Data interpolation and characteristic identification for particle segregation behavior and CNN-based dynamics correlation modeling
[Display omitted] •An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution of particle segregation velocities were observed.•The influence of dimensionless vibration parameters on segregation velocity was revealed.•T...
Saved in:
| Published in | Advanced powder technology : the international journal of the Society of Powder Technology, Japan Vol. 36; no. 2; p. 104761 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0921-8831 |
| DOI | 10.1016/j.apt.2024.104761 |
Cover
| Abstract | [Display omitted]
•An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution of particle segregation velocities were observed.•The influence of dimensionless vibration parameters on segregation velocity was revealed.•The depth-wise spatiotemporal residual CNNs model was established to predict the segregation velocity.
Particle segregation behavior in a binary granular bed subject to vibration has been investigated. An algorithm based on Locally Weighted Scatterplot Smoothing (LoWeSS) was developed for trajectory reconstruction and motion characteristics extraction of segregated particles. The Kriging interpolation was introduced to address the problem of the sparse spatial distribution of segregation velocity data, and the K-means clustering algorithm was used and indicated that the discrete distribution of segregation velocity data at layers of different heights in the granular bed has regionalized shape characteristics, including circular, elliptic, fusiform, and mono-symmetric shapes. Segregation velocity correlates well to dimensionless amplitude (Ad) and frequency (fd). When Ad ∈ [0.6, 0.7] and fd ∈ [0.75, 1], the ascending velocity of segregated particles within the lower layer of the granular bed is relatively fast, and some of the large particles initially located at the higher layer will first fall as the packing structure reorganization and then start to segregate. In addition, a data preprocessing algorithm based on Local Spatiotemporal Correlation Interpolating (LoStCoI) is developed to repair granular temperature data. The depth-wise spatiotemporal residual convolutional neural networks (CNNs) with the Spatial Pyramid Pooling (SPP) module can well characterize the correlation between granular temperature and segregation velocity. The validation errors for both the regression and classification tasks are less than 0.1, and the comprehensive evaluation index also achieves 0.9. Specifically, when provided with a sufficient amount of training data, the evaluation metrics for the regression task on the validation dataset exceed 99 %, and those for the classification task even reach as high as 99.5 %. |
|---|---|
| AbstractList | [Display omitted]
•An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution of particle segregation velocities were observed.•The influence of dimensionless vibration parameters on segregation velocity was revealed.•The depth-wise spatiotemporal residual CNNs model was established to predict the segregation velocity.
Particle segregation behavior in a binary granular bed subject to vibration has been investigated. An algorithm based on Locally Weighted Scatterplot Smoothing (LoWeSS) was developed for trajectory reconstruction and motion characteristics extraction of segregated particles. The Kriging interpolation was introduced to address the problem of the sparse spatial distribution of segregation velocity data, and the K-means clustering algorithm was used and indicated that the discrete distribution of segregation velocity data at layers of different heights in the granular bed has regionalized shape characteristics, including circular, elliptic, fusiform, and mono-symmetric shapes. Segregation velocity correlates well to dimensionless amplitude (Ad) and frequency (fd). When Ad ∈ [0.6, 0.7] and fd ∈ [0.75, 1], the ascending velocity of segregated particles within the lower layer of the granular bed is relatively fast, and some of the large particles initially located at the higher layer will first fall as the packing structure reorganization and then start to segregate. In addition, a data preprocessing algorithm based on Local Spatiotemporal Correlation Interpolating (LoStCoI) is developed to repair granular temperature data. The depth-wise spatiotemporal residual convolutional neural networks (CNNs) with the Spatial Pyramid Pooling (SPP) module can well characterize the correlation between granular temperature and segregation velocity. The validation errors for both the regression and classification tasks are less than 0.1, and the comprehensive evaluation index also achieves 0.9. Specifically, when provided with a sufficient amount of training data, the evaluation metrics for the regression task on the validation dataset exceed 99 %, and those for the classification task even reach as high as 99.5 %. |
| ArticleNumber | 104761 |
| Author | Duan, Chenlong Wang, Wei Wang, Yanze Yang, Shengchao Qiao, Jinpeng Pan, Miao Zhang, Yu Nazari, Sabereh Yang, Jinshuo Miao, Zhenyong |
| Author_xml | – sequence: 1 givenname: Wei surname: Wang fullname: Wang, Wei organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 2 givenname: Yanze surname: Wang fullname: Wang, Yanze organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 3 givenname: Shengchao surname: Yang fullname: Yang, Shengchao organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 4 givenname: Jinpeng orcidid: 0009-0005-1295-2222 surname: Qiao fullname: Qiao, Jinpeng email: jp.qiao@cumt.edu.cn organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 5 givenname: Jinshuo orcidid: 0009-0007-9328-7117 surname: Yang fullname: Yang, Jinshuo organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 6 givenname: Miao surname: Pan fullname: Pan, Miao organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 7 givenname: Zhenyong surname: Miao fullname: Miao, Zhenyong organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 8 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Inner Mongolia Shanghaimiao Mining Co., Ltd., Ordos 017000, China – sequence: 9 givenname: Sabereh surname: Nazari fullname: Nazari, Sabereh organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 10 givenname: Chenlong surname: Duan fullname: Duan, Chenlong email: clduan@cumt.edu.cn organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China |
| BookMark | eNp9kMtuAjEMRbOgUoH2A7rLDwxNZsI81FVFnxKim3YdmcSBoCEZJRES2355g4Z1V5Z9fe2rMyMT5x0S8sDZgjNePx4WMKRFyUqRe9HUfEKmrCt50bYVvyWzGA-M8aYU3ZT8vkACal3CMPgekvWOgtNU7SGAylMbk1XUanTJGqvGDeMDHSBkpUcacRdwNwpb3MPJZvVyY7XZFFuIqKk-OzhaFanyIeD1zdFr7K3b3ZEbA33E-2udk5-31-_VR7H-ev9cPa8LlZOmojVqua26RmvBQWBVlkttDOsQmdAoOlBciY43wCuFna5bLWrAuq6rtsGlYdWc8PGuCj7GgEYOwR4hnCVn8gJOHmQGJy_g5Ague55GD-ZgJ4tBRmXRKdQ2oEpSe_uP-w8DJn4A |
| Cites_doi | 10.1016/j.mineng.2014.05.012 10.1109/CVPR.2016.90 10.1016/0032-5910(86)85005-7 10.1016/j.powtec.2014.08.007 10.1109/TIT.1962.1057692 10.2139/ssrn.3849664 10.1016/j.powtec.2007.11.046 10.1016/j.apt.2023.104244 10.21203/rs.3.rs-239201/v1 10.1021/acsomega.3c02511 10.1016/j.ces.2019.115428 10.1080/01621459.1979.10481038 10.1115/1.2187529 10.2307/2683591 10.1109/ICCV.2015.510 10.1016/j.simpat.2015.03.003 10.1109/TNNLS.2021.3084827 10.1016/j.apt.2024.104354 10.1109/ICCV.2015.169 10.1016/j.apt.2022.103809 10.1561/9781601982957 10.1016/j.powtec.2020.12.064 10.1080/00401706.1971.10488811 10.2113/gsecongeo.58.8.1246 10.1039/c3sm27760g 10.1016/j.jappgeo.2022.104836 10.1016/j.conbuildmat.2013.11.072 10.14356/kona.2016022 10.1016/j.apt.2022.103668 10.1007/s12517-014-1618-1 10.1016/0032-5910(89)80093-2 10.1016/j.powtec.2017.03.029 10.1080/00401706.1989.10488474 10.1016/j.powtec.2022.117456 10.1016/j.apt.2021.08.038 10.1016/j.apt.2023.104201 10.1016/j.powtec.2021.07.007 10.1080/01621459.1952.10483441 10.1016/j.apt.2019.04.019 10.1007/3-540-46805-6_19 10.1016/j.apt.2024.104337 10.2991/assehr.k.201010.019 10.1109/TPAMI.2015.2389824 10.3390/app11114742 10.1063/1.857479 10.1016/j.apt.2024.104578 10.1016/j.apt.2023.104284 10.1016/j.apt.2022.103551 10.1016/j.powtec.2016.02.005 10.1016/0032-5910(73)80064-6 10.1186/s40537-019-0191-6 10.1016/j.ijmultiphaseflow.2015.07.008 10.1145/1143844.1143874 10.1109/5.726791 |
| ContentType | Journal Article |
| Copyright | 2024 The Society of Powder Technology Japan. |
| Copyright_xml | – notice: 2024 The Society of Powder Technology Japan. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apt.2024.104761 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_apt_2024_104761 S0921883124004382 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 23M 4.4 457 4G. 5GY 5VS 63Z 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFNC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABDBF ABFNM ABJNI ABLST ABMAC ABNUV ABUBZ ABWVN ABXDB ABXRA ACDAQ ACGFS ACMRT ACNNM ACRLP ACRPL ACUHS ADBBV ADEWK ADEZE ADMUD ADNMO ADYHW AEBSH AEIPS AEKER AENEX AEVUW AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMFWP AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 EAP EAS EBS EFJIC EJD EMK ENUVR EP2 EP3 EST ESX F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HLY HVGLF HZ~ I-F J1W KCYFY KOM LY7 M41 MAGPM MM1 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- R4W RIG RNI ROL RZC SCE SDF SES SPC SPCBC SSG SSM SSZ T5K TUS ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c249t-8fc5b397dd41a4e3225dff09ee04de49ac1c4917a13ce9d68d46ae666387e5f03 |
| IEDL.DBID | .~1 |
| ISSN | 0921-8831 |
| IngestDate | Wed Oct 01 05:58:18 EDT 2025 Sat Feb 08 15:52:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Trajectory recognition Size segregation Convolutional neural networks Vibrated bed |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-8fc5b397dd41a4e3225dff09ee04de49ac1c4917a13ce9d68d46ae666387e5f03 |
| ORCID | 0009-0005-1295-2222 0009-0007-9328-7117 |
| ParticipantIDs | crossref_primary_10_1016_j_apt_2024_104761 elsevier_sciencedirect_doi_10_1016_j_apt_2024_104761 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced powder technology : the international journal of the Society of Powder Technology, Japan |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jiang Z, Jing Y, Zhao H, et al. Effects of subharmonic motion on size segregation in vertically vibrated granular materials[J]. 2009. Sun, Xu, Lu (b0115) 2015; 77 Ahmad, Jafar, Aljoumaa (b0345) 2019; 6 Müller, Holland, Sederman (b0125) 2008; 184 Felipe, Simpson, Balabanov (b0175) 2014; 52 Isaaks E H, Srivastava R M. Applied geostatistics[J]. 1989. Kruskal, Wallis (b0380) 1952; 47 Qiao, Yang, Lu (b0025) 2023; 8 Chen, Li, Xiu (b0080) 2021; 392 Arifuzzaman, Dong, Zhu (b0235) 2022; 33 Lin (b0225) 2024; 35 Hill, Fan (b0100) 2016; 33 Zhao, Duan, Jiang (b0180) 2022; 404 Kitanidis (b0305) 1997 Daya, Bejari (b0155) 2015; 8 Cleveland (b0140) 1981; 35 Forsyth D A, Mundy J L, di Gesú V, et al. Object recognition with gradient-based learning[J]. Shape, contour and grouping in computer vision. 1999. 319-345. Huang (b0135) 2017 Singh D, Jatana V, Kanchana M. Survey paper on churn prediction on telecom[J]. Available at SSRN 3849664. 2021. Rosato, Prinz, Standburg (b0060) 1986; 49 LeCun, Bottou, Bengio (b0395) 1998; 86 Liu, Zhang, Liu (b0210) 2021; 32 Umargono E, Suseno J E, Gunawan S V. K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula: The 2nd international seminar on science and technology (ISSTEC 2019), 2020[C]. Atlantis Press. Huizan, Ren, Kefeng (b0150) 2008[C]. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016[C]. Yuling, Qikai, Changyan (b0270) 2001; 18 Matheron (b0165) 1963; 58 Jenkins, Mancini (b0085) 1987 Tyeb, Mishra, Singh (b0200) 2024; 35 Pedregosa, Varoquaux, Gramfort (b0285) 2011; 12 Sacks, Schiller, Welch (b0170) 1989; 31 Le, Zidek (b0275) 2006 Lantz (b0340) 2019 Kvålseth (b0365) 1985; 39 Aftab, Moghadam (b0130) 2022; 206 Wackernagel (b0295) 2003 Subasinghe, Schaap, Kelly (b0050) 1989; 59 Wang (b0095) 2020; 215 Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves: Proceedings of the 23rd international conference on Machine learning. 2006[C]. Couckuyt, Dhaene, Demeester (b0145) 2014; 15 Le, Tran-Trung, Hoang (b0245) 2022; 2022 Dehaine, Filippov (b0045) 2016; 292 Cohen, Cohen, West (b0360) 2013 Zhao, Li, Yang (b0185) 2019; 30 Ghiasvand, Ramezanianpour, Ramezanianpour (b0010) 2014; 53 Mandal, Sadeghianjahromi, Wang (b0190) 2022; 33 Fan, Tao, Zhao (b0030) 2013; 30 Allen (b0355) 1971; 13 Qiao, Duan, Dong (b0075) 2021; 382 Gui, Cao, Xing (b0035) 2017; 313 Bengio Y. Learning Deep Architectures for AI[Z]. Now Publishers Inc. 2009. Fei-Fei, Zheng, Xi-Ping (b0055) 2015; 64 Li, Liu, Yang (b0205) 2021; 33 Kleinbaum, Dietz, Gail (b0315) 2002 Tewari, Dichter, Chakraborty (b0105) 2013; 9 Sun, Wang, Lu (b0120) 2014; 268 Krige (b0160) 1951; 52 Ahmad, Smalley (b0065) 1973; 8 Hu (b0260) 1962; 8 Bradski (b0375) 2000 Oksendal (b0290) 2013 Vafeiadis, Diamantaras, Sarigiannidis (b0335) 2015; 55 Huang, Li, Liu (b0195) 2024; 35 Cleveland (b0265) 1979; 74 Jenkins, Mancini (b0090) 1989; 1 Wu, Zhang, Zhou (b0230) 2023; 34 Bazin, Sadeghi, Bourassa (b0040) 2014; 65 Ping, Xiao-xiao, Ke-min (b0015) 2007; 34 Ahn H. Computer simulation of rapid granular flow through an orifice[J]. 2007. Zhang, Wang, Wang (b0215) 2023; 34 He, Zhang, Ren (b0410) 2015; 37 Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3d convolutional networks: Proceedings of the IEEE international conference on computer vision, 2015[C]. Wang, Lu, Wang (b0020) 2022; 33 Macqueen (b0255) 1967[C]. Girshick R. Fast r-cnn[J]. arXiv preprint arXiv:1504.08083. 2015. Duan HaiTao D H, Qin YuChang Q Y, Yu JiBin Y J, et al. Effects of particle size on pellet feed processing quality and growth performance of growing pigs.[J]. 2015. Li, Li, Mao (b0370) 2010; 17 Wang, Zhang, Liu (b0280) 2011; 34 Jain H, Khunteta A, Shrivastav S P. Telecom churn prediction using seven machine learning experiments integrating features engineering and normalization[J]. 2021. Sserunjogi, Ambrose (b0220) 2024; 35 Xu, Ma, Kim (b0330) 2021; 11 Srivastava, Hinton, Krizhevsky (b0405) 2014; 15 Huang (10.1016/j.apt.2024.104761_b0195) 2024; 35 Le (10.1016/j.apt.2024.104761_b0245) 2022; 2022 Le (10.1016/j.apt.2024.104761_b0275) 2006 Felipe (10.1016/j.apt.2024.104761_b0175) 2014; 52 Ghiasvand (10.1016/j.apt.2024.104761_b0010) 2014; 53 Rosato (10.1016/j.apt.2024.104761_b0060) 1986; 49 LeCun (10.1016/j.apt.2024.104761_b0395) 1998; 86 Jenkins (10.1016/j.apt.2024.104761_b0085) 1987 Jenkins (10.1016/j.apt.2024.104761_b0090) 1989; 1 Zhang (10.1016/j.apt.2024.104761_b0215) 2023; 34 10.1016/j.apt.2024.104761_b0250 Couckuyt (10.1016/j.apt.2024.104761_b0145) 2014; 15 Wackernagel (10.1016/j.apt.2024.104761_b0295) 2003 Daya (10.1016/j.apt.2024.104761_b0155) 2015; 8 Wang (10.1016/j.apt.2024.104761_b0020) 2022; 33 Chen (10.1016/j.apt.2024.104761_b0080) 2021; 392 Müller (10.1016/j.apt.2024.104761_b0125) 2008; 184 Mandal (10.1016/j.apt.2024.104761_b0190) 2022; 33 Dehaine (10.1016/j.apt.2024.104761_b0045) 2016; 292 Wang (10.1016/j.apt.2024.104761_b0095) 2020; 215 Qiao (10.1016/j.apt.2024.104761_b0075) 2021; 382 Sun (10.1016/j.apt.2024.104761_b0120) 2014; 268 Ping (10.1016/j.apt.2024.104761_b0015) 2007; 34 Qiao (10.1016/j.apt.2024.104761_b0025) 2023; 8 Hu (10.1016/j.apt.2024.104761_b0260) 1962; 8 Cleveland (10.1016/j.apt.2024.104761_b0140) 1981; 35 Matheron (10.1016/j.apt.2024.104761_b0165) 1963; 58 Lin (10.1016/j.apt.2024.104761_b0225) 2024; 35 Sacks (10.1016/j.apt.2024.104761_b0170) 1989; 31 Bazin (10.1016/j.apt.2024.104761_b0040) 2014; 65 Kruskal (10.1016/j.apt.2024.104761_b0380) 1952; 47 10.1016/j.apt.2024.104761_b0240 Kleinbaum (10.1016/j.apt.2024.104761_b0315) 2002 Ahmad (10.1016/j.apt.2024.104761_b0345) 2019; 6 Macqueen (10.1016/j.apt.2024.104761_b0255) 1967 Gui (10.1016/j.apt.2024.104761_b0035) 2017; 313 10.1016/j.apt.2024.104761_b0320 Liu (10.1016/j.apt.2024.104761_b0210) 2021; 32 10.1016/j.apt.2024.104761_b0325 10.1016/j.apt.2024.104761_b0005 10.1016/j.apt.2024.104761_b0400 Sserunjogi (10.1016/j.apt.2024.104761_b0220) 2024; 35 Xu (10.1016/j.apt.2024.104761_b0330) 2021; 11 Oksendal (10.1016/j.apt.2024.104761_b0290) 2013 Fan (10.1016/j.apt.2024.104761_b0030) 2013; 30 Wu (10.1016/j.apt.2024.104761_b0230) 2023; 34 Lantz (10.1016/j.apt.2024.104761_b0340) 2019 Ahmad (10.1016/j.apt.2024.104761_b0065) 1973; 8 Yuling (10.1016/j.apt.2024.104761_b0270) 2001; 18 Tyeb (10.1016/j.apt.2024.104761_b0200) 2024; 35 10.1016/j.apt.2024.104761_b0350 10.1016/j.apt.2024.104761_b0310 Cleveland (10.1016/j.apt.2024.104761_b0265) 1979; 74 10.1016/j.apt.2024.104761_b0110 Wang (10.1016/j.apt.2024.104761_b0280) 2011; 34 Pedregosa (10.1016/j.apt.2024.104761_b0285) 2011; 12 Kitanidis (10.1016/j.apt.2024.104761_b0305) 1997 Huang (10.1016/j.apt.2024.104761_b0135) 2017 Srivastava (10.1016/j.apt.2024.104761_b0405) 2014; 15 Tewari (10.1016/j.apt.2024.104761_b0105) 2013; 9 Cohen (10.1016/j.apt.2024.104761_b0360) 2013 Hill (10.1016/j.apt.2024.104761_b0100) 2016; 33 Aftab (10.1016/j.apt.2024.104761_b0130) 2022; 206 Zhao (10.1016/j.apt.2024.104761_b0180) 2022; 404 Li (10.1016/j.apt.2024.104761_b0205) 2021; 33 Allen (10.1016/j.apt.2024.104761_b0355) 1971; 13 Sun (10.1016/j.apt.2024.104761_b0115) 2015; 77 Krige (10.1016/j.apt.2024.104761_b0160) 1951; 52 Arifuzzaman (10.1016/j.apt.2024.104761_b0235) 2022; 33 Kvålseth (10.1016/j.apt.2024.104761_b0365) 1985; 39 10.1016/j.apt.2024.104761_b0390 10.1016/j.apt.2024.104761_b0070 Subasinghe (10.1016/j.apt.2024.104761_b0050) 1989; 59 Huizan (10.1016/j.apt.2024.104761_b0150) 2008 He (10.1016/j.apt.2024.104761_b0410) 2015; 37 Li (10.1016/j.apt.2024.104761_b0370) 2010; 17 Fei-Fei (10.1016/j.apt.2024.104761_b0055) 2015; 64 Vafeiadis (10.1016/j.apt.2024.104761_b0335) 2015; 55 Bradski (10.1016/j.apt.2024.104761_b0375) 2000 10.1016/j.apt.2024.104761_b0385 Zhao (10.1016/j.apt.2024.104761_b0185) 2019; 30 10.1016/j.apt.2024.104761_b0300 |
| References_xml | – volume: 1 start-page: 2050 year: 1989 end-page: 2057 ident: b0090 article-title: Kinetic theory for binary mixtures of smooth, nearly elastic spheres[J] publication-title: Phys. Fluids A – volume: 34 start-page: 567 year: 2011 end-page: 573 ident: b0280 article-title: Kriging interpolation method optimized by support vector machine and its application in oceanic data[J] publication-title: Trans Atmosp Sci – volume: 35 start-page: 54 year: 1981 ident: b0140 article-title: LOWESS: A program for smoothing scatterplots by robust locally weighted regression[J] publication-title: Am. Stat. – year: 1967[C]. ident: b0255 article-title: Some methods for classification and analysis of multivariate observations: Proceedings of 5-th Berkeley Symposium on – year: 2013 ident: b0290 article-title: Stochastic differential equations: an introduction with applications[M] – reference: Girshick R. Fast r-cnn[J]. arXiv preprint arXiv:1504.08083. 2015. – volume: 32 start-page: 3885 year: 2021 end-page: 3903 ident: b0210 article-title: Efficient image segmentation based on deep learning for mineral image classification[J] publication-title: Adv. Powder Technol. – reference: He K, Zhang X, Ren S, et al. Deep residual learning for image recognition: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016[C]. – volume: 313 start-page: 361 year: 2017 end-page: 368 ident: b0035 article-title: A two-stage process for fine coal flotation intensification[J] publication-title: Powder Technol. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0405 article-title: Dropout: a simple way to prevent neural networks from overfitting[J] publication-title: The Journal of Machine Learning Research – volume: 53 start-page: 547 year: 2014 end-page: 554 ident: b0010 article-title: Effect of grinding method and particle size distribution on the properties of Portland-pozzolan cement[J] publication-title: Constr. Build. Mater. – volume: 382 start-page: 107 year: 2021 end-page: 117 ident: b0075 article-title: DEM study of segregation degree and velocity of binary granular mixtures subject to vibration[J] publication-title: Powder Technol. – volume: 13 start-page: 469 year: 1971 end-page: 475 ident: b0355 article-title: Mean square error of prediction as a criterion for selecting variables[J] publication-title: Technometrics – volume: 30 start-page: 157 year: 2013 end-page: 161 ident: b0030 article-title: Effect of nanobubbles on the flotation of different sizes of coal particle[J] publication-title: Min. Metall. Explor. – volume: 59 start-page: 37 year: 1989 end-page: 44 ident: b0050 article-title: Modelling the screening process: a probabilistic approach[J] publication-title: Powder Technol. – reference: Bengio Y. Learning Deep Architectures for AI[Z]. Now Publishers Inc. 2009. – volume: 17 start-page: 277 year: 2010 end-page: 279 ident: b0370 article-title: Selection of number of conditional data in Kriging interpolation[J] publication-title: Fault-Block Oil & Gas Field – reference: Isaaks E H, Srivastava R M. Applied geostatistics[J]. 1989. – volume: 33 start-page: 6999 year: 2021 end-page: 7019 ident: b0205 article-title: A survey of convolutional neural networks: analysis, applications, and prospects[J] publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 55 start-page: 1 year: 2015 end-page: 9 ident: b0335 article-title: A comparison of machine learning techniques for customer churn prediction[J] publication-title: Simul. Model. Pract. Theory – year: 2003 ident: b0295 article-title: Multivariate geostatistics: an introduction with applications[M] – volume: 8 start-page: 30976 year: 2023 end-page: 30989 ident: b0025 article-title: Particle Behavior and Aperture Optimization of Variable Vibration-Amplitude Screening Based on Discrete Element Method Simulation[J] publication-title: ACS Omega – volume: 52 start-page: 119 year: 1951 end-page: 139 ident: b0160 article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand[J] publication-title: J. South Afr. Inst. Min. Metall. – volume: 35 year: 2024 ident: b0200 article-title: Prediction of operating state of hydrocyclones using vibrometry and 1D convolutional neural networks[J] publication-title: Adv. Powder Technol. – year: 1987 ident: b0085 article-title: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic publication-title: Circular Disks[j]. – volume: 33 year: 2022 ident: b0190 article-title: Experimental and numerical investigations on molten metal atomization techniques–A critical review[J] publication-title: Adv. Powder Technol. – reference: Umargono E, Suseno J E, Gunawan S V. K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula: The 2nd international seminar on science and technology (ISSTEC 2019), 2020[C]. Atlantis Press. – volume: 8 start-page: 179 year: 1962 end-page: 187 ident: b0260 article-title: Visual pattern recognition by moment invariants[J] publication-title: IRE Trans. Inf. Theory – volume: 184 start-page: 241 year: 2008 end-page: 253 ident: b0125 article-title: Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations[J] publication-title: Powder Technol. – volume: 33 start-page: 150 year: 2016 end-page: 168 ident: b0100 article-title: Granular temperature and segregation in dense sheared particulate mixtures[J] publication-title: Kona Powder Part. J. – volume: 34 year: 2023 ident: b0230 article-title: Physical fingerprint transformation of herbal medicines powders using near-infrared spectroscopy[J] publication-title: Adv. Powder Technol. – reference: Forsyth D A, Mundy J L, di Gesú V, et al. Object recognition with gradient-based learning[J]. Shape, contour and grouping in computer vision. 1999. 319-345. – volume: 292 start-page: 331 year: 2016 end-page: 341 ident: b0045 article-title: Modelling heavy and gangue mineral size recovery curves using the spiral concentration of heavy minerals from kaolin residues[J] publication-title: Powder Technol. – volume: 77 start-page: 1 year: 2015 end-page: 18 ident: b0115 article-title: Simulated configurational temperature of particles and a model of constitutive relations of rapid-intermediate-dense granular flow based on generalized granular temperature[J] publication-title: Int. J. Multiph. Flow – volume: 30 start-page: 1386 year: 2019 end-page: 1399 ident: b0185 article-title: DEM study of size segregation of wet particles under vertical vibration[J] publication-title: Adv. Powder Technol. – volume: 35 year: 2024 ident: b0220 article-title: Light extinction coefficient and particle size correlation for real-time prediction and quantitative measurement of suspended dust concentrations[J] publication-title: Adv. Powder Technol. – year: 2002 ident: b0315 article-title: Logistic regression[M] – volume: 268 start-page: 436 year: 2014 end-page: 445 ident: b0120 article-title: Simulations of configurational and granular temperatures of particles using DEM in roller conveyor[J] publication-title: Powder Technol. – volume: 215 year: 2020 ident: b0095 article-title: Continuum theory for dense gas-solid flow: A state-of-the-art review[J] publication-title: Chem. Eng. Sci. – volume: 58 start-page: 1246 year: 1963 end-page: 1266 ident: b0165 article-title: Principles of geostatistics[J] publication-title: Econ. Geol. – reference: Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves: Proceedings of the 23rd international conference on Machine learning. 2006[C]. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0395 article-title: Gradient-based learning applied to document recognition[J] publication-title: Proc. IEEE – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: b0380 article-title: Use of ranks in one-criterion variance analysis[J] publication-title: J. Am. Stat. Assoc. – volume: 8 start-page: 69 year: 1973 end-page: 75 ident: b0065 article-title: Observation of particle segregation in vibrated granular systems[J] publication-title: Powder Technol. – volume: 52 start-page: 670 year: 2014 end-page: 690 ident: b0175 article-title: Metamodeling in multidisciplinary design optimization: How far have we really come[J]. AIAA (American Institute of Aeronautics and Astronautics) publication-title: Journal – volume: 9 start-page: 5016 year: 2013 end-page: 5024 ident: b0105 article-title: Signatures of incipient jamming in collisional hopper flows[J] publication-title: Soft Matter – volume: 18 start-page: 50 year: 2001 end-page: 55 ident: b0270 article-title: The status quo and prospect of spatial variability of soil[J] publication-title: Arid Zone Res. – year: 2006 ident: b0275 article-title: Statistical analysis of environmental space-time processes[M] – year: 2000 ident: b0375 article-title: The OpenCV library[J] publication-title: Dr. Dobb’s Journal of Software Tools – reference: Duan HaiTao D H, Qin YuChang Q Y, Yu JiBin Y J, et al. Effects of particle size on pellet feed processing quality and growth performance of growing pigs.[J]. 2015. – year: 2013 ident: b0360 article-title: Applied multiple regression/correlation analysis for the behavioral sciences[M] – reference: Jain H, Khunteta A, Shrivastav S P. Telecom churn prediction using seven machine learning experiments integrating features engineering and normalization[J]. 2021. – year: 2008[C]. ident: b0150 article-title: Improved Kriging Interpolation Based on Support Vector Machine and Its Application in Oceanic Missing Data Recovery – volume: 6 start-page: 1 year: 2019 end-page: 24 ident: b0345 article-title: Customer churn prediction in telecom using machine learning in big data platform[J] publication-title: Journal of Big Data – year: 2017 ident: b0135 publication-title: Functional Data Smoothing Methods and Their Applications[j]. – reference: Singh D, Jatana V, Kanchana M. Survey paper on churn prediction on telecom[J]. Available at SSRN 3849664. 2021. – volume: 392 start-page: 123 year: 2021 end-page: 129 ident: b0080 article-title: Measurement of granular temperature and velocity profile of granular flow in silos[J] publication-title: Powder Technol. – volume: 34 year: 2023 ident: b0215 article-title: BU-net: Holographic image segmentation of multi-scale dense particle field with noisy training dataset[J] publication-title: Adv. Powder Technol. – volume: 65 start-page: 115 year: 2014 end-page: 123 ident: b0040 article-title: Size recovery curves of minerals in industrial spirals for processing iron oxide ores[J] publication-title: Miner. Eng. – volume: 2022 year: 2022 ident: b0245 article-title: A comprehensive review of recent deep learning techniques for human activity recognition[J] publication-title: Comput. Intell. Neurosci. – volume: 33 year: 2022 ident: b0020 article-title: Study on screening probability model and particle-size effect of flip-flow screen[J] publication-title: Adv. Powder Technol. – volume: 35 year: 2024 ident: b0225 article-title: Application of artificial neural networks to predict the particle-scale contact force of photoelastic disks[J] publication-title: Adv. Powder Technol. – volume: 64 year: 2015 ident: b0055 article-title: Energy dissipation and periodic segregation of vibrated binary granular mixtures[J] publication-title: Acta Phys. Sin. – volume: 404 year: 2022 ident: b0180 article-title: DEM simulation of size segregation of binary mixtures of cohesive particles under a horizontal swirling vibration[J] publication-title: Powder Technol. – reference: Ahn H. Computer simulation of rapid granular flow through an orifice[J]. 2007. – reference: Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3d convolutional networks: Proceedings of the IEEE international conference on computer vision, 2015[C]. – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b0410 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition[J] publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 279 year: 1985 end-page: 285 ident: b0365 article-title: Cautionary note about R 2[J] publication-title: Am. Stat. – volume: 8 start-page: 6003 year: 2015 end-page: 6020 ident: b0155 article-title: A comparative study between simple kriging and ordinary kriging for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran[J] publication-title: Arab. J. Geosci. – volume: 74 start-page: 829 year: 1979 end-page: 836 ident: b0265 article-title: Robust locally weighted regression and smoothing scatterplots[J] publication-title: J. Am. Stat. Assoc. – year: 2019 ident: b0340 article-title: Machine learning with R: expert techniques for predictive modeling[M] publication-title: Packt Publishing Ltd – volume: 206 year: 2022 ident: b0130 article-title: Robust data smoothing algorithms and wavelet filter for denoising sonic log signals[J] publication-title: J. Appl. Geophys. – volume: 31 start-page: 41 year: 1989 end-page: 47 ident: b0170 article-title: Designs for computer experiments[J] publication-title: Technometrics – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0285 article-title: Scikit-learn: Machine learning in Python[J] publication-title: The Journal of Machine Learning Research – reference: Jiang Z, Jing Y, Zhao H, et al. Effects of subharmonic motion on size segregation in vertically vibrated granular materials[J]. 2009. – volume: 49 start-page: 59 year: 1986 end-page: 69 ident: b0060 article-title: Monte Carlo simulation of particulate matter segregation[J] publication-title: Powder Technol. – year: 1997 ident: b0305 article-title: Introduction to geostatistics: applications in hydrogeology[M] – volume: 35 year: 2024 ident: b0195 article-title: Dynamic characteristics of the internal flow field of a rotary centrifugal air classifier and pressure prediction through attention mechanism-enhanced CNN-LSTM[J] publication-title: Adv. Powder Technol. – volume: 11 start-page: 4742 year: 2021 ident: b0330 article-title: Telecom churn prediction system based on ensemble learning using feature grouping[J] publication-title: Appl. Sci. – volume: 34 year: 2007 ident: b0015 article-title: Preparation of Chitosan Nanoparticles As Protein Drug Carriers[J] publication-title: Journal of Hunan University – volume: 15 start-page: 3183 year: 2014 end-page: 3186 ident: b0145 article-title: ooDACE toolbox: a flexible object-oriented Kriging implementation[J] publication-title: J. Mach. Learn. Res. – volume: 33 year: 2022 ident: b0235 article-title: DEM study and machine learning model of particle percolation under vibration[J] publication-title: Adv. Powder Technol. – volume: 18 start-page: 50 issue: 2 year: 2001 ident: 10.1016/j.apt.2024.104761_b0270 article-title: The status quo and prospect of spatial variability of soil[J] publication-title: Arid Zone Res. – volume: 65 start-page: 115 year: 2014 ident: 10.1016/j.apt.2024.104761_b0040 article-title: Size recovery curves of minerals in industrial spirals for processing iron oxide ores[J] publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.05.012 – ident: 10.1016/j.apt.2024.104761_b0240 doi: 10.1109/CVPR.2016.90 – volume: 49 start-page: 59 issue: 1 year: 1986 ident: 10.1016/j.apt.2024.104761_b0060 article-title: Monte Carlo simulation of particulate matter segregation[J] publication-title: Powder Technol. doi: 10.1016/0032-5910(86)85005-7 – year: 2017 ident: 10.1016/j.apt.2024.104761_b0135 publication-title: Functional Data Smoothing Methods and Their Applications[j]. – ident: 10.1016/j.apt.2024.104761_b0005 – volume: 268 start-page: 436 year: 2014 ident: 10.1016/j.apt.2024.104761_b0120 article-title: Simulations of configurational and granular temperatures of particles using DEM in roller conveyor[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.08.007 – volume: 8 start-page: 179 issue: 2 year: 1962 ident: 10.1016/j.apt.2024.104761_b0260 article-title: Visual pattern recognition by moment invariants[J] publication-title: IRE Trans. Inf. Theory doi: 10.1109/TIT.1962.1057692 – ident: 10.1016/j.apt.2024.104761_b0320 doi: 10.2139/ssrn.3849664 – volume: 34 start-page: 567 issue: 5 year: 2011 ident: 10.1016/j.apt.2024.104761_b0280 article-title: Kriging interpolation method optimized by support vector machine and its application in oceanic data[J] publication-title: Trans Atmosp Sci – ident: 10.1016/j.apt.2024.104761_b0300 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.apt.2024.104761_b0285 article-title: Scikit-learn: Machine learning in Python[J] publication-title: The Journal of Machine Learning Research – volume: 184 start-page: 241 issue: 2 year: 2008 ident: 10.1016/j.apt.2024.104761_b0125 article-title: Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.11.046 – volume: 34 issue: 12 year: 2023 ident: 10.1016/j.apt.2024.104761_b0230 article-title: Physical fingerprint transformation of herbal medicines powders using near-infrared spectroscopy[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2023.104244 – year: 2003 ident: 10.1016/j.apt.2024.104761_b0295 – volume: 2022 issue: 1 year: 2022 ident: 10.1016/j.apt.2024.104761_b0245 article-title: A comprehensive review of recent deep learning techniques for human activity recognition[J] publication-title: Comput. Intell. Neurosci. – year: 1997 ident: 10.1016/j.apt.2024.104761_b0305 – ident: 10.1016/j.apt.2024.104761_b0325 doi: 10.21203/rs.3.rs-239201/v1 – volume: 8 start-page: 30976 issue: 34 year: 2023 ident: 10.1016/j.apt.2024.104761_b0025 article-title: Particle Behavior and Aperture Optimization of Variable Vibration-Amplitude Screening Based on Discrete Element Method Simulation[J] publication-title: ACS Omega doi: 10.1021/acsomega.3c02511 – volume: 215 year: 2020 ident: 10.1016/j.apt.2024.104761_b0095 article-title: Continuum theory for dense gas-solid flow: A state-of-the-art review[J] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115428 – volume: 74 start-page: 829 issue: 368 year: 1979 ident: 10.1016/j.apt.2024.104761_b0265 article-title: Robust locally weighted regression and smoothing scatterplots[J] publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1979.10481038 – year: 2019 ident: 10.1016/j.apt.2024.104761_b0340 article-title: Machine learning with R: expert techniques for predictive modeling[M] publication-title: Packt Publishing Ltd – ident: 10.1016/j.apt.2024.104761_b0110 doi: 10.1115/1.2187529 – volume: 34 issue: 9 year: 2007 ident: 10.1016/j.apt.2024.104761_b0015 article-title: Preparation of Chitosan Nanoparticles As Protein Drug Carriers[J] publication-title: Journal of Hunan University – volume: 30 start-page: 157 issue: 3 year: 2013 ident: 10.1016/j.apt.2024.104761_b0030 article-title: Effect of nanobubbles on the flotation of different sizes of coal particle[J] publication-title: Min. Metall. Explor. – volume: 35 start-page: 54 issue: 1 year: 1981 ident: 10.1016/j.apt.2024.104761_b0140 article-title: LOWESS: A program for smoothing scatterplots by robust locally weighted regression[J] publication-title: Am. Stat. doi: 10.2307/2683591 – ident: 10.1016/j.apt.2024.104761_b0250 doi: 10.1109/ICCV.2015.510 – volume: 55 start-page: 1 year: 2015 ident: 10.1016/j.apt.2024.104761_b0335 article-title: A comparison of machine learning techniques for customer churn prediction[J] publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2015.03.003 – year: 1987 ident: 10.1016/j.apt.2024.104761_b0085 article-title: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic publication-title: Circular Disks[j]. – volume: 33 start-page: 6999 issue: 12 year: 2021 ident: 10.1016/j.apt.2024.104761_b0205 article-title: A survey of convolutional neural networks: analysis, applications, and prospects[J] publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3084827 – volume: 35 issue: 3 year: 2024 ident: 10.1016/j.apt.2024.104761_b0220 article-title: Light extinction coefficient and particle size correlation for real-time prediction and quantitative measurement of suspended dust concentrations[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2024.104354 – ident: 10.1016/j.apt.2024.104761_b0400 doi: 10.1109/ICCV.2015.169 – volume: 33 issue: 11 year: 2022 ident: 10.1016/j.apt.2024.104761_b0190 article-title: Experimental and numerical investigations on molten metal atomization techniques–A critical review[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2022.103809 – volume: 15 start-page: 3183 year: 2014 ident: 10.1016/j.apt.2024.104761_b0145 article-title: ooDACE toolbox: a flexible object-oriented Kriging implementation[J] publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.apt.2024.104761_b0385 doi: 10.1561/9781601982957 – volume: 64 issue: 13 year: 2015 ident: 10.1016/j.apt.2024.104761_b0055 article-title: Energy dissipation and periodic segregation of vibrated binary granular mixtures[J] publication-title: Acta Phys. Sin. – volume: 39 start-page: 279 issue: 4 year: 1985 ident: 10.1016/j.apt.2024.104761_b0365 article-title: Cautionary note about R 2[J] publication-title: Am. Stat. – year: 2008 ident: 10.1016/j.apt.2024.104761_b0150 – volume: 382 start-page: 107 year: 2021 ident: 10.1016/j.apt.2024.104761_b0075 article-title: DEM study of segregation degree and velocity of binary granular mixtures subject to vibration[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.12.064 – volume: 52 start-page: 119 issue: 6 year: 1951 ident: 10.1016/j.apt.2024.104761_b0160 article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand[J] publication-title: J. South Afr. Inst. Min. Metall. – volume: 13 start-page: 469 issue: 3 year: 1971 ident: 10.1016/j.apt.2024.104761_b0355 article-title: Mean square error of prediction as a criterion for selecting variables[J] publication-title: Technometrics doi: 10.1080/00401706.1971.10488811 – volume: 58 start-page: 1246 issue: 8 year: 1963 ident: 10.1016/j.apt.2024.104761_b0165 article-title: Principles of geostatistics[J] publication-title: Econ. Geol. doi: 10.2113/gsecongeo.58.8.1246 – volume: 9 start-page: 5016 issue: 20 year: 2013 ident: 10.1016/j.apt.2024.104761_b0105 article-title: Signatures of incipient jamming in collisional hopper flows[J] publication-title: Soft Matter doi: 10.1039/c3sm27760g – volume: 206 year: 2022 ident: 10.1016/j.apt.2024.104761_b0130 article-title: Robust data smoothing algorithms and wavelet filter for denoising sonic log signals[J] publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2022.104836 – volume: 52 start-page: 670 issue: 4 year: 2014 ident: 10.1016/j.apt.2024.104761_b0175 article-title: Metamodeling in multidisciplinary design optimization: How far have we really come[J]. AIAA (American Institute of Aeronautics and Astronautics) publication-title: Journal – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.apt.2024.104761_b0405 article-title: Dropout: a simple way to prevent neural networks from overfitting[J] publication-title: The Journal of Machine Learning Research – volume: 53 start-page: 547 year: 2014 ident: 10.1016/j.apt.2024.104761_b0010 article-title: Effect of grinding method and particle size distribution on the properties of Portland-pozzolan cement[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.11.072 – volume: 33 start-page: 150 year: 2016 ident: 10.1016/j.apt.2024.104761_b0100 article-title: Granular temperature and segregation in dense sheared particulate mixtures[J] publication-title: Kona Powder Part. J. doi: 10.14356/kona.2016022 – volume: 33 issue: 8 year: 2022 ident: 10.1016/j.apt.2024.104761_b0020 article-title: Study on screening probability model and particle-size effect of flip-flow screen[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2022.103668 – volume: 8 start-page: 6003 year: 2015 ident: 10.1016/j.apt.2024.104761_b0155 article-title: A comparative study between simple kriging and ordinary kriging for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran[J] publication-title: Arab. J. Geosci. doi: 10.1007/s12517-014-1618-1 – volume: 59 start-page: 37 issue: 1 year: 1989 ident: 10.1016/j.apt.2024.104761_b0050 article-title: Modelling the screening process: a probabilistic approach[J] publication-title: Powder Technol. doi: 10.1016/0032-5910(89)80093-2 – volume: 313 start-page: 361 year: 2017 ident: 10.1016/j.apt.2024.104761_b0035 article-title: A two-stage process for fine coal flotation intensification[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.03.029 – year: 2006 ident: 10.1016/j.apt.2024.104761_b0275 – year: 2013 ident: 10.1016/j.apt.2024.104761_b0290 – ident: 10.1016/j.apt.2024.104761_b0070 – volume: 17 start-page: 277 year: 2010 ident: 10.1016/j.apt.2024.104761_b0370 article-title: Selection of number of conditional data in Kriging interpolation[J] publication-title: Fault-Block Oil & Gas Field – volume: 31 start-page: 41 issue: 1 year: 1989 ident: 10.1016/j.apt.2024.104761_b0170 article-title: Designs for computer experiments[J] publication-title: Technometrics doi: 10.1080/00401706.1989.10488474 – volume: 404 year: 2022 ident: 10.1016/j.apt.2024.104761_b0180 article-title: DEM simulation of size segregation of binary mixtures of cohesive particles under a horizontal swirling vibration[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2022.117456 – volume: 32 start-page: 3885 issue: 10 year: 2021 ident: 10.1016/j.apt.2024.104761_b0210 article-title: Efficient image segmentation based on deep learning for mineral image classification[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2021.08.038 – volume: 34 issue: 11 year: 2023 ident: 10.1016/j.apt.2024.104761_b0215 article-title: BU-net: Holographic image segmentation of multi-scale dense particle field with noisy training dataset[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2023.104201 – volume: 392 start-page: 123 year: 2021 ident: 10.1016/j.apt.2024.104761_b0080 article-title: Measurement of granular temperature and velocity profile of granular flow in silos[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.07.007 – year: 2002 ident: 10.1016/j.apt.2024.104761_b0315 – volume: 47 start-page: 583 issue: 260 year: 1952 ident: 10.1016/j.apt.2024.104761_b0380 article-title: Use of ranks in one-criterion variance analysis[J] publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1952.10483441 – volume: 30 start-page: 1386 issue: 7 year: 2019 ident: 10.1016/j.apt.2024.104761_b0185 article-title: DEM study of size segregation of wet particles under vertical vibration[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.04.019 – year: 2000 ident: 10.1016/j.apt.2024.104761_b0375 article-title: The OpenCV library[J] publication-title: Dr. Dobb’s Journal of Software Tools – ident: 10.1016/j.apt.2024.104761_b0390 doi: 10.1007/3-540-46805-6_19 – volume: 35 issue: 2 year: 2024 ident: 10.1016/j.apt.2024.104761_b0200 article-title: Prediction of operating state of hydrocyclones using vibrometry and 1D convolutional neural networks[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2024.104337 – ident: 10.1016/j.apt.2024.104761_b0310 doi: 10.2991/assehr.k.201010.019 – year: 1967 ident: 10.1016/j.apt.2024.104761_b0255 – year: 2013 ident: 10.1016/j.apt.2024.104761_b0360 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.apt.2024.104761_b0410 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition[J] publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 11 start-page: 4742 issue: 11 year: 2021 ident: 10.1016/j.apt.2024.104761_b0330 article-title: Telecom churn prediction system based on ensemble learning using feature grouping[J] publication-title: Appl. Sci. doi: 10.3390/app11114742 – volume: 1 start-page: 2050 issue: 12 year: 1989 ident: 10.1016/j.apt.2024.104761_b0090 article-title: Kinetic theory for binary mixtures of smooth, nearly elastic spheres[J] publication-title: Phys. Fluids A doi: 10.1063/1.857479 – volume: 35 issue: 8 year: 2024 ident: 10.1016/j.apt.2024.104761_b0195 article-title: Dynamic characteristics of the internal flow field of a rotary centrifugal air classifier and pressure prediction through attention mechanism-enhanced CNN-LSTM[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2024.104578 – volume: 35 issue: 1 year: 2024 ident: 10.1016/j.apt.2024.104761_b0225 article-title: Application of artificial neural networks to predict the particle-scale contact force of photoelastic disks[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2023.104284 – volume: 33 issue: 5 year: 2022 ident: 10.1016/j.apt.2024.104761_b0235 article-title: DEM study and machine learning model of particle percolation under vibration[J] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2022.103551 – volume: 292 start-page: 331 year: 2016 ident: 10.1016/j.apt.2024.104761_b0045 article-title: Modelling heavy and gangue mineral size recovery curves using the spiral concentration of heavy minerals from kaolin residues[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.02.005 – volume: 8 start-page: 69 issue: 1–2 year: 1973 ident: 10.1016/j.apt.2024.104761_b0065 article-title: Observation of particle segregation in vibrated granular systems[J] publication-title: Powder Technol. doi: 10.1016/0032-5910(73)80064-6 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.apt.2024.104761_b0345 article-title: Customer churn prediction in telecom using machine learning in big data platform[J] publication-title: Journal of Big Data doi: 10.1186/s40537-019-0191-6 – volume: 77 start-page: 1 year: 2015 ident: 10.1016/j.apt.2024.104761_b0115 article-title: Simulated configurational temperature of particles and a model of constitutive relations of rapid-intermediate-dense granular flow based on generalized granular temperature[J] publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2015.07.008 – ident: 10.1016/j.apt.2024.104761_b0350 doi: 10.1145/1143844.1143874 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.apt.2024.104761_b0395 article-title: Gradient-based learning applied to document recognition[J] publication-title: Proc. IEEE doi: 10.1109/5.726791 |
| SSID | ssj0017249 |
| Score | 2.3702772 |
| Snippet | [Display omitted]
•An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 104761 |
| SubjectTerms | Convolutional neural networks Size segregation Trajectory recognition Vibrated bed |
| Title | Data interpolation and characteristic identification for particle segregation behavior and CNN-based dynamics correlation modeling |
| URI | https://dx.doi.org/10.1016/j.apt.2024.104761 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0921-8831 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017249 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0921-8831 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017249 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0921-8831 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017249 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0921-8831 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017249 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0921-8831 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017249 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4MwGG6WedGD8TPOj6UHTyZ1MAqU4zJdpkYuumQ3Utpi8IDE4dWDv9z3pcVsiV68QgvlAd6P9un7EHIZ5jIOdBIyA9Ey49zETCJNLBIhV14x9oscpwYe02i-4PfLcNkj024vDNIqne23Nr211u7IyKE5qsty9OQl4J5E4CMLEpezcAc7j1HF4Przh-YB_tmGwNCYYetuZbPleMka6ZRjjiudceT_7pvW_M1sj-y6QJFO7Fj2Sc9UB2RnrXzgIfm6kY2kpVXKspw2KitN1UYRZlpqxwiyLSBKpbV7RLoykG-_2BPdjv32GtM0ZejhNNVWs35FFQp5uNu0AjowiCOymN0-T-fMaSowBUA0TBQqzCEG0Zr7khv8nXVReIkxHteGJ1L5ikMKJ_1AmURHQvNIGshxAhGbsPCCY9Kv3ipzQqiIhDEBuHeJldH9XJgY8jcMSIpEKM8bkKsOzay2pTOyjlP2mgH0GUKfWegHhHd4ZxvvPwPT_ne30_91OyPbY9TxbdnX56TfvH-YCwgumnzYfj1DsjW5e5in34KH0F8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4inK0wMTkmkeTuKMqFAVaLPQSt0sx3ZQGUJEw8rAL8eOHVQkWFgTO3E-OXff2Z_vAC6jnCehTCOsNFvGhKgEcyMTi2lEhFcEfpGbpYFJFo9m5GEezTswaM_CGFmls_3WpjfW2l3pOzT71WLRf_JS7Z5o6BsVpNnOWoN1EgWJicCuP751HtpBWw6sW2PTvN3abERevDJ6yoCYrc4k9n93TisOZ7gD244pohs7mF3oqHIPtlbyB-7D5y2vOVrYUllW1IZ4KZH4kYUZLaSTBNkWmqaiyn0jWiodcD_bG-2R_eYZgyzDxsVJJG3R-iUSppKHe01TQUcP4gBmw7vpYIRdUQUsNBA1poWIck1CpCQ-J8r8z7IovFQpj0hFUi58QXQMx_1QqFTGVJKYKx3khDRRUeGFh9AtX0t1BIjGVKlQ-3duUqP7OVWJDuAMIylSKjyvB1ctmqyyuTNYKyp7YRp6ZqBnFvoekBZv9mMCMG3b_-52_L9uF7Axmk7GbHyfPZ7AZmCK-jZS7FPo1m_v6kwzjTo_b2bSF4F60fQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+interpolation+and+characteristic+identification+for+particle+segregation+behavior+and+CNN-based+dynamics+correlation+modeling&rft.jtitle=Advanced+powder+technology+%3A+the+international+journal+of+the+Society+of+Powder+Technology%2C+Japan&rft.au=Wang%2C+Wei&rft.au=Wang%2C+Yanze&rft.au=Yang%2C+Shengchao&rft.au=Qiao%2C+Jinpeng&rft.date=2025-02-01&rft.issn=0921-8831&rft.volume=36&rft.issue=2&rft.spage=104761&rft_id=info:doi/10.1016%2Fj.apt.2024.104761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apt_2024_104761 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8831&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8831&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8831&client=summon |