Data interpolation and characteristic identification for particle segregation behavior and CNN-based dynamics correlation modeling

[Display omitted] •An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution of particle segregation velocities were observed.•The influence of dimensionless vibration parameters on segregation velocity was revealed.•T...

Full description

Saved in:
Bibliographic Details
Published inAdvanced powder technology : the international journal of the Society of Powder Technology, Japan Vol. 36; no. 2; p. 104761
Main Authors Wang, Wei, Wang, Yanze, Yang, Shengchao, Qiao, Jinpeng, Yang, Jinshuo, Pan, Miao, Miao, Zhenyong, Zhang, Yu, Nazari, Sabereh, Duan, Chenlong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN0921-8831
DOI10.1016/j.apt.2024.104761

Cover

Abstract [Display omitted] •An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution of particle segregation velocities were observed.•The influence of dimensionless vibration parameters on segregation velocity was revealed.•The depth-wise spatiotemporal residual CNNs model was established to predict the segregation velocity. Particle segregation behavior in a binary granular bed subject to vibration has been investigated. An algorithm based on Locally Weighted Scatterplot Smoothing (LoWeSS) was developed for trajectory reconstruction and motion characteristics extraction of segregated particles. The Kriging interpolation was introduced to address the problem of the sparse spatial distribution of segregation velocity data, and the K-means clustering algorithm was used and indicated that the discrete distribution of segregation velocity data at layers of different heights in the granular bed has regionalized shape characteristics, including circular, elliptic, fusiform, and mono-symmetric shapes. Segregation velocity correlates well to dimensionless amplitude (Ad) and frequency (fd). When Ad ∈ [0.6, 0.7] and fd ∈ [0.75, 1], the ascending velocity of segregated particles within the lower layer of the granular bed is relatively fast, and some of the large particles initially located at the higher layer will first fall as the packing structure reorganization and then start to segregate. In addition, a data preprocessing algorithm based on Local Spatiotemporal Correlation Interpolating (LoStCoI) is developed to repair granular temperature data. The depth-wise spatiotemporal residual convolutional neural networks (CNNs) with the Spatial Pyramid Pooling (SPP) module can well characterize the correlation between granular temperature and segregation velocity. The validation errors for both the regression and classification tasks are less than 0.1, and the comprehensive evaluation index also achieves 0.9. Specifically, when provided with a sufficient amount of training data, the evaluation metrics for the regression task on the validation dataset exceed 99 %, and those for the classification task even reach as high as 99.5 %.
AbstractList [Display omitted] •An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution of particle segregation velocities were observed.•The influence of dimensionless vibration parameters on segregation velocity was revealed.•The depth-wise spatiotemporal residual CNNs model was established to predict the segregation velocity. Particle segregation behavior in a binary granular bed subject to vibration has been investigated. An algorithm based on Locally Weighted Scatterplot Smoothing (LoWeSS) was developed for trajectory reconstruction and motion characteristics extraction of segregated particles. The Kriging interpolation was introduced to address the problem of the sparse spatial distribution of segregation velocity data, and the K-means clustering algorithm was used and indicated that the discrete distribution of segregation velocity data at layers of different heights in the granular bed has regionalized shape characteristics, including circular, elliptic, fusiform, and mono-symmetric shapes. Segregation velocity correlates well to dimensionless amplitude (Ad) and frequency (fd). When Ad ∈ [0.6, 0.7] and fd ∈ [0.75, 1], the ascending velocity of segregated particles within the lower layer of the granular bed is relatively fast, and some of the large particles initially located at the higher layer will first fall as the packing structure reorganization and then start to segregate. In addition, a data preprocessing algorithm based on Local Spatiotemporal Correlation Interpolating (LoStCoI) is developed to repair granular temperature data. The depth-wise spatiotemporal residual convolutional neural networks (CNNs) with the Spatial Pyramid Pooling (SPP) module can well characterize the correlation between granular temperature and segregation velocity. The validation errors for both the regression and classification tasks are less than 0.1, and the comprehensive evaluation index also achieves 0.9. Specifically, when provided with a sufficient amount of training data, the evaluation metrics for the regression task on the validation dataset exceed 99 %, and those for the classification task even reach as high as 99.5 %.
ArticleNumber 104761
Author Duan, Chenlong
Wang, Wei
Wang, Yanze
Yang, Shengchao
Qiao, Jinpeng
Pan, Miao
Zhang, Yu
Nazari, Sabereh
Yang, Jinshuo
Miao, Zhenyong
Author_xml – sequence: 1
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Yanze
  surname: Wang
  fullname: Wang, Yanze
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Shengchao
  surname: Yang
  fullname: Yang, Shengchao
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 4
  givenname: Jinpeng
  orcidid: 0009-0005-1295-2222
  surname: Qiao
  fullname: Qiao, Jinpeng
  email: jp.qiao@cumt.edu.cn
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 5
  givenname: Jinshuo
  orcidid: 0009-0007-9328-7117
  surname: Yang
  fullname: Yang, Jinshuo
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 6
  givenname: Miao
  surname: Pan
  fullname: Pan, Miao
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 7
  givenname: Zhenyong
  surname: Miao
  fullname: Miao, Zhenyong
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 8
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Inner Mongolia Shanghaimiao Mining Co., Ltd., Ordos 017000, China
– sequence: 9
  givenname: Sabereh
  surname: Nazari
  fullname: Nazari, Sabereh
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 10
  givenname: Chenlong
  surname: Duan
  fullname: Duan, Chenlong
  email: clduan@cumt.edu.cn
  organization: Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNp9kMtuAjEMRbOgUoH2A7rLDwxNZsI81FVFnxKim3YdmcSBoCEZJRES2355g4Z1V5Z9fe2rMyMT5x0S8sDZgjNePx4WMKRFyUqRe9HUfEKmrCt50bYVvyWzGA-M8aYU3ZT8vkACal3CMPgekvWOgtNU7SGAylMbk1XUanTJGqvGDeMDHSBkpUcacRdwNwpb3MPJZvVyY7XZFFuIqKk-OzhaFanyIeD1zdFr7K3b3ZEbA33E-2udk5-31-_VR7H-ev9cPa8LlZOmojVqua26RmvBQWBVlkttDOsQmdAoOlBciY43wCuFna5bLWrAuq6rtsGlYdWc8PGuCj7GgEYOwR4hnCVn8gJOHmQGJy_g5Ague55GD-ZgJ4tBRmXRKdQ2oEpSe_uP-w8DJn4A
Cites_doi 10.1016/j.mineng.2014.05.012
10.1109/CVPR.2016.90
10.1016/0032-5910(86)85005-7
10.1016/j.powtec.2014.08.007
10.1109/TIT.1962.1057692
10.2139/ssrn.3849664
10.1016/j.powtec.2007.11.046
10.1016/j.apt.2023.104244
10.21203/rs.3.rs-239201/v1
10.1021/acsomega.3c02511
10.1016/j.ces.2019.115428
10.1080/01621459.1979.10481038
10.1115/1.2187529
10.2307/2683591
10.1109/ICCV.2015.510
10.1016/j.simpat.2015.03.003
10.1109/TNNLS.2021.3084827
10.1016/j.apt.2024.104354
10.1109/ICCV.2015.169
10.1016/j.apt.2022.103809
10.1561/9781601982957
10.1016/j.powtec.2020.12.064
10.1080/00401706.1971.10488811
10.2113/gsecongeo.58.8.1246
10.1039/c3sm27760g
10.1016/j.jappgeo.2022.104836
10.1016/j.conbuildmat.2013.11.072
10.14356/kona.2016022
10.1016/j.apt.2022.103668
10.1007/s12517-014-1618-1
10.1016/0032-5910(89)80093-2
10.1016/j.powtec.2017.03.029
10.1080/00401706.1989.10488474
10.1016/j.powtec.2022.117456
10.1016/j.apt.2021.08.038
10.1016/j.apt.2023.104201
10.1016/j.powtec.2021.07.007
10.1080/01621459.1952.10483441
10.1016/j.apt.2019.04.019
10.1007/3-540-46805-6_19
10.1016/j.apt.2024.104337
10.2991/assehr.k.201010.019
10.1109/TPAMI.2015.2389824
10.3390/app11114742
10.1063/1.857479
10.1016/j.apt.2024.104578
10.1016/j.apt.2023.104284
10.1016/j.apt.2022.103551
10.1016/j.powtec.2016.02.005
10.1016/0032-5910(73)80064-6
10.1186/s40537-019-0191-6
10.1016/j.ijmultiphaseflow.2015.07.008
10.1145/1143844.1143874
10.1109/5.726791
ContentType Journal Article
Copyright 2024 The Society of Powder Technology Japan.
Copyright_xml – notice: 2024 The Society of Powder Technology Japan.
DBID AAYXX
CITATION
DOI 10.1016/j.apt.2024.104761
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_apt_2024_104761
S0921883124004382
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
23M
4.4
457
4G.
5GY
5VS
63Z
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFNC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABDBF
ABFNM
ABJNI
ABLST
ABMAC
ABNUV
ABUBZ
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACMRT
ACNNM
ACRLP
ACRPL
ACUHS
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADYHW
AEBSH
AEIPS
AEKER
AENEX
AEVUW
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMFWP
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
EAP
EAS
EBS
EFJIC
EJD
EMK
ENUVR
EP2
EP3
EST
ESX
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HLY
HVGLF
HZ~
I-F
J1W
KCYFY
KOM
LY7
M41
MAGPM
MM1
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
R4W
RIG
RNI
ROL
RZC
SCE
SDF
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
TUS
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c249t-8fc5b397dd41a4e3225dff09ee04de49ac1c4917a13ce9d68d46ae666387e5f03
IEDL.DBID .~1
ISSN 0921-8831
IngestDate Wed Oct 01 05:58:18 EDT 2025
Sat Feb 08 15:52:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Trajectory recognition
Size segregation
Convolutional neural networks
Vibrated bed
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-8fc5b397dd41a4e3225dff09ee04de49ac1c4917a13ce9d68d46ae666387e5f03
ORCID 0009-0005-1295-2222
0009-0007-9328-7117
ParticipantIDs crossref_primary_10_1016_j_apt_2024_104761
elsevier_sciencedirect_doi_10_1016_j_apt_2024_104761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Advanced powder technology : the international journal of the Society of Powder Technology, Japan
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang Z, Jing Y, Zhao H, et al. Effects of subharmonic motion on size segregation in vertically vibrated granular materials[J]. 2009.
Sun, Xu, Lu (b0115) 2015; 77
Ahmad, Jafar, Aljoumaa (b0345) 2019; 6
Müller, Holland, Sederman (b0125) 2008; 184
Felipe, Simpson, Balabanov (b0175) 2014; 52
Isaaks E H, Srivastava R M. Applied geostatistics[J]. 1989.
Kruskal, Wallis (b0380) 1952; 47
Qiao, Yang, Lu (b0025) 2023; 8
Chen, Li, Xiu (b0080) 2021; 392
Arifuzzaman, Dong, Zhu (b0235) 2022; 33
Lin (b0225) 2024; 35
Hill, Fan (b0100) 2016; 33
Zhao, Duan, Jiang (b0180) 2022; 404
Kitanidis (b0305) 1997
Daya, Bejari (b0155) 2015; 8
Cleveland (b0140) 1981; 35
Forsyth D A, Mundy J L, di Gesú V, et al. Object recognition with gradient-based learning[J]. Shape, contour and grouping in computer vision. 1999. 319-345.
Huang (b0135) 2017
Singh D, Jatana V, Kanchana M. Survey paper on churn prediction on telecom[J]. Available at SSRN 3849664. 2021.
Rosato, Prinz, Standburg (b0060) 1986; 49
LeCun, Bottou, Bengio (b0395) 1998; 86
Liu, Zhang, Liu (b0210) 2021; 32
Umargono E, Suseno J E, Gunawan S V. K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula: The 2nd international seminar on science and technology (ISSTEC 2019), 2020[C]. Atlantis Press.
Huizan, Ren, Kefeng (b0150) 2008[C].
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016[C].
Yuling, Qikai, Changyan (b0270) 2001; 18
Matheron (b0165) 1963; 58
Jenkins, Mancini (b0085) 1987
Tyeb, Mishra, Singh (b0200) 2024; 35
Pedregosa, Varoquaux, Gramfort (b0285) 2011; 12
Sacks, Schiller, Welch (b0170) 1989; 31
Le, Zidek (b0275) 2006
Lantz (b0340) 2019
Kvålseth (b0365) 1985; 39
Aftab, Moghadam (b0130) 2022; 206
Wackernagel (b0295) 2003
Subasinghe, Schaap, Kelly (b0050) 1989; 59
Wang (b0095) 2020; 215
Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves: Proceedings of the 23rd international conference on Machine learning. 2006[C].
Couckuyt, Dhaene, Demeester (b0145) 2014; 15
Le, Tran-Trung, Hoang (b0245) 2022; 2022
Dehaine, Filippov (b0045) 2016; 292
Cohen, Cohen, West (b0360) 2013
Zhao, Li, Yang (b0185) 2019; 30
Ghiasvand, Ramezanianpour, Ramezanianpour (b0010) 2014; 53
Mandal, Sadeghianjahromi, Wang (b0190) 2022; 33
Fan, Tao, Zhao (b0030) 2013; 30
Allen (b0355) 1971; 13
Qiao, Duan, Dong (b0075) 2021; 382
Gui, Cao, Xing (b0035) 2017; 313
Bengio Y. Learning Deep Architectures for AI[Z]. Now Publishers Inc. 2009.
Fei-Fei, Zheng, Xi-Ping (b0055) 2015; 64
Li, Liu, Yang (b0205) 2021; 33
Kleinbaum, Dietz, Gail (b0315) 2002
Tewari, Dichter, Chakraborty (b0105) 2013; 9
Sun, Wang, Lu (b0120) 2014; 268
Krige (b0160) 1951; 52
Ahmad, Smalley (b0065) 1973; 8
Hu (b0260) 1962; 8
Bradski (b0375) 2000
Oksendal (b0290) 2013
Vafeiadis, Diamantaras, Sarigiannidis (b0335) 2015; 55
Huang, Li, Liu (b0195) 2024; 35
Cleveland (b0265) 1979; 74
Jenkins, Mancini (b0090) 1989; 1
Wu, Zhang, Zhou (b0230) 2023; 34
Bazin, Sadeghi, Bourassa (b0040) 2014; 65
Ping, Xiao-xiao, Ke-min (b0015) 2007; 34
Ahn H. Computer simulation of rapid granular flow through an orifice[J]. 2007.
Zhang, Wang, Wang (b0215) 2023; 34
He, Zhang, Ren (b0410) 2015; 37
Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3d convolutional networks: Proceedings of the IEEE international conference on computer vision, 2015[C].
Wang, Lu, Wang (b0020) 2022; 33
Macqueen (b0255) 1967[C].
Girshick R. Fast r-cnn[J]. arXiv preprint arXiv:1504.08083. 2015.
Duan HaiTao D H, Qin YuChang Q Y, Yu JiBin Y J, et al. Effects of particle size on pellet feed processing quality and growth performance of growing pigs.[J]. 2015.
Li, Li, Mao (b0370) 2010; 17
Wang, Zhang, Liu (b0280) 2011; 34
Jain H, Khunteta A, Shrivastav S P. Telecom churn prediction using seven machine learning experiments integrating features engineering and normalization[J]. 2021.
Sserunjogi, Ambrose (b0220) 2024; 35
Xu, Ma, Kim (b0330) 2021; 11
Srivastava, Hinton, Krizhevsky (b0405) 2014; 15
Huang (10.1016/j.apt.2024.104761_b0195) 2024; 35
Le (10.1016/j.apt.2024.104761_b0245) 2022; 2022
Le (10.1016/j.apt.2024.104761_b0275) 2006
Felipe (10.1016/j.apt.2024.104761_b0175) 2014; 52
Ghiasvand (10.1016/j.apt.2024.104761_b0010) 2014; 53
Rosato (10.1016/j.apt.2024.104761_b0060) 1986; 49
LeCun (10.1016/j.apt.2024.104761_b0395) 1998; 86
Jenkins (10.1016/j.apt.2024.104761_b0085) 1987
Jenkins (10.1016/j.apt.2024.104761_b0090) 1989; 1
Zhang (10.1016/j.apt.2024.104761_b0215) 2023; 34
10.1016/j.apt.2024.104761_b0250
Couckuyt (10.1016/j.apt.2024.104761_b0145) 2014; 15
Wackernagel (10.1016/j.apt.2024.104761_b0295) 2003
Daya (10.1016/j.apt.2024.104761_b0155) 2015; 8
Wang (10.1016/j.apt.2024.104761_b0020) 2022; 33
Chen (10.1016/j.apt.2024.104761_b0080) 2021; 392
Müller (10.1016/j.apt.2024.104761_b0125) 2008; 184
Mandal (10.1016/j.apt.2024.104761_b0190) 2022; 33
Dehaine (10.1016/j.apt.2024.104761_b0045) 2016; 292
Wang (10.1016/j.apt.2024.104761_b0095) 2020; 215
Qiao (10.1016/j.apt.2024.104761_b0075) 2021; 382
Sun (10.1016/j.apt.2024.104761_b0120) 2014; 268
Ping (10.1016/j.apt.2024.104761_b0015) 2007; 34
Qiao (10.1016/j.apt.2024.104761_b0025) 2023; 8
Hu (10.1016/j.apt.2024.104761_b0260) 1962; 8
Cleveland (10.1016/j.apt.2024.104761_b0140) 1981; 35
Matheron (10.1016/j.apt.2024.104761_b0165) 1963; 58
Lin (10.1016/j.apt.2024.104761_b0225) 2024; 35
Sacks (10.1016/j.apt.2024.104761_b0170) 1989; 31
Bazin (10.1016/j.apt.2024.104761_b0040) 2014; 65
Kruskal (10.1016/j.apt.2024.104761_b0380) 1952; 47
10.1016/j.apt.2024.104761_b0240
Kleinbaum (10.1016/j.apt.2024.104761_b0315) 2002
Ahmad (10.1016/j.apt.2024.104761_b0345) 2019; 6
Macqueen (10.1016/j.apt.2024.104761_b0255) 1967
Gui (10.1016/j.apt.2024.104761_b0035) 2017; 313
10.1016/j.apt.2024.104761_b0320
Liu (10.1016/j.apt.2024.104761_b0210) 2021; 32
10.1016/j.apt.2024.104761_b0325
10.1016/j.apt.2024.104761_b0005
10.1016/j.apt.2024.104761_b0400
Sserunjogi (10.1016/j.apt.2024.104761_b0220) 2024; 35
Xu (10.1016/j.apt.2024.104761_b0330) 2021; 11
Oksendal (10.1016/j.apt.2024.104761_b0290) 2013
Fan (10.1016/j.apt.2024.104761_b0030) 2013; 30
Wu (10.1016/j.apt.2024.104761_b0230) 2023; 34
Lantz (10.1016/j.apt.2024.104761_b0340) 2019
Ahmad (10.1016/j.apt.2024.104761_b0065) 1973; 8
Yuling (10.1016/j.apt.2024.104761_b0270) 2001; 18
Tyeb (10.1016/j.apt.2024.104761_b0200) 2024; 35
10.1016/j.apt.2024.104761_b0350
10.1016/j.apt.2024.104761_b0310
Cleveland (10.1016/j.apt.2024.104761_b0265) 1979; 74
10.1016/j.apt.2024.104761_b0110
Wang (10.1016/j.apt.2024.104761_b0280) 2011; 34
Pedregosa (10.1016/j.apt.2024.104761_b0285) 2011; 12
Kitanidis (10.1016/j.apt.2024.104761_b0305) 1997
Huang (10.1016/j.apt.2024.104761_b0135) 2017
Srivastava (10.1016/j.apt.2024.104761_b0405) 2014; 15
Tewari (10.1016/j.apt.2024.104761_b0105) 2013; 9
Cohen (10.1016/j.apt.2024.104761_b0360) 2013
Hill (10.1016/j.apt.2024.104761_b0100) 2016; 33
Aftab (10.1016/j.apt.2024.104761_b0130) 2022; 206
Zhao (10.1016/j.apt.2024.104761_b0180) 2022; 404
Li (10.1016/j.apt.2024.104761_b0205) 2021; 33
Allen (10.1016/j.apt.2024.104761_b0355) 1971; 13
Sun (10.1016/j.apt.2024.104761_b0115) 2015; 77
Krige (10.1016/j.apt.2024.104761_b0160) 1951; 52
Arifuzzaman (10.1016/j.apt.2024.104761_b0235) 2022; 33
Kvålseth (10.1016/j.apt.2024.104761_b0365) 1985; 39
10.1016/j.apt.2024.104761_b0390
10.1016/j.apt.2024.104761_b0070
Subasinghe (10.1016/j.apt.2024.104761_b0050) 1989; 59
Huizan (10.1016/j.apt.2024.104761_b0150) 2008
He (10.1016/j.apt.2024.104761_b0410) 2015; 37
Li (10.1016/j.apt.2024.104761_b0370) 2010; 17
Fei-Fei (10.1016/j.apt.2024.104761_b0055) 2015; 64
Vafeiadis (10.1016/j.apt.2024.104761_b0335) 2015; 55
Bradski (10.1016/j.apt.2024.104761_b0375) 2000
10.1016/j.apt.2024.104761_b0385
Zhao (10.1016/j.apt.2024.104761_b0185) 2019; 30
10.1016/j.apt.2024.104761_b0300
References_xml – volume: 1
  start-page: 2050
  year: 1989
  end-page: 2057
  ident: b0090
  article-title: Kinetic theory for binary mixtures of smooth, nearly elastic spheres[J]
  publication-title: Phys. Fluids A
– volume: 34
  start-page: 567
  year: 2011
  end-page: 573
  ident: b0280
  article-title: Kriging interpolation method optimized by support vector machine and its application in oceanic data[J]
  publication-title: Trans Atmosp Sci
– volume: 35
  start-page: 54
  year: 1981
  ident: b0140
  article-title: LOWESS: A program for smoothing scatterplots by robust locally weighted regression[J]
  publication-title: Am. Stat.
– year: 1967[C].
  ident: b0255
  article-title: Some methods for classification and analysis of multivariate observations: Proceedings of 5-th Berkeley Symposium on
– year: 2013
  ident: b0290
  article-title: Stochastic differential equations: an introduction with applications[M]
– reference: Girshick R. Fast r-cnn[J]. arXiv preprint arXiv:1504.08083. 2015.
– volume: 32
  start-page: 3885
  year: 2021
  end-page: 3903
  ident: b0210
  article-title: Efficient image segmentation based on deep learning for mineral image classification[J]
  publication-title: Adv. Powder Technol.
– reference: He K, Zhang X, Ren S, et al. Deep residual learning for image recognition: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016[C].
– volume: 313
  start-page: 361
  year: 2017
  end-page: 368
  ident: b0035
  article-title: A two-stage process for fine coal flotation intensification[J]
  publication-title: Powder Technol.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0405
  article-title: Dropout: a simple way to prevent neural networks from overfitting[J]
  publication-title: The Journal of Machine Learning Research
– volume: 53
  start-page: 547
  year: 2014
  end-page: 554
  ident: b0010
  article-title: Effect of grinding method and particle size distribution on the properties of Portland-pozzolan cement[J]
  publication-title: Constr. Build. Mater.
– volume: 382
  start-page: 107
  year: 2021
  end-page: 117
  ident: b0075
  article-title: DEM study of segregation degree and velocity of binary granular mixtures subject to vibration[J]
  publication-title: Powder Technol.
– volume: 13
  start-page: 469
  year: 1971
  end-page: 475
  ident: b0355
  article-title: Mean square error of prediction as a criterion for selecting variables[J]
  publication-title: Technometrics
– volume: 30
  start-page: 157
  year: 2013
  end-page: 161
  ident: b0030
  article-title: Effect of nanobubbles on the flotation of different sizes of coal particle[J]
  publication-title: Min. Metall. Explor.
– volume: 59
  start-page: 37
  year: 1989
  end-page: 44
  ident: b0050
  article-title: Modelling the screening process: a probabilistic approach[J]
  publication-title: Powder Technol.
– reference: Bengio Y. Learning Deep Architectures for AI[Z]. Now Publishers Inc. 2009.
– volume: 17
  start-page: 277
  year: 2010
  end-page: 279
  ident: b0370
  article-title: Selection of number of conditional data in Kriging interpolation[J]
  publication-title: Fault-Block Oil & Gas Field
– reference: Isaaks E H, Srivastava R M. Applied geostatistics[J]. 1989.
– volume: 33
  start-page: 6999
  year: 2021
  end-page: 7019
  ident: b0205
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects[J]
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 55
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0335
  article-title: A comparison of machine learning techniques for customer churn prediction[J]
  publication-title: Simul. Model. Pract. Theory
– year: 2003
  ident: b0295
  article-title: Multivariate geostatistics: an introduction with applications[M]
– volume: 8
  start-page: 30976
  year: 2023
  end-page: 30989
  ident: b0025
  article-title: Particle Behavior and Aperture Optimization of Variable Vibration-Amplitude Screening Based on Discrete Element Method Simulation[J]
  publication-title: ACS Omega
– volume: 52
  start-page: 119
  year: 1951
  end-page: 139
  ident: b0160
  article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand[J]
  publication-title: J. South Afr. Inst. Min. Metall.
– volume: 35
  year: 2024
  ident: b0200
  article-title: Prediction of operating state of hydrocyclones using vibrometry and 1D convolutional neural networks[J]
  publication-title: Adv. Powder Technol.
– year: 1987
  ident: b0085
  article-title: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic
  publication-title: Circular Disks[j].
– volume: 33
  year: 2022
  ident: b0190
  article-title: Experimental and numerical investigations on molten metal atomization techniques–A critical review[J]
  publication-title: Adv. Powder Technol.
– reference: Umargono E, Suseno J E, Gunawan S V. K-means clustering optimization using the elbow method and early centroid determination based on mean and median formula: The 2nd international seminar on science and technology (ISSTEC 2019), 2020[C]. Atlantis Press.
– volume: 8
  start-page: 179
  year: 1962
  end-page: 187
  ident: b0260
  article-title: Visual pattern recognition by moment invariants[J]
  publication-title: IRE Trans. Inf. Theory
– volume: 184
  start-page: 241
  year: 2008
  end-page: 253
  ident: b0125
  article-title: Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations[J]
  publication-title: Powder Technol.
– volume: 33
  start-page: 150
  year: 2016
  end-page: 168
  ident: b0100
  article-title: Granular temperature and segregation in dense sheared particulate mixtures[J]
  publication-title: Kona Powder Part. J.
– volume: 34
  year: 2023
  ident: b0230
  article-title: Physical fingerprint transformation of herbal medicines powders using near-infrared spectroscopy[J]
  publication-title: Adv. Powder Technol.
– reference: Forsyth D A, Mundy J L, di Gesú V, et al. Object recognition with gradient-based learning[J]. Shape, contour and grouping in computer vision. 1999. 319-345.
– volume: 292
  start-page: 331
  year: 2016
  end-page: 341
  ident: b0045
  article-title: Modelling heavy and gangue mineral size recovery curves using the spiral concentration of heavy minerals from kaolin residues[J]
  publication-title: Powder Technol.
– volume: 77
  start-page: 1
  year: 2015
  end-page: 18
  ident: b0115
  article-title: Simulated configurational temperature of particles and a model of constitutive relations of rapid-intermediate-dense granular flow based on generalized granular temperature[J]
  publication-title: Int. J. Multiph. Flow
– volume: 30
  start-page: 1386
  year: 2019
  end-page: 1399
  ident: b0185
  article-title: DEM study of size segregation of wet particles under vertical vibration[J]
  publication-title: Adv. Powder Technol.
– volume: 35
  year: 2024
  ident: b0220
  article-title: Light extinction coefficient and particle size correlation for real-time prediction and quantitative measurement of suspended dust concentrations[J]
  publication-title: Adv. Powder Technol.
– year: 2002
  ident: b0315
  article-title: Logistic regression[M]
– volume: 268
  start-page: 436
  year: 2014
  end-page: 445
  ident: b0120
  article-title: Simulations of configurational and granular temperatures of particles using DEM in roller conveyor[J]
  publication-title: Powder Technol.
– volume: 215
  year: 2020
  ident: b0095
  article-title: Continuum theory for dense gas-solid flow: A state-of-the-art review[J]
  publication-title: Chem. Eng. Sci.
– volume: 58
  start-page: 1246
  year: 1963
  end-page: 1266
  ident: b0165
  article-title: Principles of geostatistics[J]
  publication-title: Econ. Geol.
– reference: Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves: Proceedings of the 23rd international conference on Machine learning. 2006[C].
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b0395
  article-title: Gradient-based learning applied to document recognition[J]
  publication-title: Proc. IEEE
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  ident: b0380
  article-title: Use of ranks in one-criterion variance analysis[J]
  publication-title: J. Am. Stat. Assoc.
– volume: 8
  start-page: 69
  year: 1973
  end-page: 75
  ident: b0065
  article-title: Observation of particle segregation in vibrated granular systems[J]
  publication-title: Powder Technol.
– volume: 52
  start-page: 670
  year: 2014
  end-page: 690
  ident: b0175
  article-title: Metamodeling in multidisciplinary design optimization: How far have we really come[J]. AIAA (American Institute of Aeronautics and Astronautics)
  publication-title: Journal
– volume: 9
  start-page: 5016
  year: 2013
  end-page: 5024
  ident: b0105
  article-title: Signatures of incipient jamming in collisional hopper flows[J]
  publication-title: Soft Matter
– volume: 18
  start-page: 50
  year: 2001
  end-page: 55
  ident: b0270
  article-title: The status quo and prospect of spatial variability of soil[J]
  publication-title: Arid Zone Res.
– year: 2006
  ident: b0275
  article-title: Statistical analysis of environmental space-time processes[M]
– year: 2000
  ident: b0375
  article-title: The OpenCV library[J]
  publication-title: Dr. Dobb’s Journal of Software Tools
– reference: Duan HaiTao D H, Qin YuChang Q Y, Yu JiBin Y J, et al. Effects of particle size on pellet feed processing quality and growth performance of growing pigs.[J]. 2015.
– year: 2013
  ident: b0360
  article-title: Applied multiple regression/correlation analysis for the behavioral sciences[M]
– reference: Jain H, Khunteta A, Shrivastav S P. Telecom churn prediction using seven machine learning experiments integrating features engineering and normalization[J]. 2021.
– year: 2008[C].
  ident: b0150
  article-title: Improved Kriging Interpolation Based on Support Vector Machine and Its Application in Oceanic Missing Data Recovery
– volume: 6
  start-page: 1
  year: 2019
  end-page: 24
  ident: b0345
  article-title: Customer churn prediction in telecom using machine learning in big data platform[J]
  publication-title: Journal of Big Data
– year: 2017
  ident: b0135
  publication-title: Functional Data Smoothing Methods and Their Applications[j].
– reference: Singh D, Jatana V, Kanchana M. Survey paper on churn prediction on telecom[J]. Available at SSRN 3849664. 2021.
– volume: 392
  start-page: 123
  year: 2021
  end-page: 129
  ident: b0080
  article-title: Measurement of granular temperature and velocity profile of granular flow in silos[J]
  publication-title: Powder Technol.
– volume: 34
  year: 2023
  ident: b0215
  article-title: BU-net: Holographic image segmentation of multi-scale dense particle field with noisy training dataset[J]
  publication-title: Adv. Powder Technol.
– volume: 65
  start-page: 115
  year: 2014
  end-page: 123
  ident: b0040
  article-title: Size recovery curves of minerals in industrial spirals for processing iron oxide ores[J]
  publication-title: Miner. Eng.
– volume: 2022
  year: 2022
  ident: b0245
  article-title: A comprehensive review of recent deep learning techniques for human activity recognition[J]
  publication-title: Comput. Intell. Neurosci.
– volume: 33
  year: 2022
  ident: b0020
  article-title: Study on screening probability model and particle-size effect of flip-flow screen[J]
  publication-title: Adv. Powder Technol.
– volume: 35
  year: 2024
  ident: b0225
  article-title: Application of artificial neural networks to predict the particle-scale contact force of photoelastic disks[J]
  publication-title: Adv. Powder Technol.
– volume: 64
  year: 2015
  ident: b0055
  article-title: Energy dissipation and periodic segregation of vibrated binary granular mixtures[J]
  publication-title: Acta Phys. Sin.
– volume: 404
  year: 2022
  ident: b0180
  article-title: DEM simulation of size segregation of binary mixtures of cohesive particles under a horizontal swirling vibration[J]
  publication-title: Powder Technol.
– reference: Ahn H. Computer simulation of rapid granular flow through an orifice[J]. 2007.
– reference: Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3d convolutional networks: Proceedings of the IEEE international conference on computer vision, 2015[C].
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b0410
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition[J]
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 279
  year: 1985
  end-page: 285
  ident: b0365
  article-title: Cautionary note about R 2[J]
  publication-title: Am. Stat.
– volume: 8
  start-page: 6003
  year: 2015
  end-page: 6020
  ident: b0155
  article-title: A comparative study between simple kriging and ordinary kriging for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran[J]
  publication-title: Arab. J. Geosci.
– volume: 74
  start-page: 829
  year: 1979
  end-page: 836
  ident: b0265
  article-title: Robust locally weighted regression and smoothing scatterplots[J]
  publication-title: J. Am. Stat. Assoc.
– year: 2019
  ident: b0340
  article-title: Machine learning with R: expert techniques for predictive modeling[M]
  publication-title: Packt Publishing Ltd
– volume: 206
  year: 2022
  ident: b0130
  article-title: Robust data smoothing algorithms and wavelet filter for denoising sonic log signals[J]
  publication-title: J. Appl. Geophys.
– volume: 31
  start-page: 41
  year: 1989
  end-page: 47
  ident: b0170
  article-title: Designs for computer experiments[J]
  publication-title: Technometrics
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0285
  article-title: Scikit-learn: Machine learning in Python[J]
  publication-title: The Journal of Machine Learning Research
– reference: Jiang Z, Jing Y, Zhao H, et al. Effects of subharmonic motion on size segregation in vertically vibrated granular materials[J]. 2009.
– volume: 49
  start-page: 59
  year: 1986
  end-page: 69
  ident: b0060
  article-title: Monte Carlo simulation of particulate matter segregation[J]
  publication-title: Powder Technol.
– year: 1997
  ident: b0305
  article-title: Introduction to geostatistics: applications in hydrogeology[M]
– volume: 35
  year: 2024
  ident: b0195
  article-title: Dynamic characteristics of the internal flow field of a rotary centrifugal air classifier and pressure prediction through attention mechanism-enhanced CNN-LSTM[J]
  publication-title: Adv. Powder Technol.
– volume: 11
  start-page: 4742
  year: 2021
  ident: b0330
  article-title: Telecom churn prediction system based on ensemble learning using feature grouping[J]
  publication-title: Appl. Sci.
– volume: 34
  year: 2007
  ident: b0015
  article-title: Preparation of Chitosan Nanoparticles As Protein Drug Carriers[J]
  publication-title: Journal of Hunan University
– volume: 15
  start-page: 3183
  year: 2014
  end-page: 3186
  ident: b0145
  article-title: ooDACE toolbox: a flexible object-oriented Kriging implementation[J]
  publication-title: J. Mach. Learn. Res.
– volume: 33
  year: 2022
  ident: b0235
  article-title: DEM study and machine learning model of particle percolation under vibration[J]
  publication-title: Adv. Powder Technol.
– volume: 18
  start-page: 50
  issue: 2
  year: 2001
  ident: 10.1016/j.apt.2024.104761_b0270
  article-title: The status quo and prospect of spatial variability of soil[J]
  publication-title: Arid Zone Res.
– volume: 65
  start-page: 115
  year: 2014
  ident: 10.1016/j.apt.2024.104761_b0040
  article-title: Size recovery curves of minerals in industrial spirals for processing iron oxide ores[J]
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.05.012
– ident: 10.1016/j.apt.2024.104761_b0240
  doi: 10.1109/CVPR.2016.90
– volume: 49
  start-page: 59
  issue: 1
  year: 1986
  ident: 10.1016/j.apt.2024.104761_b0060
  article-title: Monte Carlo simulation of particulate matter segregation[J]
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(86)85005-7
– year: 2017
  ident: 10.1016/j.apt.2024.104761_b0135
  publication-title: Functional Data Smoothing Methods and Their Applications[j].
– ident: 10.1016/j.apt.2024.104761_b0005
– volume: 268
  start-page: 436
  year: 2014
  ident: 10.1016/j.apt.2024.104761_b0120
  article-title: Simulations of configurational and granular temperatures of particles using DEM in roller conveyor[J]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.08.007
– volume: 8
  start-page: 179
  issue: 2
  year: 1962
  ident: 10.1016/j.apt.2024.104761_b0260
  article-title: Visual pattern recognition by moment invariants[J]
  publication-title: IRE Trans. Inf. Theory
  doi: 10.1109/TIT.1962.1057692
– ident: 10.1016/j.apt.2024.104761_b0320
  doi: 10.2139/ssrn.3849664
– volume: 34
  start-page: 567
  issue: 5
  year: 2011
  ident: 10.1016/j.apt.2024.104761_b0280
  article-title: Kriging interpolation method optimized by support vector machine and its application in oceanic data[J]
  publication-title: Trans Atmosp Sci
– ident: 10.1016/j.apt.2024.104761_b0300
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.apt.2024.104761_b0285
  article-title: Scikit-learn: Machine learning in Python[J]
  publication-title: The Journal of Machine Learning Research
– volume: 184
  start-page: 241
  issue: 2
  year: 2008
  ident: 10.1016/j.apt.2024.104761_b0125
  article-title: Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations[J]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.11.046
– volume: 34
  issue: 12
  year: 2023
  ident: 10.1016/j.apt.2024.104761_b0230
  article-title: Physical fingerprint transformation of herbal medicines powders using near-infrared spectroscopy[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2023.104244
– year: 2003
  ident: 10.1016/j.apt.2024.104761_b0295
– volume: 2022
  issue: 1
  year: 2022
  ident: 10.1016/j.apt.2024.104761_b0245
  article-title: A comprehensive review of recent deep learning techniques for human activity recognition[J]
  publication-title: Comput. Intell. Neurosci.
– year: 1997
  ident: 10.1016/j.apt.2024.104761_b0305
– ident: 10.1016/j.apt.2024.104761_b0325
  doi: 10.21203/rs.3.rs-239201/v1
– volume: 8
  start-page: 30976
  issue: 34
  year: 2023
  ident: 10.1016/j.apt.2024.104761_b0025
  article-title: Particle Behavior and Aperture Optimization of Variable Vibration-Amplitude Screening Based on Discrete Element Method Simulation[J]
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c02511
– volume: 215
  year: 2020
  ident: 10.1016/j.apt.2024.104761_b0095
  article-title: Continuum theory for dense gas-solid flow: A state-of-the-art review[J]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.115428
– volume: 74
  start-page: 829
  issue: 368
  year: 1979
  ident: 10.1016/j.apt.2024.104761_b0265
  article-title: Robust locally weighted regression and smoothing scatterplots[J]
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1979.10481038
– year: 2019
  ident: 10.1016/j.apt.2024.104761_b0340
  article-title: Machine learning with R: expert techniques for predictive modeling[M]
  publication-title: Packt Publishing Ltd
– ident: 10.1016/j.apt.2024.104761_b0110
  doi: 10.1115/1.2187529
– volume: 34
  issue: 9
  year: 2007
  ident: 10.1016/j.apt.2024.104761_b0015
  article-title: Preparation of Chitosan Nanoparticles As Protein Drug Carriers[J]
  publication-title: Journal of Hunan University
– volume: 30
  start-page: 157
  issue: 3
  year: 2013
  ident: 10.1016/j.apt.2024.104761_b0030
  article-title: Effect of nanobubbles on the flotation of different sizes of coal particle[J]
  publication-title: Min. Metall. Explor.
– volume: 35
  start-page: 54
  issue: 1
  year: 1981
  ident: 10.1016/j.apt.2024.104761_b0140
  article-title: LOWESS: A program for smoothing scatterplots by robust locally weighted regression[J]
  publication-title: Am. Stat.
  doi: 10.2307/2683591
– ident: 10.1016/j.apt.2024.104761_b0250
  doi: 10.1109/ICCV.2015.510
– volume: 55
  start-page: 1
  year: 2015
  ident: 10.1016/j.apt.2024.104761_b0335
  article-title: A comparison of machine learning techniques for customer churn prediction[J]
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2015.03.003
– year: 1987
  ident: 10.1016/j.apt.2024.104761_b0085
  article-title: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic
  publication-title: Circular Disks[j].
– volume: 33
  start-page: 6999
  issue: 12
  year: 2021
  ident: 10.1016/j.apt.2024.104761_b0205
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects[J]
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– volume: 35
  issue: 3
  year: 2024
  ident: 10.1016/j.apt.2024.104761_b0220
  article-title: Light extinction coefficient and particle size correlation for real-time prediction and quantitative measurement of suspended dust concentrations[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2024.104354
– ident: 10.1016/j.apt.2024.104761_b0400
  doi: 10.1109/ICCV.2015.169
– volume: 33
  issue: 11
  year: 2022
  ident: 10.1016/j.apt.2024.104761_b0190
  article-title: Experimental and numerical investigations on molten metal atomization techniques–A critical review[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2022.103809
– volume: 15
  start-page: 3183
  year: 2014
  ident: 10.1016/j.apt.2024.104761_b0145
  article-title: ooDACE toolbox: a flexible object-oriented Kriging implementation[J]
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.apt.2024.104761_b0385
  doi: 10.1561/9781601982957
– volume: 64
  issue: 13
  year: 2015
  ident: 10.1016/j.apt.2024.104761_b0055
  article-title: Energy dissipation and periodic segregation of vibrated binary granular mixtures[J]
  publication-title: Acta Phys. Sin.
– volume: 39
  start-page: 279
  issue: 4
  year: 1985
  ident: 10.1016/j.apt.2024.104761_b0365
  article-title: Cautionary note about R 2[J]
  publication-title: Am. Stat.
– year: 2008
  ident: 10.1016/j.apt.2024.104761_b0150
– volume: 382
  start-page: 107
  year: 2021
  ident: 10.1016/j.apt.2024.104761_b0075
  article-title: DEM study of segregation degree and velocity of binary granular mixtures subject to vibration[J]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.12.064
– volume: 52
  start-page: 119
  issue: 6
  year: 1951
  ident: 10.1016/j.apt.2024.104761_b0160
  article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand[J]
  publication-title: J. South Afr. Inst. Min. Metall.
– volume: 13
  start-page: 469
  issue: 3
  year: 1971
  ident: 10.1016/j.apt.2024.104761_b0355
  article-title: Mean square error of prediction as a criterion for selecting variables[J]
  publication-title: Technometrics
  doi: 10.1080/00401706.1971.10488811
– volume: 58
  start-page: 1246
  issue: 8
  year: 1963
  ident: 10.1016/j.apt.2024.104761_b0165
  article-title: Principles of geostatistics[J]
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.58.8.1246
– volume: 9
  start-page: 5016
  issue: 20
  year: 2013
  ident: 10.1016/j.apt.2024.104761_b0105
  article-title: Signatures of incipient jamming in collisional hopper flows[J]
  publication-title: Soft Matter
  doi: 10.1039/c3sm27760g
– volume: 206
  year: 2022
  ident: 10.1016/j.apt.2024.104761_b0130
  article-title: Robust data smoothing algorithms and wavelet filter for denoising sonic log signals[J]
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2022.104836
– volume: 52
  start-page: 670
  issue: 4
  year: 2014
  ident: 10.1016/j.apt.2024.104761_b0175
  article-title: Metamodeling in multidisciplinary design optimization: How far have we really come[J]. AIAA (American Institute of Aeronautics and Astronautics)
  publication-title: Journal
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.apt.2024.104761_b0405
  article-title: Dropout: a simple way to prevent neural networks from overfitting[J]
  publication-title: The Journal of Machine Learning Research
– volume: 53
  start-page: 547
  year: 2014
  ident: 10.1016/j.apt.2024.104761_b0010
  article-title: Effect of grinding method and particle size distribution on the properties of Portland-pozzolan cement[J]
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.11.072
– volume: 33
  start-page: 150
  year: 2016
  ident: 10.1016/j.apt.2024.104761_b0100
  article-title: Granular temperature and segregation in dense sheared particulate mixtures[J]
  publication-title: Kona Powder Part. J.
  doi: 10.14356/kona.2016022
– volume: 33
  issue: 8
  year: 2022
  ident: 10.1016/j.apt.2024.104761_b0020
  article-title: Study on screening probability model and particle-size effect of flip-flow screen[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2022.103668
– volume: 8
  start-page: 6003
  year: 2015
  ident: 10.1016/j.apt.2024.104761_b0155
  article-title: A comparative study between simple kriging and ordinary kriging for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran[J]
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-014-1618-1
– volume: 59
  start-page: 37
  issue: 1
  year: 1989
  ident: 10.1016/j.apt.2024.104761_b0050
  article-title: Modelling the screening process: a probabilistic approach[J]
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(89)80093-2
– volume: 313
  start-page: 361
  year: 2017
  ident: 10.1016/j.apt.2024.104761_b0035
  article-title: A two-stage process for fine coal flotation intensification[J]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.03.029
– year: 2006
  ident: 10.1016/j.apt.2024.104761_b0275
– year: 2013
  ident: 10.1016/j.apt.2024.104761_b0290
– ident: 10.1016/j.apt.2024.104761_b0070
– volume: 17
  start-page: 277
  year: 2010
  ident: 10.1016/j.apt.2024.104761_b0370
  article-title: Selection of number of conditional data in Kriging interpolation[J]
  publication-title: Fault-Block Oil & Gas Field
– volume: 31
  start-page: 41
  issue: 1
  year: 1989
  ident: 10.1016/j.apt.2024.104761_b0170
  article-title: Designs for computer experiments[J]
  publication-title: Technometrics
  doi: 10.1080/00401706.1989.10488474
– volume: 404
  year: 2022
  ident: 10.1016/j.apt.2024.104761_b0180
  article-title: DEM simulation of size segregation of binary mixtures of cohesive particles under a horizontal swirling vibration[J]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2022.117456
– volume: 32
  start-page: 3885
  issue: 10
  year: 2021
  ident: 10.1016/j.apt.2024.104761_b0210
  article-title: Efficient image segmentation based on deep learning for mineral image classification[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2021.08.038
– volume: 34
  issue: 11
  year: 2023
  ident: 10.1016/j.apt.2024.104761_b0215
  article-title: BU-net: Holographic image segmentation of multi-scale dense particle field with noisy training dataset[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2023.104201
– volume: 392
  start-page: 123
  year: 2021
  ident: 10.1016/j.apt.2024.104761_b0080
  article-title: Measurement of granular temperature and velocity profile of granular flow in silos[J]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.07.007
– year: 2002
  ident: 10.1016/j.apt.2024.104761_b0315
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  ident: 10.1016/j.apt.2024.104761_b0380
  article-title: Use of ranks in one-criterion variance analysis[J]
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1952.10483441
– volume: 30
  start-page: 1386
  issue: 7
  year: 2019
  ident: 10.1016/j.apt.2024.104761_b0185
  article-title: DEM study of size segregation of wet particles under vertical vibration[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2019.04.019
– year: 2000
  ident: 10.1016/j.apt.2024.104761_b0375
  article-title: The OpenCV library[J]
  publication-title: Dr. Dobb’s Journal of Software Tools
– ident: 10.1016/j.apt.2024.104761_b0390
  doi: 10.1007/3-540-46805-6_19
– volume: 35
  issue: 2
  year: 2024
  ident: 10.1016/j.apt.2024.104761_b0200
  article-title: Prediction of operating state of hydrocyclones using vibrometry and 1D convolutional neural networks[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2024.104337
– ident: 10.1016/j.apt.2024.104761_b0310
  doi: 10.2991/assehr.k.201010.019
– year: 1967
  ident: 10.1016/j.apt.2024.104761_b0255
– year: 2013
  ident: 10.1016/j.apt.2024.104761_b0360
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.apt.2024.104761_b0410
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition[J]
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 11
  start-page: 4742
  issue: 11
  year: 2021
  ident: 10.1016/j.apt.2024.104761_b0330
  article-title: Telecom churn prediction system based on ensemble learning using feature grouping[J]
  publication-title: Appl. Sci.
  doi: 10.3390/app11114742
– volume: 1
  start-page: 2050
  issue: 12
  year: 1989
  ident: 10.1016/j.apt.2024.104761_b0090
  article-title: Kinetic theory for binary mixtures of smooth, nearly elastic spheres[J]
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857479
– volume: 35
  issue: 8
  year: 2024
  ident: 10.1016/j.apt.2024.104761_b0195
  article-title: Dynamic characteristics of the internal flow field of a rotary centrifugal air classifier and pressure prediction through attention mechanism-enhanced CNN-LSTM[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2024.104578
– volume: 35
  issue: 1
  year: 2024
  ident: 10.1016/j.apt.2024.104761_b0225
  article-title: Application of artificial neural networks to predict the particle-scale contact force of photoelastic disks[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2023.104284
– volume: 33
  issue: 5
  year: 2022
  ident: 10.1016/j.apt.2024.104761_b0235
  article-title: DEM study and machine learning model of particle percolation under vibration[J]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2022.103551
– volume: 292
  start-page: 331
  year: 2016
  ident: 10.1016/j.apt.2024.104761_b0045
  article-title: Modelling heavy and gangue mineral size recovery curves using the spiral concentration of heavy minerals from kaolin residues[J]
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.02.005
– volume: 8
  start-page: 69
  issue: 1–2
  year: 1973
  ident: 10.1016/j.apt.2024.104761_b0065
  article-title: Observation of particle segregation in vibrated granular systems[J]
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(73)80064-6
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.apt.2024.104761_b0345
  article-title: Customer churn prediction in telecom using machine learning in big data platform[J]
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0191-6
– volume: 77
  start-page: 1
  year: 2015
  ident: 10.1016/j.apt.2024.104761_b0115
  article-title: Simulated configurational temperature of particles and a model of constitutive relations of rapid-intermediate-dense granular flow based on generalized granular temperature[J]
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.07.008
– ident: 10.1016/j.apt.2024.104761_b0350
  doi: 10.1145/1143844.1143874
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.apt.2024.104761_b0395
  article-title: Gradient-based learning applied to document recognition[J]
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
SSID ssj0017249
Score 2.3702772
Snippet [Display omitted] •An algorithm for identifying the starting and stopping states of segregation was proposed.•Characteristics of the regionalized distribution...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104761
SubjectTerms Convolutional neural networks
Size segregation
Trajectory recognition
Vibrated bed
Title Data interpolation and characteristic identification for particle segregation behavior and CNN-based dynamics correlation modeling
URI https://dx.doi.org/10.1016/j.apt.2024.104761
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0921-8831
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017249
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0921-8831
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017249
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0921-8831
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017249
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0921-8831
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017249
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0921-8831
  databaseCode: AKRWK
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017249
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4MwGG6WedGD8TPOj6UHTyZ1MAqU4zJdpkYuumQ3Utpi8IDE4dWDv9z3pcVsiV68QgvlAd6P9un7EHIZ5jIOdBIyA9Ey49zETCJNLBIhV14x9oscpwYe02i-4PfLcNkj024vDNIqne23Nr211u7IyKE5qsty9OQl4J5E4CMLEpezcAc7j1HF4Przh-YB_tmGwNCYYetuZbPleMka6ZRjjiudceT_7pvW_M1sj-y6QJFO7Fj2Sc9UB2RnrXzgIfm6kY2kpVXKspw2KitN1UYRZlpqxwiyLSBKpbV7RLoykG-_2BPdjv32GtM0ZejhNNVWs35FFQp5uNu0AjowiCOymN0-T-fMaSowBUA0TBQqzCEG0Zr7khv8nXVReIkxHteGJ1L5ikMKJ_1AmURHQvNIGshxAhGbsPCCY9Kv3ipzQqiIhDEBuHeJldH9XJgY8jcMSIpEKM8bkKsOzay2pTOyjlP2mgH0GUKfWegHhHd4ZxvvPwPT_ne30_91OyPbY9TxbdnX56TfvH-YCwgumnzYfj1DsjW5e5in34KH0F8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4inK0wMTkmkeTuKMqFAVaLPQSt0sx3ZQGUJEw8rAL8eOHVQkWFgTO3E-OXff2Z_vAC6jnCehTCOsNFvGhKgEcyMTi2lEhFcEfpGbpYFJFo9m5GEezTswaM_CGFmls_3WpjfW2l3pOzT71WLRf_JS7Z5o6BsVpNnOWoN1EgWJicCuP751HtpBWw6sW2PTvN3abERevDJ6yoCYrc4k9n93TisOZ7gD244pohs7mF3oqHIPtlbyB-7D5y2vOVrYUllW1IZ4KZH4kYUZLaSTBNkWmqaiyn0jWiodcD_bG-2R_eYZgyzDxsVJJG3R-iUSppKHe01TQUcP4gBmw7vpYIRdUQUsNBA1poWIck1CpCQ-J8r8z7IovFQpj0hFUi58QXQMx_1QqFTGVJKYKx3khDRRUeGFh9AtX0t1BIjGVKlQ-3duUqP7OVWJDuAMIylSKjyvB1ctmqyyuTNYKyp7YRp6ZqBnFvoekBZv9mMCMG3b_-52_L9uF7Axmk7GbHyfPZ7AZmCK-jZS7FPo1m_v6kwzjTo_b2bSF4F60fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+interpolation+and+characteristic+identification+for+particle+segregation+behavior+and+CNN-based+dynamics+correlation+modeling&rft.jtitle=Advanced+powder+technology+%3A+the+international+journal+of+the+Society+of+Powder+Technology%2C+Japan&rft.au=Wang%2C+Wei&rft.au=Wang%2C+Yanze&rft.au=Yang%2C+Shengchao&rft.au=Qiao%2C+Jinpeng&rft.date=2025-02-01&rft.issn=0921-8831&rft.volume=36&rft.issue=2&rft.spage=104761&rft_id=info:doi/10.1016%2Fj.apt.2024.104761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apt_2024_104761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8831&client=summon