Swarm Intelligent Metaheuristic Optimization Algorithms-Based Artificial Neural Network Models for Breast Cancer Diagnosis: Emerging Trends, Challenges and Future Research Directions
Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the development of malignant neoplasm from the breast cells. This breast cancer can be treated when it is identified at an early stage. Several res...
Saved in:
| Published in | Archives of computational methods in engineering Vol. 32; no. 1; pp. 381 - 398 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.01.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1134-3060 1886-1784 |
| DOI | 10.1007/s11831-024-10142-2 |
Cover
| Abstract | Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the development of malignant neoplasm from the breast cells. This breast cancer can be treated when it is identified at an early stage. Several researchers have contributed different machine learning approaches for maximizing the accuracy during the process of predicting breast cancer. Optimization of selected features is another important step essential for attaining maximized accuracy during the process of detection during the use of Artificial Neural Network. The utilization of optimization algorithm also helps in fine-tuning the hyperparameters of ANN such that the process of classification can be achieved with better precision and less computational time. In this paper, a Review on Swarm Intelligent metaheuristic optimization algorithms-based Artificial Neural Network-based Breast Cancer Diagnosis Schemes is presented for comparing different approaches depending on their efficacy in achieving the classification process. It presents the potentiality of wrapper and filter methods generally used for classifying cancer cells from normal cells. This review specifically concentrates on highlighting the significance of the swarm intelligent algorithms-based optimized ANN models which are contributed with its limitations. This review also demonstrates the future scope of research which could be concentrated from the identified extract of the literature. This review also highlighted the different kinds of evaluation metrics considered for assessing the potentiality of the existing ANN-based Breast Cancer Diagnosis Schemes with its need in utilization during evaluation. |
|---|---|
| AbstractList | Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the development of malignant neoplasm from the breast cells. This breast cancer can be treated when it is identified at an early stage. Several researchers have contributed different machine learning approaches for maximizing the accuracy during the process of predicting breast cancer. Optimization of selected features is another important step essential for attaining maximized accuracy during the process of detection during the use of Artificial Neural Network. The utilization of optimization algorithm also helps in fine-tuning the hyperparameters of ANN such that the process of classification can be achieved with better precision and less computational time. In this paper, a Review on Swarm Intelligent metaheuristic optimization algorithms-based Artificial Neural Network-based Breast Cancer Diagnosis Schemes is presented for comparing different approaches depending on their efficacy in achieving the classification process. It presents the potentiality of wrapper and filter methods generally used for classifying cancer cells from normal cells. This review specifically concentrates on highlighting the significance of the swarm intelligent algorithms-based optimized ANN models which are contributed with its limitations. This review also demonstrates the future scope of research which could be concentrated from the identified extract of the literature. This review also highlighted the different kinds of evaluation metrics considered for assessing the potentiality of the existing ANN-based Breast Cancer Diagnosis Schemes with its need in utilization during evaluation. |
| Author | Veeranjaneyulu, K. Lakshmi, M. Janakiraman, Sengathir |
| Author_xml | – sequence: 1 givenname: K. surname: Veeranjaneyulu fullname: Veeranjaneyulu, K. email: kveeru876@gmail.com organization: Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, Department of Information Technology, CVR College of Engineering – sequence: 2 givenname: M. surname: Lakshmi fullname: Lakshmi, M. organization: Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology – sequence: 3 givenname: Sengathir surname: Janakiraman fullname: Janakiraman, Sengathir organization: Department of Information Technology, CVR College of Engineering |
| BookMark | eNp9kc1u1EAQhC0UJJLAC3AaiSuG-fWOuW02CURKiAThbI3Hbe8Ee2bpHiuCB-P5cHaRkDjk1H2or7tUdVIcxRShKF4L_k5wvnpPQlglSi51KbjQspTPimNhbVWKldVHyy6ULhWv-IvihOiec6PrWh4Xv78-OJzYVcwwjmGAmNkNZLeFGQPl4NntLocp_HI5pMjW45Aw5O1E5Zkj6Ngac-iDD25knxdkP_JDwu_sJnUwEusTsjMER5ltXPSA7Dy4ISYK9IFdTIBDiAO7Q4gdvWWbrRtHiAMQc7Fjl3OeEdgXIHDotwuK4B-N0Mviee9Ggld_52nx7fLibvOpvL79eLVZX5de6jqX1q486EpZpetem7Y1tZDCdr61BqQBrpVs1apTpu5aYTrpTC-M7-vK1aKSXJ0Wbw53d5h-zEC5uU8zxuVlo6SpKiuMVovKHlQeExFC3_iQ94lldGFsBG8eW2oOLTVLS82-pUYuqPwP3WGYHP58GlIHiBbxkhb-c_UE9QcuUamz |
| CitedBy_id | crossref_primary_10_56294_dm2024_346 |
| Cites_doi | 10.4018/978-1-6684-7136-4.ch034 10.1007/s10916-011-9781-3 10.1016/j.compbiomed.2021.104968 10.3390/app13042082 10.1016/j.optlaseng.2022.107305 10.1007/s12652-022-03713-3 10.1016/j.bbe.2019.12.004 10.1111/his.14820 10.1002/ima.22737 10.1016/j.eswa.2015.10.015 10.1007/s10044-014-0375-9 10.1002/ima.22468 10.1016/j.eswa.2023.121470 10.1155/2022/1820777 10.1016/j.eswa.2014.09.020 10.1007/s00521-021-05997-6 10.1007/s13042-014-0276-7 10.1016/j.compeleceng.2020.106958 10.1007/s00521-022-07445-5 10.1111/coin.12522 10.1007/s00521-012-1092-1 10.3390/biomimetics8020163 10.1007/s10916-019-1348-8 10.1007/11539117_117 10.1038/s41598-020-79139-8 10.1016/j.jbi.2014.01.010 10.1016/j.procs.2015.04.005 10.1016/j.eswa.2010.10.041 10.3390/diagnostics13071238 10.1016/j.eswa.2015.01.065 10.3390/cancers15030885 10.1007/s11042-023-18015-9 10.2306/scienceasia1513-1874.2013.39.294 10.1007/s00500-013-1198-0 10.3389/fbioe.2021.698390 10.1007/s10044-014-0391-9 10.1007/s11227-023-05605-5 10.1016/j.eswa.2016.06.004 10.1109/BMEI.2014.7002862 10.1109/ACCESS.2023.3304628 10.3389/fonc.2022.834028 10.1039/D2BM01551J 10.1007/s13198-021-01598-7 10.1007/978-3-030-91103-4_4 10.1016/j.imavis.2024.104910 10.31557/APJCP.2023.24.2.531 10.1155/2015/369298 10.1016/j.media.2022.102687 10.1007/s12652-020-01890-7 10.7717/peerj-cs.390 10.1016/j.bspc.2023.105492 10.1016/j.cmpb.2021.106432 10.1016/j.mce.2022.111792 10.1038/s41598-024-51329-8 10.1016/j.eswa.2006.04.010 10.1109/TPAMI.2004.105 10.3390/electronics12020403 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11831-024-10142-2 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 398 |
| ExternalDocumentID | 10_1007_s11831_024_10142_2 |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION PUEGO JQ2 |
| ID | FETCH-LOGICAL-c249t-887ce4638349f45bb591218dcb85e25e0432b37d359db15d2a5f15cf96a916203 |
| IEDL.DBID | U2A |
| ISSN | 1134-3060 |
| IngestDate | Mon Oct 06 18:33:03 EDT 2025 Wed Oct 01 04:56:09 EDT 2025 Thu Apr 24 23:03:55 EDT 2025 Mon Jul 21 06:08:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Metaheuristic optimization algorithms Deep learning model Exploration Breast cancer Swarm intelligence Neural network Exploitation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c249t-887ce4638349f45bb591218dcb85e25e0432b37d359db15d2a5f15cf96a916203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256681543 |
| PQPubID | 1486352 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3256681543 crossref_citationtrail_10_1007_s11831_024_10142_2 crossref_primary_10_1007_s11831_024_10142_2 springer_journals_10_1007_s11831_024_10142_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | AG Karegowda (10142_CR39) 2010; 1 EJ Kusuma (10142_CR21) 2020; 13 S Guo (10142_CR10) 2023; 160 S Dalwinder (10142_CR22) 2020; 40 Y Dou (10142_CR31) 2021; 9 J Wang (10142_CR12) 2023; 83 10142_CR34 10142_CR33 L Kanya Kumari (10142_CR65) 2024; 15 Q Huang (10142_CR60) 2024; 237 M Zhao (10142_CR42) 2011; 38 Z Wang (10142_CR64) 2024; 80 M Humayun (10142_CR53) 2023; 12 RM Munshi (10142_CR67) 2024; 142 P Stephan (10142_CR30) 2021; 33 JG Melekoodappattu (10142_CR59) 2023; 14 S Jeyasingh (10142_CR46) 2017; 18 G Nirmala (10142_CR27) 2021; 12 BS Abunasser (10142_CR56) 2023; 24 10142_CR18 R Rouhi (10142_CR5) 2015; 42 10142_CR14 10142_CR58 10142_CR57 IS Oh (10142_CR44) 2004; 26 10142_CR66 L Qian (10142_CR61) 2024; 87 M Marinaki (10142_CR43) 2016; 7 K Menghour (10142_CR52) 2016; 9 S Prakash (10142_CR28) 2021; 11 S Punitha (10142_CR20) 2019; 43 AM Abdel-Zaher (10142_CR8) 2016; 46 10142_CR47 J Ahmad (10142_CR2) 2015; 18 F Ahmad (10142_CR19) 2015; 18 J Dheeba (10142_CR3) 2012; 36 A Bhardwaj (10142_CR6) 2015; 42 10142_CR9 10142_CR54 10142_CR11 BS Khehra (10142_CR50) 2016; 17 10142_CR55 LM Abouelmagd (10142_CR32) 2022 DJ Sathya (10142_CR1) 2013; 39 S Abbas (10142_CR25) 2021; 7 E Zorarpacı (10142_CR48) 2016; 62 AA Alhussan (10142_CR63) 2023; 8 S Punitha (10142_CR26) 2021; 90 M Darzi (10142_CR41) 2011; 5 S Aalaei (10142_CR49) 2016; 19 S Bourouis (10142_CR37) 2022; 12 RK Sivagaminathan (10142_CR51) 2007; 33 S Thawkar (10142_CR23) 2021; 139 H Fang (10142_CR24) 2021; 31 WC Yeh (10142_CR16) 2011; 7 RC Chan (10142_CR15) 2023; 82 10142_CR36 Z Beheshti (10142_CR4) 2014; 18 10142_CR35 J Jona (10142_CR45) 2012; 9 10142_CR38 J Dheeba (10142_CR7) 2014; 49 10142_CR40 ON Oyelade (10142_CR62) 2024; 14 N Kaur (10142_CR29) 2021; 11 N Brook (10142_CR13) 2023; 559 F Ahmad (10142_CR17) 2013; 23 |
| References_xml | – ident: 10142_CR11 doi: 10.4018/978-1-6684-7136-4.ch034 – volume: 36 start-page: 3051 issue: 5 year: 2012 ident: 10142_CR3 publication-title: J Med Syst doi: 10.1007/s10916-011-9781-3 – volume: 139 start-page: 104968 year: 2021 ident: 10142_CR23 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104968 – ident: 10142_CR55 doi: 10.3390/app13042082 – volume: 160 start-page: 107305 year: 2023 ident: 10142_CR10 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2022.107305 – volume: 14 start-page: 11397 issue: 9 year: 2023 ident: 10142_CR59 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-022-03713-3 – volume: 40 start-page: 337 issue: 1 year: 2020 ident: 10142_CR22 publication-title: Biocybernetics Biomedical Eng doi: 10.1016/j.bbe.2019.12.004 – volume: 82 start-page: 198 issue: 1 year: 2023 ident: 10142_CR15 publication-title: Histopathology doi: 10.1111/his.14820 – ident: 10142_CR33 doi: 10.1002/ima.22737 – volume: 46 start-page: 139 year: 2016 ident: 10142_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.10.015 – volume: 5 start-page: 220 issue: 5 year: 2011 ident: 10142_CR41 publication-title: Int J Biomedical Biol Eng – volume: 18 start-page: 861 issue: 4 year: 2015 ident: 10142_CR19 publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0375-9 – volume: 31 start-page: 425 issue: 1 year: 2021 ident: 10142_CR24 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22468 – volume: 237 start-page: 121470 year: 2024 ident: 10142_CR60 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121470 – ident: 10142_CR36 doi: 10.1155/2022/1820777 – volume: 42 start-page: 990 issue: 3 year: 2015 ident: 10142_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.020 – volume: 9 start-page: 340 issue: 11 year: 2012 ident: 10142_CR45 publication-title: WSEAS Trans Inf Sci Appl – volume: 33 start-page: 13667 issue: 20 year: 2021 ident: 10142_CR30 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05997-6 – volume: 7 start-page: 519 issue: 4 year: 2016 ident: 10142_CR43 publication-title: Int J Mach Learn Cybernet doi: 10.1007/s13042-014-0276-7 – volume: 90 start-page: 106958 year: 2021 ident: 10142_CR26 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2020.106958 – ident: 10142_CR35 doi: 10.1007/s00521-022-07445-5 – ident: 10142_CR38 doi: 10.1111/coin.12522 – volume: 23 start-page: 1427 issue: 5 year: 2013 ident: 10142_CR17 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1092-1 – volume: 9 start-page: 65 issue: 3 year: 2016 ident: 10142_CR52 publication-title: Int J Intell Eng Syst – volume: 8 start-page: 163 issue: 2 year: 2023 ident: 10142_CR63 publication-title: Biomimetics doi: 10.3390/biomimetics8020163 – volume: 43 start-page: 1 issue: 7 year: 2019 ident: 10142_CR20 publication-title: J Med Syst doi: 10.1007/s10916-019-1348-8 – ident: 10142_CR40 doi: 10.1007/11539117_117 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10142_CR29 publication-title: Sci Rep doi: 10.1038/s41598-020-79139-8 – volume: 49 start-page: 45 year: 2014 ident: 10142_CR7 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2014.01.010 – ident: 10142_CR47 doi: 10.1016/j.procs.2015.04.005 – volume: 1 start-page: 13 issue: 7 year: 2010 ident: 10142_CR39 publication-title: Int J Comput Appl – volume: 38 start-page: 5197 issue: 5 year: 2011 ident: 10142_CR42 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.041 – ident: 10142_CR58 doi: 10.3390/diagnostics13071238 – volume: 17 start-page: 11 issue: 1 year: 2016 ident: 10142_CR50 publication-title: Egypt Inf J – volume: 42 start-page: 4611 issue: 10 year: 2015 ident: 10142_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.01.065 – ident: 10142_CR54 doi: 10.3390/cancers15030885 – ident: 10142_CR66 doi: 10.1007/s11042-023-18015-9 – volume: 39 start-page: 294 issue: 3 year: 2013 ident: 10142_CR1 publication-title: Sci Asia doi: 10.2306/scienceasia1513-1874.2013.39.294 – volume: 18 start-page: 2253 issue: 11 year: 2014 ident: 10142_CR4 publication-title: Soft Comput doi: 10.1007/s00500-013-1198-0 – volume: 9 start-page: 698390 year: 2021 ident: 10142_CR31 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.698390 – volume: 18 start-page: 419 issue: 2 year: 2015 ident: 10142_CR2 publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0391-9 – volume: 11 start-page: 2950 issue: 12 year: 2021 ident: 10142_CR28 publication-title: J Med Imaging Health Inf – volume: 80 start-page: 3849 issue: 3 year: 2024 ident: 10142_CR64 publication-title: J Supercomputing doi: 10.1007/s11227-023-05605-5 – volume: 62 start-page: 91 year: 2016 ident: 10142_CR48 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.06.004 – ident: 10142_CR18 doi: 10.1109/BMEI.2014.7002862 – ident: 10142_CR57 doi: 10.1109/ACCESS.2023.3304628 – volume: 18 start-page: 1257 issue: 5 year: 2017 ident: 10142_CR46 publication-title: Asian Pac J cancer Prevention: APJCP – volume: 12 start-page: 834028 year: 2022 ident: 10142_CR37 publication-title: Front Oncol doi: 10.3389/fonc.2022.834028 – ident: 10142_CR14 doi: 10.1039/D2BM01551J – volume: 13 start-page: 330 year: 2020 ident: 10142_CR21 publication-title: Int J Intell Eng Syst – volume: 15 start-page: 35 issue: 1 year: 2024 ident: 10142_CR65 publication-title: Int J Syst Assur Eng Manage doi: 10.1007/s13198-021-01598-7 – start-page: 53 volume-title: Medical Informatics and Bioimaging using Artificial Intelligence year: 2022 ident: 10142_CR32 doi: 10.1007/978-3-030-91103-4_4 – volume: 142 start-page: 104910 year: 2024 ident: 10142_CR67 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2024.104910 – volume: 24 start-page: 531 issue: 2 year: 2023 ident: 10142_CR56 publication-title: Asian Pac J cancer Prevention: APJCP doi: 10.31557/APJCP.2023.24.2.531 – ident: 10142_CR9 doi: 10.1155/2015/369298 – volume: 83 start-page: 102687 year: 2023 ident: 10142_CR12 publication-title: Med Image Anal doi: 10.1016/j.media.2022.102687 – volume: 12 start-page: 4797 issue: 5 year: 2021 ident: 10142_CR27 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-01890-7 – volume: 7 start-page: 2235 issue: 5 year: 2011 ident: 10142_CR16 publication-title: Int J Innovative Comput Inform Control – volume: 7 start-page: e390 year: 2021 ident: 10142_CR25 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.390 – volume: 87 start-page: 105492 year: 2024 ident: 10142_CR61 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105492 – ident: 10142_CR34 doi: 10.1016/j.cmpb.2021.106432 – volume: 559 start-page: 111792 year: 2023 ident: 10142_CR13 publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2022.111792 – volume: 14 start-page: 692 issue: 1 year: 2024 ident: 10142_CR62 publication-title: Sci Rep doi: 10.1038/s41598-024-51329-8 – volume: 33 start-page: 49 issue: 1 year: 2007 ident: 10142_CR51 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.04.010 – volume: 26 start-page: 1424 issue: 11 year: 2004 ident: 10142_CR44 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.105 – volume: 12 start-page: 403 issue: 2 year: 2023 ident: 10142_CR53 publication-title: Electronics doi: 10.3390/electronics12020403 – volume: 19 start-page: 476 issue: 5 year: 2016 ident: 10142_CR49 publication-title: Iran J Basic Med Sci |
| SSID | ssj0054992 |
| Score | 2.4191353 |
| SecondaryResourceType | review_article |
| Snippet | Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 381 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Biopsy Breast cancer Classification Computing time Datasets Diagnosis Engineering Evaluation Feature selection Heuristic methods Human error Machine learning Mammography Mathematical and Computational Engineering Medical diagnosis Neural networks Optimization Optimization algorithms Optimization techniques Review Article |
| Title | Swarm Intelligent Metaheuristic Optimization Algorithms-Based Artificial Neural Network Models for Breast Cancer Diagnosis: Emerging Trends, Challenges and Future Research Directions |
| URI | https://link.springer.com/article/10.1007/s11831-024-10142-2 https://www.proquest.com/docview/3256681543 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwRpSXbmCDSI3jR8NWCuUlYIBKMEVx7FCktqAmiH_G7-PsOBQQIDFliHMZ7uHPvrvvCNnNpZAyT-0xVYiA2UxhnBkaRNoIDIZo0o7s-fJKnPbY-R2_801hRV3tXqckXaSeNLuh9aFMygI7X5YGGHhnuKXzQivu0XYdf-2Bx-U4w8je-Yumb5X5WcbX7WiCMb-lRd1u010k8x4mQrvS6xKZMqNlsuAhI3iHLJbJ3Cc-wRXydvOajodw9kGzWcKlKdO-ean4mOEaA8TQd15Ce_DwNH4s-8MiOMS9TLu_VYQSYDk73MMViYOdmDYoAAEuHNoq9hI61lrGcFRV6j0WB2Cvt-zEI6jKbPehU89pKSAdaeg69hKoS_3AB1u0-lXS6x7fdk4DP5ghyPC0VgYYmDLD0HMjFueMK8XjEKGCzlSLG8qNpflTkdQRj7UKuaYpz0Oe5bFIEY3SZrRGpkdPI7NOoMWF0WlLNWXKmMmkEk2ppVEskyhcsQYJa_0kmWctt8MzBsmEb9nqNEGdJk6nCW2QvY9vnivOjj9Xb9VqT7z_FkmESFC0EF5GDbJfm8Lk9e_SNv63fJPMUjtQ2N3pbJHpcvxithHllGqHzLRP7i-Od5xxvwPaU_VA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQdwAOGwzQOga8AzeWqXH8o-HWlZWOrePAKo1TFP8Im2g71KRC4g_j7-PZsVeYAGmnHOK8JPLz589-z98j5HUlhZRV6ZapQiTMRQpzbWmSGSsQDNGlvdjz5EyMp-zDBb8Ih8LqmO0eQ5IeqdeH3dD70CZliasvSxME3g2GCxTaIRuD959PjiICuyWPj3Kmmdv1F71wWObvVv6ckNYs81Zg1M83oy0yjV_appl8PVg16kD_uCXieNdfeUQ2AwGFQesxj8k9u9gmW4GMQhjq9TZ5-JtS4RPy89P3cjmH4xsBzwYmtikv7apVeoaPCD3zcKYTBrMv18ur5nJeJ4c4Sxr_tlaqApwaiL_49HNwtdhmNSB1hkOXH9_A0PnhEt61OYBX9VtwG2eulhK0Cbz7MIwVYGooFwZGXhcFYhIhBBjH8fSUTEdH58NxEko-JBrXgU2CkKctQ0zIWF4xrhTPUyQhRqs-t5RbJyCoMmkynhuVckNLXqVcV7kokefSXvaMdBbXC7tDoM-FNWVf9WTJmNVSiZ400iqmJRpXrEvS2O-FDnrorizHrFgrObtuKrCbCt9NBe2SNzfPfGvVQP7bei-6UxGQoS4y5Jiij8Q165L96B3r2_-2tnu35q_I_fH55LQ4PT47eU4eUFe22O8c7ZFOs1zZF8ilGvUyDJ1fbBQTjQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkKr2UB5t1eU5h95KxK7jR8JtWVhBW2ildiVuURw7gLQb0CaIf8bvY8ZxWFq1lXrKIc7kMA9_9sx8w9jHUiuty5yOqUpFgjKFaeF4FFunMBiiSXuy57NzdTIRny_kxbMufl_t3qUk254GYmmqmv1bW-4vGt_QElE-FxHNmuURBuFlQUQJaNETPuxiMR1-fL5zENP9v-qHtpk_y_h1a1rgzd9SpH7nGa-yNwEywrDV8Rp74ap1thLgIwTnrNfZ62fcgm_Zw4_7fD6D0yfKzQbOXJNfubuWmxm-YbCYhS5MGE4vb-bXzdWsjg5xX7P-by25BBB_h3_4gnGg6WnTGhDswiFVtDcwIsuZw1FbtXddHwBdddH0I2hLbvdg1M1sqSGvLIw9kwl0ZX8QAi96wDs2GR__HJ1EYUhDVODJrYkwSBVOoBfHIi2FNEamqIfEFiaRjktHlH8m1jaWqTUDaXkuy4EsylTliEx5P37Plqqbyn1gkEjlbJ6Yvs6FcIU2qq-tdkYUGoUb0WODTj9ZERjMaZDGNFtwL5NOM9Rp5nWa8R779PTNbcvf8c_VW53as-DLdRYjKlQJQs24x_Y6U1i8_ru0jf9bvstefj8aZ19Pz79sslec5gz7q54tttTM79w2gp_G7Hj7fgTfN_rU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm+Intelligent+Metaheuristic+Optimization+Algorithms-Based+Artificial+Neural+Network+Models+for+Breast+Cancer+Diagnosis%3A+Emerging+Trends%2C+Challenges+and+Future+Research+Directions&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Veeranjaneyulu%2C+K&rft.au=Lakshmi%2C+M&rft.au=Janakiraman%2C+Sengathir&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=32&rft.issue=1&rft.spage=381&rft.epage=398&rft_id=info:doi/10.1007%2Fs11831-024-10142-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |