. Pulm. Dis.
– reference: M.R.. Arefin, R. Fazel-Rezai, 2014. Computationally efficient QRS detection analysis based on dual-slope method. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2274–2277.
– volume: 64
  start-page: 117
  year: 2019
  ident: 10.1016/j.sna.2024.115121_bib5
  article-title: In vitro–in silico comparison of pulsed oxygen delivery from portable oxygen concentrators versus continuous flow oxygen delivery
  publication-title: Respir. Care
  doi: 10.4187/respcare.06359
– volume: 28
  start-page: 66519
  year: 2021
  ident: 10.1016/j.sna.2024.115121_bib2
  article-title: COVID-19 and increasing demand for medical oxygen: can impurity be a problem?
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-021-16385-x
– volume: 15
  start-page: 253
  year: 2021
  ident: 10.1016/j.sna.2024.115121_bib1
  article-title: Oxygen supply in hospitals: requisites in the current pandemic
  publication-title: Anesth. Essays Res.
  doi: 10.4103/aer.aer_116_21
– ident: 10.1016/j.sna.2024.115121_bib13
  doi: 10.1109/CSPA.2017.8064950
– volume: 20
  start-page: 14892
  year: 2020
  ident: 10.1016/j.sna.2024.115121_bib26
  article-title: Development of chemical oxygen on demand (COD) soft sensor using edge intelligence
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3010134
– volume: 17
  start-page: 493
  year: 2013
  ident: 10.1016/j.sna.2024.115121_bib4
  article-title: Acoustic signal classification of breathing movements to virtually aid breath regulation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2244901
– ident: 10.1016/j.sna.2024.115121_bib11
  doi: 10.1109/EMBC44109.2020.9176377
– volume: 69
  start-page: 945
  year: 2021
  ident: 10.1016/j.sna.2024.115121_bib25
  article-title: Poststroke grasp ability assessment using an intelligent data glove based on action research arm test: development, algorithms, and experiments
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3110432
– volume: 29
  start-page: 2427
  year: 2016
  ident: 10.1016/j.sna.2024.115121_bib27
  article-title: An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator
  publication-title: Int. J. Chron. Obstruct. Pulm. Dis.
  doi: 10.2147/COPD.S112473
– volume: 21.4
  year: 2019
  ident: 10.1016/j.sna.2024.115121_bib14
  article-title: Performance evaluation of fixed sample entropy in myographic signals for inspiratory muscle activity estimation
  publication-title: Entropy
– year: 2022
  ident: 10.1016/j.sna.2024.115121_bib24
  article-title: Prediction of temperature separation of a nitrogen-driven vortex tube with linear, kNN, SVR, and RF regression models
  publication-title: Neural Comput. Appl.
– volume: 20
  start-page: 476
  year: 2016
  ident: 10.1016/j.sna.2024.115121_bib17
  article-title: Improvement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2398934
– volume: 12
  start-page: 2559
  year: 2017
  ident: 10.1016/j.sna.2024.115121_bib6
  article-title: Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas
  publication-title: Int. J. Chronic Obstr. Pulm. Dis.
  doi: 10.2147/COPD.S141976
– ident: 10.1016/j.sna.2024.115121_bib9
  doi: 10.1109/EMBC.2018.8513046
– ident: 10.1016/j.sna.2024.115121_bib18
  doi: 10.1109/EMBC.2014.6944073
– year: 2023
  ident: 10.1016/j.sna.2024.115121_bib8
  article-title: Physiology, Transpulmonary Pressure. [Updated 2023 May 1]
– volume: 8
  year: 2018
  ident: 10.1016/j.sna.2024.115121_bib16
  article-title: Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35024-z
– volume: 18
  start-page: 543
  issue: 6
  year: 2003
  ident: 10.1016/j.sna.2024.115121_bib19
  article-title: Sampling rate effects on surface EMG timing and amplitude measures
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(03)00089-5
– volume: 12
  start-page: 1239
  issue: 9
  year: 2016
  ident: 10.1016/j.sna.2024.115121_bib21
  article-title: Use of chest wall electromyography to detect respiratory effort during polysomnography
  publication-title: J. Clin. Sleep. Med.
  doi: 10.5664/jcsm.6122
– volume: 106
  start-page: 854
  issue: 3
  year: 1994
  ident: 10.1016/j.sna.2024.115121_bib7
  article-title: Oxygen therapy using pulse and continuous flow with a transtracheal catheter and a nasal cannula
  publication-title: Chest
  doi: 10.1378/chest.106.3.854
– volume: 155
  start-page: 213
  year: 2007
  ident: 10.1016/j.sna.2024.115121_bib15
  article-title: Diaphragm and intercostal surface EMG and muscle performance after acute inspiratory muscle loading
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2006.06.002
– ident: 10.1016/j.sna.2024.115121_bib10
  doi: 10.1109/EMBC.2018.8512953
– ident: 10.1016/j.sna.2024.115121_bib23
  doi: 10.1109/IEMBS.2001.1018896
– volume: 45
  start-page: 95
  issue: 1
  year: 2000
  ident: 10.1016/j.sna.2024.115121_bib22
  article-title: Oxygen-conserving techniques and devices
  publication-title: Respir. Care
– volume: 9
  start-page: 100
  year: 2015
  ident: 10.1016/j.sna.2024.115121_bib3
  article-title: Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: a clinical and computational modeling study
  publication-title: Int. J. Cardiol. Heart Vasc.
– ident: 10.1016/j.sna.2024.115121_bib12
  doi: 10.1109/ICCSCE.2016.7893596
– ident: 10.1016/j.sna.2024.115121_bib20
  doi: 10.1109/EMBC.2019.8856767
SSID ssj0003377
Score 2.43082
Snippet Continuous mode delivery of medical oxygen from oxygen concentrators and oxygen cylinders leads to wastage of precious medical oxygen during exhalation and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 115121
SubjectTerms COVID 19
Dyspnea
Inhalation effort
Machine learning
Pulse mode oxygen delivery
SEMG
Title RESPIPulse: Machine learning assisted sensory device for pulsed mode delivery of oxygen bolus using surface electromyography (sEMG) signals
URI https://dx.doi.org/10.1016/j.sna.2024.115121
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-yhw8qLB23228ldLaKi0FLfS2bDbZUtFu6bZgL_4B_7Qzu1msoBePCZllmZlMviFfZhi7jHmovNjH_e2GjkEQG_ecxMSVK8_nkSk022Lgd0fuw9gbl1ireAtDtEod-_OYnkVrPVPT2qzNp9Pak4mpg2u7dWJB0ttaesGOI_Tp249vmofjZN0XabFBq4ubzYzjlc6o9JDtYuDAg8_6_WzaOG86e2xXA0Vo5v-yz0pqdsB2NsoHHrJP1N6wN1zhF-6gn7EiFeg2EBNAVEwmlJBippos1iAVRQVAlApzkpFAbXBw-pW4GWtIYkje1-hQINAfUyBK_ATS1SIOUUz3y3lb6xrXcJW2-_fXQAQQdOEjNuq0n1tdQzdXMCLMuJYGd6QfN-xQeFyYCveeCD3MPXgUc8yQHCW5GaHSbC-OHMSMwrJU3QpDv2FHdsQxTh6z8iyZqRMGIUIoKT2pnAxdKe65Ag0R42wkuG1V2E2h1mCe19AICnLZS4A2CMgGQW6DCnMLxQc_HCHAGP-32On_xM7YNo3oesjyz1l5uVipC0QZS1HN3KjKtpq9x-7gC40k0Y0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHIAD4ine-MABkMrWRzrCDU2MDdg0iU3arWqadAJBN62bRC_8Af40dpeKIcGFaxpHle04n5UvNmOnsQg1j33c317oWgSxcc8pTFyF5r6IKtKwLdp-o-fd93m_xGrFWxiiVZrYP4vpebQ2I2WjzfLo-bn8VMHUwXO8KrEg6W3tAlvyuFOlDOzy45vn4bp5-0WabdH04mozJ3mlCdUecjyMHHjy2b8fTnMHTn2drRmkCDezn9lgJZ1sstW5-oFb7BPV12l2prjCNbRyWqQG0wdiAAiLyYYKUkxVh-MMlKawAAhTYUQyCqgPDg6_Ejkjg2EMw_cMPQokOmQKxIkfQDodxyGKmYY5b5kpcg1n6W3r7hyIAYI-vM169dturWGZ7gpWhCnXxBKu8uMrJ5RcyIrGzSdDjsmHiGKBKZKrlahEqDSHx5GLoFHatq7aYehfOZETCQyUO2wxGSZ6l0GIGEoprrSbwystuCfRLjGORlI49h67KNQajGZFNIKCXfYSoA0CskEws8Ee8wrFBz88IcAg_7fY_v_ETthyo9t6DB6b7YcDtkJf6K7I9g_Z4mQ81UcIOSbyOHepL5JG0yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RESPIPulse%3A+Machine+learning+assisted+sensory+device+for+pulsed+mode+delivery+of+oxygen+bolus+using+surface+electromyography+%28sEMG%29+signals&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Mondal%2C+Aruna&rft.au=Dutta%2C+Debeshi&rft.au=Chanda%2C+Nripen&rft.au=Mandal%2C+Nilrudra&rft.date=2024-04-16&rft.issn=0924-4247&rft.volume=369&rft.spage=115121&rft_id=info:doi/10.1016%2Fj.sna.2024.115121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2024_115121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon