Swarm Intelligent Metaheuristic Optimization Algorithms-Based Artificial Neural Network Models for Breast Cancer Diagnosis: Emerging Trends, Challenges and Future Research Directions

Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the development of malignant neoplasm from the breast cells. This breast cancer can be treated when it is identified at an early stage. Several res...

Full description

Saved in:
Bibliographic Details
Published inArchives of computational methods in engineering Vol. 32; no. 1; pp. 381 - 398
Main Authors Veeranjaneyulu, K., Lakshmi, M., Janakiraman, Sengathir
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1134-3060
1886-1784
DOI10.1007/s11831-024-10142-2

Cover

Abstract Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the development of malignant neoplasm from the breast cells. This breast cancer can be treated when it is identified at an early stage. Several researchers have contributed different machine learning approaches for maximizing the accuracy during the process of predicting breast cancer. Optimization of selected features is another important step essential for attaining maximized accuracy during the process of detection during the use of Artificial Neural Network. The utilization of optimization algorithm also helps in fine-tuning the hyperparameters of ANN such that the process of classification can be achieved with better precision and less computational time. In this paper, a Review on Swarm Intelligent metaheuristic optimization algorithms-based Artificial Neural Network-based Breast Cancer Diagnosis Schemes is presented for comparing different approaches depending on their efficacy in achieving the classification process. It presents the potentiality of wrapper and filter methods generally used for classifying cancer cells from normal cells. This review specifically concentrates on highlighting the significance of the swarm intelligent algorithms-based optimized ANN models which are contributed with its limitations. This review also demonstrates the future scope of research which could be concentrated from the identified extract of the literature. This review also highlighted the different kinds of evaluation metrics considered for assessing the potentiality of the existing ANN-based Breast Cancer Diagnosis Schemes with its need in utilization during evaluation.
AbstractList Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the development of malignant neoplasm from the breast cells. This breast cancer can be treated when it is identified at an early stage. Several researchers have contributed different machine learning approaches for maximizing the accuracy during the process of predicting breast cancer. Optimization of selected features is another important step essential for attaining maximized accuracy during the process of detection during the use of Artificial Neural Network. The utilization of optimization algorithm also helps in fine-tuning the hyperparameters of ANN such that the process of classification can be achieved with better precision and less computational time. In this paper, a Review on Swarm Intelligent metaheuristic optimization algorithms-based Artificial Neural Network-based Breast Cancer Diagnosis Schemes is presented for comparing different approaches depending on their efficacy in achieving the classification process. It presents the potentiality of wrapper and filter methods generally used for classifying cancer cells from normal cells. This review specifically concentrates on highlighting the significance of the swarm intelligent algorithms-based optimized ANN models which are contributed with its limitations. This review also demonstrates the future scope of research which could be concentrated from the identified extract of the literature. This review also highlighted the different kinds of evaluation metrics considered for assessing the potentiality of the existing ANN-based Breast Cancer Diagnosis Schemes with its need in utilization during evaluation.
Author Veeranjaneyulu, K.
Lakshmi, M.
Janakiraman, Sengathir
Author_xml – sequence: 1
  givenname: K.
  surname: Veeranjaneyulu
  fullname: Veeranjaneyulu, K.
  email: kveeru876@gmail.com
  organization: Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, Department of Information Technology, CVR College of Engineering
– sequence: 2
  givenname: M.
  surname: Lakshmi
  fullname: Lakshmi, M.
  organization: Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology
– sequence: 3
  givenname: Sengathir
  surname: Janakiraman
  fullname: Janakiraman, Sengathir
  organization: Department of Information Technology, CVR College of Engineering
BookMark eNp9kc1u1EAQhC0UJJLAC3AaiSuG-fWOuW02CURKiAThbI3Hbe8Ee2bpHiuCB-P5cHaRkDjk1H2or7tUdVIcxRShKF4L_k5wvnpPQlglSi51KbjQspTPimNhbVWKldVHyy6ULhWv-IvihOiec6PrWh4Xv78-OJzYVcwwjmGAmNkNZLeFGQPl4NntLocp_HI5pMjW45Aw5O1E5Zkj6Ngac-iDD25knxdkP_JDwu_sJnUwEusTsjMER5ltXPSA7Dy4ISYK9IFdTIBDiAO7Q4gdvWWbrRtHiAMQc7Fjl3OeEdgXIHDotwuK4B-N0Mviee9Ggld_52nx7fLibvOpvL79eLVZX5de6jqX1q486EpZpetem7Y1tZDCdr61BqQBrpVs1apTpu5aYTrpTC-M7-vK1aKSXJ0Wbw53d5h-zEC5uU8zxuVlo6SpKiuMVovKHlQeExFC3_iQ94lldGFsBG8eW2oOLTVLS82-pUYuqPwP3WGYHP58GlIHiBbxkhb-c_UE9QcuUamz
CitedBy_id crossref_primary_10_56294_dm2024_346
Cites_doi 10.4018/978-1-6684-7136-4.ch034
10.1007/s10916-011-9781-3
10.1016/j.compbiomed.2021.104968
10.3390/app13042082
10.1016/j.optlaseng.2022.107305
10.1007/s12652-022-03713-3
10.1016/j.bbe.2019.12.004
10.1111/his.14820
10.1002/ima.22737
10.1016/j.eswa.2015.10.015
10.1007/s10044-014-0375-9
10.1002/ima.22468
10.1016/j.eswa.2023.121470
10.1155/2022/1820777
10.1016/j.eswa.2014.09.020
10.1007/s00521-021-05997-6
10.1007/s13042-014-0276-7
10.1016/j.compeleceng.2020.106958
10.1007/s00521-022-07445-5
10.1111/coin.12522
10.1007/s00521-012-1092-1
10.3390/biomimetics8020163
10.1007/s10916-019-1348-8
10.1007/11539117_117
10.1038/s41598-020-79139-8
10.1016/j.jbi.2014.01.010
10.1016/j.procs.2015.04.005
10.1016/j.eswa.2010.10.041
10.3390/diagnostics13071238
10.1016/j.eswa.2015.01.065
10.3390/cancers15030885
10.1007/s11042-023-18015-9
10.2306/scienceasia1513-1874.2013.39.294
10.1007/s00500-013-1198-0
10.3389/fbioe.2021.698390
10.1007/s10044-014-0391-9
10.1007/s11227-023-05605-5
10.1016/j.eswa.2016.06.004
10.1109/BMEI.2014.7002862
10.1109/ACCESS.2023.3304628
10.3389/fonc.2022.834028
10.1039/D2BM01551J
10.1007/s13198-021-01598-7
10.1007/978-3-030-91103-4_4
10.1016/j.imavis.2024.104910
10.31557/APJCP.2023.24.2.531
10.1155/2015/369298
10.1016/j.media.2022.102687
10.1007/s12652-020-01890-7
10.7717/peerj-cs.390
10.1016/j.bspc.2023.105492
10.1016/j.cmpb.2021.106432
10.1016/j.mce.2022.111792
10.1038/s41598-024-51329-8
10.1016/j.eswa.2006.04.010
10.1109/TPAMI.2004.105
10.3390/electronics12020403
ContentType Journal Article
Copyright The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024.
Copyright_xml – notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11831-024-10142-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 398
ExternalDocumentID 10_1007_s11831_024_10142_2
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
PUEGO
JQ2
ID FETCH-LOGICAL-c249t-887ce4638349f45bb591218dcb85e25e0432b37d359db15d2a5f15cf96a916203
IEDL.DBID U2A
ISSN 1134-3060
IngestDate Mon Oct 06 18:33:03 EDT 2025
Wed Oct 01 04:56:09 EDT 2025
Thu Apr 24 23:03:55 EDT 2025
Mon Jul 21 06:08:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metaheuristic optimization algorithms
Deep learning model
Exploration
Breast cancer
Swarm intelligence
Neural network
Exploitation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-887ce4638349f45bb591218dcb85e25e0432b37d359db15d2a5f15cf96a916203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256681543
PQPubID 1486352
PageCount 18
ParticipantIDs proquest_journals_3256681543
crossref_citationtrail_10_1007_s11831_024_10142_2
crossref_primary_10_1007_s11831_024_10142_2
springer_journals_10_1007_s11831_024_10142_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References AG Karegowda (10142_CR39) 2010; 1
EJ Kusuma (10142_CR21) 2020; 13
S Guo (10142_CR10) 2023; 160
S Dalwinder (10142_CR22) 2020; 40
Y Dou (10142_CR31) 2021; 9
J Wang (10142_CR12) 2023; 83
10142_CR34
10142_CR33
L Kanya Kumari (10142_CR65) 2024; 15
Q Huang (10142_CR60) 2024; 237
M Zhao (10142_CR42) 2011; 38
Z Wang (10142_CR64) 2024; 80
M Humayun (10142_CR53) 2023; 12
RM Munshi (10142_CR67) 2024; 142
P Stephan (10142_CR30) 2021; 33
JG Melekoodappattu (10142_CR59) 2023; 14
S Jeyasingh (10142_CR46) 2017; 18
G Nirmala (10142_CR27) 2021; 12
BS Abunasser (10142_CR56) 2023; 24
10142_CR18
R Rouhi (10142_CR5) 2015; 42
10142_CR14
10142_CR58
10142_CR57
IS Oh (10142_CR44) 2004; 26
10142_CR66
L Qian (10142_CR61) 2024; 87
M Marinaki (10142_CR43) 2016; 7
K Menghour (10142_CR52) 2016; 9
S Prakash (10142_CR28) 2021; 11
S Punitha (10142_CR20) 2019; 43
AM Abdel-Zaher (10142_CR8) 2016; 46
10142_CR47
J Ahmad (10142_CR2) 2015; 18
F Ahmad (10142_CR19) 2015; 18
J Dheeba (10142_CR3) 2012; 36
A Bhardwaj (10142_CR6) 2015; 42
10142_CR9
10142_CR54
10142_CR11
BS Khehra (10142_CR50) 2016; 17
10142_CR55
LM Abouelmagd (10142_CR32) 2022
DJ Sathya (10142_CR1) 2013; 39
S Abbas (10142_CR25) 2021; 7
E Zorarpacı (10142_CR48) 2016; 62
AA Alhussan (10142_CR63) 2023; 8
S Punitha (10142_CR26) 2021; 90
M Darzi (10142_CR41) 2011; 5
S Aalaei (10142_CR49) 2016; 19
S Bourouis (10142_CR37) 2022; 12
RK Sivagaminathan (10142_CR51) 2007; 33
S Thawkar (10142_CR23) 2021; 139
H Fang (10142_CR24) 2021; 31
WC Yeh (10142_CR16) 2011; 7
RC Chan (10142_CR15) 2023; 82
10142_CR36
Z Beheshti (10142_CR4) 2014; 18
10142_CR35
J Jona (10142_CR45) 2012; 9
10142_CR38
J Dheeba (10142_CR7) 2014; 49
10142_CR40
ON Oyelade (10142_CR62) 2024; 14
N Kaur (10142_CR29) 2021; 11
N Brook (10142_CR13) 2023; 559
F Ahmad (10142_CR17) 2013; 23
References_xml – ident: 10142_CR11
  doi: 10.4018/978-1-6684-7136-4.ch034
– volume: 36
  start-page: 3051
  issue: 5
  year: 2012
  ident: 10142_CR3
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9781-3
– volume: 139
  start-page: 104968
  year: 2021
  ident: 10142_CR23
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104968
– ident: 10142_CR55
  doi: 10.3390/app13042082
– volume: 160
  start-page: 107305
  year: 2023
  ident: 10142_CR10
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2022.107305
– volume: 14
  start-page: 11397
  issue: 9
  year: 2023
  ident: 10142_CR59
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-022-03713-3
– volume: 40
  start-page: 337
  issue: 1
  year: 2020
  ident: 10142_CR22
  publication-title: Biocybernetics Biomedical Eng
  doi: 10.1016/j.bbe.2019.12.004
– volume: 82
  start-page: 198
  issue: 1
  year: 2023
  ident: 10142_CR15
  publication-title: Histopathology
  doi: 10.1111/his.14820
– ident: 10142_CR33
  doi: 10.1002/ima.22737
– volume: 46
  start-page: 139
  year: 2016
  ident: 10142_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.015
– volume: 5
  start-page: 220
  issue: 5
  year: 2011
  ident: 10142_CR41
  publication-title: Int J Biomedical Biol Eng
– volume: 18
  start-page: 861
  issue: 4
  year: 2015
  ident: 10142_CR19
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-014-0375-9
– volume: 31
  start-page: 425
  issue: 1
  year: 2021
  ident: 10142_CR24
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22468
– volume: 237
  start-page: 121470
  year: 2024
  ident: 10142_CR60
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121470
– ident: 10142_CR36
  doi: 10.1155/2022/1820777
– volume: 42
  start-page: 990
  issue: 3
  year: 2015
  ident: 10142_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.09.020
– volume: 9
  start-page: 340
  issue: 11
  year: 2012
  ident: 10142_CR45
  publication-title: WSEAS Trans Inf Sci Appl
– volume: 33
  start-page: 13667
  issue: 20
  year: 2021
  ident: 10142_CR30
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-05997-6
– volume: 7
  start-page: 519
  issue: 4
  year: 2016
  ident: 10142_CR43
  publication-title: Int J Mach Learn Cybernet
  doi: 10.1007/s13042-014-0276-7
– volume: 90
  start-page: 106958
  year: 2021
  ident: 10142_CR26
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2020.106958
– ident: 10142_CR35
  doi: 10.1007/s00521-022-07445-5
– ident: 10142_CR38
  doi: 10.1111/coin.12522
– volume: 23
  start-page: 1427
  issue: 5
  year: 2013
  ident: 10142_CR17
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1092-1
– volume: 9
  start-page: 65
  issue: 3
  year: 2016
  ident: 10142_CR52
  publication-title: Int J Intell Eng Syst
– volume: 8
  start-page: 163
  issue: 2
  year: 2023
  ident: 10142_CR63
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8020163
– volume: 43
  start-page: 1
  issue: 7
  year: 2019
  ident: 10142_CR20
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1348-8
– ident: 10142_CR40
  doi: 10.1007/11539117_117
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10142_CR29
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79139-8
– volume: 49
  start-page: 45
  year: 2014
  ident: 10142_CR7
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2014.01.010
– ident: 10142_CR47
  doi: 10.1016/j.procs.2015.04.005
– volume: 1
  start-page: 13
  issue: 7
  year: 2010
  ident: 10142_CR39
  publication-title: Int J Comput Appl
– volume: 38
  start-page: 5197
  issue: 5
  year: 2011
  ident: 10142_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.041
– ident: 10142_CR58
  doi: 10.3390/diagnostics13071238
– volume: 17
  start-page: 11
  issue: 1
  year: 2016
  ident: 10142_CR50
  publication-title: Egypt Inf J
– volume: 42
  start-page: 4611
  issue: 10
  year: 2015
  ident: 10142_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.01.065
– ident: 10142_CR54
  doi: 10.3390/cancers15030885
– ident: 10142_CR66
  doi: 10.1007/s11042-023-18015-9
– volume: 39
  start-page: 294
  issue: 3
  year: 2013
  ident: 10142_CR1
  publication-title: Sci Asia
  doi: 10.2306/scienceasia1513-1874.2013.39.294
– volume: 18
  start-page: 2253
  issue: 11
  year: 2014
  ident: 10142_CR4
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1198-0
– volume: 9
  start-page: 698390
  year: 2021
  ident: 10142_CR31
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.698390
– volume: 18
  start-page: 419
  issue: 2
  year: 2015
  ident: 10142_CR2
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-014-0391-9
– volume: 11
  start-page: 2950
  issue: 12
  year: 2021
  ident: 10142_CR28
  publication-title: J Med Imaging Health Inf
– volume: 80
  start-page: 3849
  issue: 3
  year: 2024
  ident: 10142_CR64
  publication-title: J Supercomputing
  doi: 10.1007/s11227-023-05605-5
– volume: 62
  start-page: 91
  year: 2016
  ident: 10142_CR48
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.06.004
– ident: 10142_CR18
  doi: 10.1109/BMEI.2014.7002862
– ident: 10142_CR57
  doi: 10.1109/ACCESS.2023.3304628
– volume: 18
  start-page: 1257
  issue: 5
  year: 2017
  ident: 10142_CR46
  publication-title: Asian Pac J cancer Prevention: APJCP
– volume: 12
  start-page: 834028
  year: 2022
  ident: 10142_CR37
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.834028
– ident: 10142_CR14
  doi: 10.1039/D2BM01551J
– volume: 13
  start-page: 330
  year: 2020
  ident: 10142_CR21
  publication-title: Int J Intell Eng Syst
– volume: 15
  start-page: 35
  issue: 1
  year: 2024
  ident: 10142_CR65
  publication-title: Int J Syst Assur Eng Manage
  doi: 10.1007/s13198-021-01598-7
– start-page: 53
  volume-title: Medical Informatics and Bioimaging using Artificial Intelligence
  year: 2022
  ident: 10142_CR32
  doi: 10.1007/978-3-030-91103-4_4
– volume: 142
  start-page: 104910
  year: 2024
  ident: 10142_CR67
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2024.104910
– volume: 24
  start-page: 531
  issue: 2
  year: 2023
  ident: 10142_CR56
  publication-title: Asian Pac J cancer Prevention: APJCP
  doi: 10.31557/APJCP.2023.24.2.531
– ident: 10142_CR9
  doi: 10.1155/2015/369298
– volume: 83
  start-page: 102687
  year: 2023
  ident: 10142_CR12
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102687
– volume: 12
  start-page: 4797
  issue: 5
  year: 2021
  ident: 10142_CR27
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-01890-7
– volume: 7
  start-page: 2235
  issue: 5
  year: 2011
  ident: 10142_CR16
  publication-title: Int J Innovative Comput Inform Control
– volume: 7
  start-page: e390
  year: 2021
  ident: 10142_CR25
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.390
– volume: 87
  start-page: 105492
  year: 2024
  ident: 10142_CR61
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105492
– ident: 10142_CR34
  doi: 10.1016/j.cmpb.2021.106432
– volume: 559
  start-page: 111792
  year: 2023
  ident: 10142_CR13
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2022.111792
– volume: 14
  start-page: 692
  issue: 1
  year: 2024
  ident: 10142_CR62
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-51329-8
– volume: 33
  start-page: 49
  issue: 1
  year: 2007
  ident: 10142_CR51
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.04.010
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 10142_CR44
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.105
– volume: 12
  start-page: 403
  issue: 2
  year: 2023
  ident: 10142_CR53
  publication-title: Electronics
  doi: 10.3390/electronics12020403
– volume: 19
  start-page: 476
  issue: 5
  year: 2016
  ident: 10142_CR49
  publication-title: Iran J Basic Med Sci
SSID ssj0054992
Score 2.4191353
SecondaryResourceType review_article
Snippet Breast Cancer Disease is identified as one of the prime causes of death in women around the globe standing next to lung cancer. Breast cancer represents the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 381
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Biopsy
Breast cancer
Classification
Computing time
Datasets
Diagnosis
Engineering
Evaluation
Feature selection
Heuristic methods
Human error
Machine learning
Mammography
Mathematical and Computational Engineering
Medical diagnosis
Neural networks
Optimization
Optimization algorithms
Optimization techniques
Review Article
Title Swarm Intelligent Metaheuristic Optimization Algorithms-Based Artificial Neural Network Models for Breast Cancer Diagnosis: Emerging Trends, Challenges and Future Research Directions
URI https://link.springer.com/article/10.1007/s11831-024-10142-2
https://www.proquest.com/docview/3256681543
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwRpSXbmCDSI3jR8NWCuUlYIBKMEVx7FCktqAmiH_G7-PsOBQQIDFliHMZ7uHPvrvvCNnNpZAyT-0xVYiA2UxhnBkaRNoIDIZo0o7s-fJKnPbY-R2_801hRV3tXqckXaSeNLuh9aFMygI7X5YGGHhnuKXzQivu0XYdf-2Bx-U4w8je-Yumb5X5WcbX7WiCMb-lRd1u010k8x4mQrvS6xKZMqNlsuAhI3iHLJbJ3Cc-wRXydvOajodw9kGzWcKlKdO-ean4mOEaA8TQd15Ce_DwNH4s-8MiOMS9TLu_VYQSYDk73MMViYOdmDYoAAEuHNoq9hI61lrGcFRV6j0WB2Cvt-zEI6jKbPehU89pKSAdaeg69hKoS_3AB1u0-lXS6x7fdk4DP5ghyPC0VgYYmDLD0HMjFueMK8XjEKGCzlSLG8qNpflTkdQRj7UKuaYpz0Oe5bFIEY3SZrRGpkdPI7NOoMWF0WlLNWXKmMmkEk2ppVEskyhcsQYJa_0kmWctt8MzBsmEb9nqNEGdJk6nCW2QvY9vnivOjj9Xb9VqT7z_FkmESFC0EF5GDbJfm8Lk9e_SNv63fJPMUjtQ2N3pbJHpcvxithHllGqHzLRP7i-Od5xxvwPaU_VA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQdwAOGwzQOga8AzeWqXH8o-HWlZWOrePAKo1TFP8Im2g71KRC4g_j7-PZsVeYAGmnHOK8JPLz589-z98j5HUlhZRV6ZapQiTMRQpzbWmSGSsQDNGlvdjz5EyMp-zDBb8Ih8LqmO0eQ5IeqdeH3dD70CZliasvSxME3g2GCxTaIRuD959PjiICuyWPj3Kmmdv1F71wWObvVv6ckNYs81Zg1M83oy0yjV_appl8PVg16kD_uCXieNdfeUQ2AwGFQesxj8k9u9gmW4GMQhjq9TZ5-JtS4RPy89P3cjmH4xsBzwYmtikv7apVeoaPCD3zcKYTBrMv18ur5nJeJ4c4Sxr_tlaqApwaiL_49HNwtdhmNSB1hkOXH9_A0PnhEt61OYBX9VtwG2eulhK0Cbz7MIwVYGooFwZGXhcFYhIhBBjH8fSUTEdH58NxEko-JBrXgU2CkKctQ0zIWF4xrhTPUyQhRqs-t5RbJyCoMmkynhuVckNLXqVcV7kokefSXvaMdBbXC7tDoM-FNWVf9WTJmNVSiZ400iqmJRpXrEvS2O-FDnrorizHrFgrObtuKrCbCt9NBe2SNzfPfGvVQP7bei-6UxGQoS4y5Jiij8Q165L96B3r2_-2tnu35q_I_fH55LQ4PT47eU4eUFe22O8c7ZFOs1zZF8ilGvUyDJ1fbBQTjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkKr2UB5t1eU5h95KxK7jR8JtWVhBW2ildiVuURw7gLQb0CaIf8bvY8ZxWFq1lXrKIc7kMA9_9sx8w9jHUiuty5yOqUpFgjKFaeF4FFunMBiiSXuy57NzdTIRny_kxbMufl_t3qUk254GYmmqmv1bW-4vGt_QElE-FxHNmuURBuFlQUQJaNETPuxiMR1-fL5zENP9v-qHtpk_y_h1a1rgzd9SpH7nGa-yNwEywrDV8Rp74ap1thLgIwTnrNfZ62fcgm_Zw4_7fD6D0yfKzQbOXJNfubuWmxm-YbCYhS5MGE4vb-bXzdWsjg5xX7P-by25BBB_h3_4gnGg6WnTGhDswiFVtDcwIsuZw1FbtXddHwBdddH0I2hLbvdg1M1sqSGvLIw9kwl0ZX8QAi96wDs2GR__HJ1EYUhDVODJrYkwSBVOoBfHIi2FNEamqIfEFiaRjktHlH8m1jaWqTUDaXkuy4EsylTliEx5P37Plqqbyn1gkEjlbJ6Yvs6FcIU2qq-tdkYUGoUb0WODTj9ZERjMaZDGNFtwL5NOM9Rp5nWa8R779PTNbcvf8c_VW53as-DLdRYjKlQJQs24x_Y6U1i8_ru0jf9bvstefj8aZ19Pz79sslec5gz7q54tttTM79w2gp_G7Hj7fgTfN_rU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm+Intelligent+Metaheuristic+Optimization+Algorithms-Based+Artificial+Neural+Network+Models+for+Breast+Cancer+Diagnosis%3A+Emerging+Trends%2C+Challenges+and+Future+Research+Directions&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Veeranjaneyulu%2C+K&rft.au=Lakshmi%2C+M&rft.au=Janakiraman%2C+Sengathir&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=32&rft.issue=1&rft.spage=381&rft.epage=398&rft_id=info:doi/10.1007%2Fs11831-024-10142-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon