Classifying Lung Cancer as Benign and Malignant Nodule Using ANN of Back-Propagation Algorithm and GLCM Feature Extraction on Chest X-Ray Images
Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more malignant, the lung cancer is similar like other cancers such as breast cancer, colorectal cancer, brain tumour etc. Now-a-days, there are lot of tec...
        Saved in:
      
    
          | Published in | Wireless personal communications Vol. 126; no. 1; pp. 167 - 195 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.09.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0929-6212 1572-834X  | 
| DOI | 10.1007/s11277-022-09594-1 | 
Cover
| Abstract | Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more malignant, the lung cancer is similar like other cancers such as breast cancer, colorectal cancer, brain tumour etc. Now-a-days, there are lot of technologies are developed to predict and treating the diseases, but still have some trouble in detecting the cancer nodule more accurately. Due to increasing in number of patients admitted in clinic, hospitals, etc., doctors cannot able to monitor every patient with high care and they failed to guide their patients with greater attention. Accordingly, the radiologists require a technology named Computer Aided Design (CAD) system for precise recognition and classification of lung nodule where the detected node is cancerous or non-cancerous. In the proposed research, the Chest X-Ray (CXR) images are used as an input image for experimenting the research and image processing techniques has been used to classify the nodule as benign or malignant and executed with greater accuracy in prediction and classification level. In this proposed research work, features were extracted from hasil segmentation image by using Grey Level Co- occurrence Matrix (GLCM) method. The extracted features from image are taken as input data and processed with Artificial Neural Network (ANN) Classifier. The classification and training has been done by Artificial Neural Network with back propagation (ANN-BP) method; therefore, the Artificial Neural Network has competitive and greater in executing the results by comparing with the existing methods of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). Therefore, the performance evaluation of Artificial Neural Network has less training time with better accuracy of 87.5%, sensitivity of 97.75% and specificity of 89.75% by classifying the detected nodule as benign or malignant. | 
    
|---|---|
| AbstractList | Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more malignant, the lung cancer is similar like other cancers such as breast cancer, colorectal cancer, brain tumour etc. Now-a-days, there are lot of technologies are developed to predict and treating the diseases, but still have some trouble in detecting the cancer nodule more accurately. Due to increasing in number of patients admitted in clinic, hospitals, etc., doctors cannot able to monitor every patient with high care and they failed to guide their patients with greater attention. Accordingly, the radiologists require a technology named Computer Aided Design (CAD) system for precise recognition and classification of lung nodule where the detected node is cancerous or non-cancerous. In the proposed research, the Chest X-Ray (CXR) images are used as an input image for experimenting the research and image processing techniques has been used to classify the nodule as benign or malignant and executed with greater accuracy in prediction and classification level. In this proposed research work, features were extracted from hasil segmentation image by using Grey Level Co- occurrence Matrix (GLCM) method. The extracted features from image are taken as input data and processed with Artificial Neural Network (ANN) Classifier. The classification and training has been done by Artificial Neural Network with back propagation (ANN-BP) method; therefore, the Artificial Neural Network has competitive and greater in executing the results by comparing with the existing methods of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). Therefore, the performance evaluation of Artificial Neural Network has less training time with better accuracy of 87.5%, sensitivity of 97.75% and specificity of 89.75% by classifying the detected nodule as benign or malignant. | 
    
| Author | Napoleon, D. Kalaiarasi, I.  | 
    
| Author_xml | – sequence: 1 givenname: D. surname: Napoleon fullname: Napoleon, D. email: mekaranapoleon@yahoo.com organization: Department of Computer Science, Bharathiar University – sequence: 2 givenname: I. surname: Kalaiarasi fullname: Kalaiarasi, I. organization: Department of Computer Science, Bharathiar University  | 
    
| BookMark | eNp9kMFqGzEQhkVJoU6aF-hJ0LOaGe3Kso7OkqQBxy0lgdzERKvdbLrWutIu1G-RR65sFwo9BIQ0h-_TzPyn7CQMwTP2CeELAuiLhCi1FiClAKNMKfAdm6HSUiyK8vGEzcBII-YS5Qd2mtILQNaMnLHXqqeUumbXhZavpnxVFJyPnBK_9KFrA6dQ8zvqc0lh5OuhnnrPH9JeWK7XfGj4Jbmf4nscttTS2A2BL_t2iN34vDnIN6vqjl97Gqfo-dXvMZI7UPlUzz6N_FH8oB2_3VDr00f2vqE--fO_7xl7uL66r76K1beb22q5Ek6WZhS6brzDBgoonWqcfipqVSLUpBZ-LiVqVaA0igCeAJU3hAYVeO0z1Sw0FGfs8_HfbRx-TXkK-zJMMeSWVmosyjlKwEwtjpSLQ0rRN9Z142HHvEXXWwS7z98e87c5f3vI3-5V-Z-6jd2G4u5tqThKKcOh9fHfVG9YfwAKiZkA | 
    
| CitedBy_id | crossref_primary_10_37391_IJEER_120139 crossref_primary_10_3390_diagnostics15030377 crossref_primary_10_1016_j_chemosphere_2023_139987 crossref_primary_10_3233_JIFS_222564 crossref_primary_10_1007_s42979_022_01606_y crossref_primary_10_1016_j_asoc_2024_111462  | 
    
| Cites_doi | 10.1109/ICCSCE.2014.7072687 10.1038/s41598-019-41510-9 10.1109/ICCWAMTIP.2017.8301470 10.1007/s11548-019-01917-1 10.1007/s11548-017-1626-1 10.1120/jacmp.v4i3.2522 10.3390/app10020559 10.1016/j.procs.2019.09.314 10.1118/1.1580485,PMID:12906178 10.1109/CCAA.2015.7148560 10.1109/DICTA.2016.7797020 10.1109/TMI.2018.2876510 10.1118/1.3694096.PMID:22482621 10.1109/ISBI.2010.5490130 10.1109/ICOIACT46704.2019.8938584 10.1109/TNN.2010.2045657 10.7763/IJBBB.2013.V3.289 10.1118/1.597539 10.2214/AJR.17.18718 10.1109/MSMW.2016.7537995 10.1259/bjr.20160313 10.1109/ISCID.2016.1053 10.5120/14949-3082 10.1109/42.974918 10.1109/ICACCI.7275773 10.1109/TMI.2002.803121 10.3348/kjr.2011.12.2.145  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| DBID | AAYXX CITATION JQ2  | 
    
| DOI | 10.1007/s11277-022-09594-1 | 
    
| DatabaseName | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Journalism & Communications Engineering  | 
    
| EISSN | 1572-834X | 
    
| EndPage | 195 | 
    
| ExternalDocumentID | 10_1007_s11277_022_09594_1 | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FD6 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2  | 
    
| ID | FETCH-LOGICAL-c249t-7dfec1f0304c5fc7b3d5410da58e62217531295a00b015e9a19150e7e541f8703 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0929-6212 | 
    
| IngestDate | Thu Sep 25 01:06:12 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Wed Oct 01 03:57:45 EDT 2025 Fri Feb 21 02:44:45 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Chest X-ray imaging K-means hasil image segmentation Artificial neural network Grey level co-occurrence matrix  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c249t-7dfec1f0304c5fc7b3d5410da58e62217531295a00b015e9a19150e7e541f8703 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2713461201 | 
    
| PQPubID | 2043826 | 
    
| PageCount | 29 | 
    
| ParticipantIDs | proquest_journals_2713461201 crossref_citationtrail_10_1007_s11277_022_09594_1 crossref_primary_10_1007_s11277_022_09594_1 springer_journals_10_1007_s11277_022_09594_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-09-01 | 
    
| PublicationDateYYYYMMDD | 2022-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Wireless personal communications | 
    
| PublicationTitleAbbrev | Wireless Pers Commun | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Cancer Statistics. (2020). Report from the National cancer registry programme, India. NasserIMLung cancer detection using artificial neural networkInternational Journal of Engineering and Information Systems (IJEAIS)201931723 Chen, L., et al. (2017). Visual saliency- based method automatic lung regions extraction in chest radiographs. In IEEE 14th international computer conference on wavelet active media technology and information processing (ICCWAMTIP), pp. 162–165. doi:https://doi.org/10.1109/ICCWAMTIP.2017.8301470 Kain, N. K. (2018). Understanding of Multilayer perceptron (MLP). http://www.medium.com. Roy, T., et al. (2015). Classification of lung image and nodule detection using fuzzy inference system. In International conference on computing, communication & automation. doi:https://doi.org/10.1109/CCAA.2015.7148560. Rendon-Gonzalez, E., et al. (2016). Automatic Lung nodule segmentation and classification in CT images based on SVM. In 9th International Kharkiv symposium on physics and engineering of microwaves, millimetre and sub-millimetre waves (MSMW). doi:https://doi.org/10.1109/MSMW.2016.7537995 NitinSA computer based feature extraction of lung nodule in chest x-ray imageInternational Journal of Bioscience, Biochemistry and Bioinformatics201310.7763/IJBBB.2013.V3.289 Zotina, A. et al. (2016). Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks. In 23rd International conference on knowledge-based and intelligent information & engineering systems. Procedia Computer Science,159, 1439–1448. BogdanMImproved computation for Levenberg– Marquardt trainingIEEE Transactions on Neural Networks201021693093710.1109/TNN.2010.2045657 BhatGArtificial neural network based cancer cell classification (ANN-C3)Computer Engineering and Intelligent Systems2012327 GinnekenBVComputer-aided diagnosis in chest radiography: A surveyIEEE, Transactions on Medical Imaging200110.1109/42.974918 GooJMComputer-aided diagnosis for evaluating lung nodules on chest CT: The current status and perspectiveKorean Journal of Radiology2011122145155215066910.3348/kjr.2011.12.2.145 Yametkar, A. M. (2014). Lung cancer detection and classification by using bayesian classifier. In Proceedings of IRF international conference, pp. 7–13. Abdul Hamid, H. (2014). Image segmentation for lung region in chest X-ray images using edge detection and morphology. In IEEE international conference on control system, computing and engineering (ICCSCE 2014), pp. 46–51. doi:https://doi.org/10.1109/ICCSCE.2014.7072687 Jin. X., et al. (2016). Pulmonary nodule detection based on CT images using convolution neural network. In 9th International symposium on computational intelligence and design (ISCID). doi:https://doi.org/10.1109/ISCID.2016.1053 ZhaoBAutomatic detection of small lung nodules on CT utilizing a local density maximum algorithmJournal of Applied Clinical Medical Physics20034324826010.1120/jacmp.v4i3.2522 DuryeaJBooneJMA fully automated algorithm for the segmentation of lung fields on digital chest radiographic imagesMedical Physics199522218319110.1118/1.597539 GinnekenBVActive shape model segmentation with optimal featuresIEEE Transactions on Medical Imaging200221892493310.1109/TMI.2002.803121 SuzukiKMassive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomographyMedical Physics20033071602161710.1118/1.1580485,PMID:12906178 KhanSAEffective and reliable framework for lung nodules detection from CT scan imagesScientific Reports201991498910.1038/s41598-019-41510-9 BrindhaAALung cancer detection using SVM algorithm and optimization techniquesJournal of Chemical and Pharmaceutical Sciences2016942016 KobayashiHA method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and densityThe British Journal of Radiology20179010702016031310.1259/bjr.20160313 ChouhanVA novel transfer learning based approach for pneumonia detection in chest X-ray imagesApplied Sciences202010255910.3390/app10020559 CandemirSA review on lung boundary detection in chest X-raysInternational Journal of Computer Assisted Radiology and Surgery201914456357610.1007/s11548-019-01917-1 Annangi, P., et al. (2010). A region based active contour method for X-ray lung segmentation using prior shape and low-level features. In IEEE International symposium on biomedical imaging: From nano to macro, pp. 892–895. SankarKGray coefficient mass estimation based image segmentation technique for lung cancer detection using gabor filtersJournal of Theoretical and Applied Information Technology2014662638644 XieYKnowledge based method with deep learning for classification of benign, malignant nodule on chest CT imageIEEE Transaction on Medical Imaging201910.1109/TMI.2018.2876510 A Gentle Introduction to Cross-Entropy for Machine Learning. http://www.Machinelearningmastery.com. GuptaBLung cancer detection using curvelet transform and neural networkInternational Journal of Computer Applications2014861151710.5120/14949-3082 FaragAFeature fusion for lung nodule classificationInternational Journal of Computer Assisted Radiology and Surgery201712101809181810.1007/s11548-017-1626-1 JunaediITuberculosis detection in chest x-ray images using optimized gray level co-occurrence matrix featuresInternational Conference on Information and Communications Technology (ICOIACT)201910.1109/ICOIACT46704.2019.8938584 Ahmad, W., et al. (2016). Classification of infection and fluid regions using CXR images. In IEEE international conference on DIC: Techniques and applications, pp. 1–5. doi:https://doi.org/10.1109/DICTA.2016.7797020. GuoWA computerized scheme for lung nodule detection in multiprotection chest radiographyMedical Physics20123942001201210.1118/1.3694096.PMID:22482621 LoSBComputer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed functionAmerican Journal of Roentgenology2018210348048810.2214/AJR.17.18718 Aggarwal, T., et al. (2015). Feature extraction and LDA based classification of lung nodules in chest CT scan images. In International conference on advances in computing, communications and informatics (ICACCI). doi:https://doi.org/10.1109/ICACCI.7275773. 9594_CR1 9594_CR2 Y Xie (9594_CR28) 2019 9594_CR5 9594_CR3 J Duryea (9594_CR6) 1995; 22 SB Lo (9594_CR26) 2018; 210 9594_CR4 V Chouhan (9594_CR29) 2020; 10 AA Brindha (9594_CR19) 2016; 9 BV Ginneken (9594_CR15) 2001 SA Khan (9594_CR12) 2019; 9 H Kobayashi (9594_CR24) 2017; 90 B Gupta (9594_CR16) 2014; 86 IM Nasser (9594_CR14) 2019; 3 W Guo (9594_CR20) 2012; 39 JM Goo (9594_CR25) 2011; 12 S Nitin (9594_CR32) 2013 9594_CR30 9594_CR10 9594_CR11 9594_CR33 G Bhat (9594_CR13) 2012; 3 K Sankar (9594_CR17) 2014; 66 9594_CR18 I Junaedi (9594_CR31) 2019 9594_CR35 A Farag (9594_CR22) 2017; 12 M Bogdan (9594_CR34) 2010; 21 B Zhao (9594_CR23) 2003; 4 9594_CR9 BV Ginneken (9594_CR7) 2002; 21 9594_CR8 K Suzuki (9594_CR21) 2003; 30 S Candemir (9594_CR27) 2019; 14  | 
    
| References_xml | – reference: GinnekenBVComputer-aided diagnosis in chest radiography: A surveyIEEE, Transactions on Medical Imaging200110.1109/42.974918 – reference: Ahmad, W., et al. (2016). Classification of infection and fluid regions using CXR images. In IEEE international conference on DIC: Techniques and applications, pp. 1–5. doi:https://doi.org/10.1109/DICTA.2016.7797020. – reference: Jin. X., et al. (2016). Pulmonary nodule detection based on CT images using convolution neural network. In 9th International symposium on computational intelligence and design (ISCID). doi:https://doi.org/10.1109/ISCID.2016.1053 – reference: BrindhaAALung cancer detection using SVM algorithm and optimization techniquesJournal of Chemical and Pharmaceutical Sciences2016942016 – reference: LoSBComputer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed functionAmerican Journal of Roentgenology2018210348048810.2214/AJR.17.18718 – reference: XieYKnowledge based method with deep learning for classification of benign, malignant nodule on chest CT imageIEEE Transaction on Medical Imaging201910.1109/TMI.2018.2876510 – reference: Abdul Hamid, H. (2014). Image segmentation for lung region in chest X-ray images using edge detection and morphology. In IEEE international conference on control system, computing and engineering (ICCSCE 2014), pp. 46–51. doi:https://doi.org/10.1109/ICCSCE.2014.7072687 – reference: SankarKGray coefficient mass estimation based image segmentation technique for lung cancer detection using gabor filtersJournal of Theoretical and Applied Information Technology2014662638644 – reference: A Gentle Introduction to Cross-Entropy for Machine Learning. http://www.Machinelearningmastery.com. – reference: Kain, N. K. (2018). Understanding of Multilayer perceptron (MLP). http://www.medium.com. – reference: DuryeaJBooneJMA fully automated algorithm for the segmentation of lung fields on digital chest radiographic imagesMedical Physics199522218319110.1118/1.597539 – reference: FaragAFeature fusion for lung nodule classificationInternational Journal of Computer Assisted Radiology and Surgery201712101809181810.1007/s11548-017-1626-1 – reference: ChouhanVA novel transfer learning based approach for pneumonia detection in chest X-ray imagesApplied Sciences202010255910.3390/app10020559 – reference: KhanSAEffective and reliable framework for lung nodules detection from CT scan imagesScientific Reports201991498910.1038/s41598-019-41510-9 – reference: GooJMComputer-aided diagnosis for evaluating lung nodules on chest CT: The current status and perspectiveKorean Journal of Radiology2011122145155215066910.3348/kjr.2011.12.2.145 – reference: SuzukiKMassive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomographyMedical Physics20033071602161710.1118/1.1580485,PMID:12906178 – reference: NitinSA computer based feature extraction of lung nodule in chest x-ray imageInternational Journal of Bioscience, Biochemistry and Bioinformatics201310.7763/IJBBB.2013.V3.289 – reference: Roy, T., et al. (2015). Classification of lung image and nodule detection using fuzzy inference system. In International conference on computing, communication & automation. doi:https://doi.org/10.1109/CCAA.2015.7148560. – reference: KobayashiHA method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and densityThe British Journal of Radiology20179010702016031310.1259/bjr.20160313 – reference: JunaediITuberculosis detection in chest x-ray images using optimized gray level co-occurrence matrix featuresInternational Conference on Information and Communications Technology (ICOIACT)201910.1109/ICOIACT46704.2019.8938584 – reference: GuoWA computerized scheme for lung nodule detection in multiprotection chest radiographyMedical Physics20123942001201210.1118/1.3694096.PMID:22482621 – reference: Zotina, A. et al. (2016). Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks. In 23rd International conference on knowledge-based and intelligent information & engineering systems. Procedia Computer Science,159, 1439–1448. – reference: BogdanMImproved computation for Levenberg– Marquardt trainingIEEE Transactions on Neural Networks201021693093710.1109/TNN.2010.2045657 – reference: GuptaBLung cancer detection using curvelet transform and neural networkInternational Journal of Computer Applications2014861151710.5120/14949-3082 – reference: ZhaoBAutomatic detection of small lung nodules on CT utilizing a local density maximum algorithmJournal of Applied Clinical Medical Physics20034324826010.1120/jacmp.v4i3.2522 – reference: Cancer Statistics. (2020). Report from the National cancer registry programme, India. – reference: Rendon-Gonzalez, E., et al. (2016). Automatic Lung nodule segmentation and classification in CT images based on SVM. In 9th International Kharkiv symposium on physics and engineering of microwaves, millimetre and sub-millimetre waves (MSMW). doi:https://doi.org/10.1109/MSMW.2016.7537995 – reference: Annangi, P., et al. (2010). A region based active contour method for X-ray lung segmentation using prior shape and low-level features. In IEEE International symposium on biomedical imaging: From nano to macro, pp. 892–895. – reference: NasserIMLung cancer detection using artificial neural networkInternational Journal of Engineering and Information Systems (IJEAIS)201931723 – reference: Aggarwal, T., et al. (2015). Feature extraction and LDA based classification of lung nodules in chest CT scan images. In International conference on advances in computing, communications and informatics (ICACCI). doi:https://doi.org/10.1109/ICACCI.7275773. – reference: CandemirSA review on lung boundary detection in chest X-raysInternational Journal of Computer Assisted Radiology and Surgery201914456357610.1007/s11548-019-01917-1 – reference: Yametkar, A. M. (2014). Lung cancer detection and classification by using bayesian classifier. In Proceedings of IRF international conference, pp. 7–13. – reference: Chen, L., et al. (2017). Visual saliency- based method automatic lung regions extraction in chest radiographs. In IEEE 14th international computer conference on wavelet active media technology and information processing (ICCWAMTIP), pp. 162–165. doi:https://doi.org/10.1109/ICCWAMTIP.2017.8301470 – reference: BhatGArtificial neural network based cancer cell classification (ANN-C3)Computer Engineering and Intelligent Systems2012327 – reference: GinnekenBVActive shape model segmentation with optimal featuresIEEE Transactions on Medical Imaging200221892493310.1109/TMI.2002.803121 – ident: 9594_CR5 doi: 10.1109/ICCSCE.2014.7072687 – volume: 9 start-page: 4989 issue: 1 year: 2019 ident: 9594_CR12 publication-title: Scientific Reports doi: 10.1038/s41598-019-41510-9 – volume: 3 start-page: 17 year: 2019 ident: 9594_CR14 publication-title: International Journal of Engineering and Information Systems (IJEAIS) – ident: 9594_CR3 doi: 10.1109/ICCWAMTIP.2017.8301470 – volume: 66 start-page: 638 issue: 2 year: 2014 ident: 9594_CR17 publication-title: Journal of Theoretical and Applied Information Technology – volume: 14 start-page: 563 issue: 4 year: 2019 ident: 9594_CR27 publication-title: International Journal of Computer Assisted Radiology and Surgery doi: 10.1007/s11548-019-01917-1 – volume: 12 start-page: 1809 issue: 10 year: 2017 ident: 9594_CR22 publication-title: International Journal of Computer Assisted Radiology and Surgery doi: 10.1007/s11548-017-1626-1 – ident: 9594_CR1 – volume: 4 start-page: 248 issue: 3 year: 2003 ident: 9594_CR23 publication-title: Journal of Applied Clinical Medical Physics doi: 10.1120/jacmp.v4i3.2522 – volume: 9 start-page: 2016 issue: 4 year: 2016 ident: 9594_CR19 publication-title: Journal of Chemical and Pharmaceutical Sciences – volume: 10 start-page: 559 issue: 2 year: 2020 ident: 9594_CR29 publication-title: Applied Sciences doi: 10.3390/app10020559 – ident: 9594_CR30 doi: 10.1016/j.procs.2019.09.314 – volume: 30 start-page: 1602 issue: 7 year: 2003 ident: 9594_CR21 publication-title: Medical Physics doi: 10.1118/1.1580485,PMID:12906178 – ident: 9594_CR10 doi: 10.1109/CCAA.2015.7148560 – ident: 9594_CR2 doi: 10.1109/DICTA.2016.7797020 – year: 2019 ident: 9594_CR28 publication-title: IEEE Transaction on Medical Imaging doi: 10.1109/TMI.2018.2876510 – ident: 9594_CR18 – volume: 39 start-page: 2001 issue: 4 year: 2012 ident: 9594_CR20 publication-title: Medical Physics doi: 10.1118/1.3694096.PMID:22482621 – ident: 9594_CR4 doi: 10.1109/ISBI.2010.5490130 – year: 2019 ident: 9594_CR31 publication-title: International Conference on Information and Communications Technology (ICOIACT) doi: 10.1109/ICOIACT46704.2019.8938584 – volume: 21 start-page: 930 issue: 6 year: 2010 ident: 9594_CR34 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2045657 – year: 2013 ident: 9594_CR32 publication-title: International Journal of Bioscience, Biochemistry and Bioinformatics doi: 10.7763/IJBBB.2013.V3.289 – volume: 22 start-page: 183 issue: 2 year: 1995 ident: 9594_CR6 publication-title: Medical Physics doi: 10.1118/1.597539 – volume: 210 start-page: 480 issue: 3 year: 2018 ident: 9594_CR26 publication-title: American Journal of Roentgenology doi: 10.2214/AJR.17.18718 – ident: 9594_CR11 doi: 10.1109/MSMW.2016.7537995 – volume: 3 start-page: 7 issue: 2 year: 2012 ident: 9594_CR13 publication-title: Computer Engineering and Intelligent Systems – ident: 9594_CR35 – ident: 9594_CR33 – volume: 90 start-page: 20160313 issue: 1070 year: 2017 ident: 9594_CR24 publication-title: The British Journal of Radiology doi: 10.1259/bjr.20160313 – ident: 9594_CR9 doi: 10.1109/ISCID.2016.1053 – volume: 86 start-page: 15 issue: 1 year: 2014 ident: 9594_CR16 publication-title: International Journal of Computer Applications doi: 10.5120/14949-3082 – year: 2001 ident: 9594_CR15 publication-title: IEEE, Transactions on Medical Imaging doi: 10.1109/42.974918 – ident: 9594_CR8 doi: 10.1109/ICACCI.7275773 – volume: 21 start-page: 924 issue: 8 year: 2002 ident: 9594_CR7 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2002.803121 – volume: 12 start-page: 145 issue: 2 year: 2011 ident: 9594_CR25 publication-title: Korean Journal of Radiology doi: 10.3348/kjr.2011.12.2.145  | 
    
| SSID | ssj0010092 | 
    
| Score | 2.3194637 | 
    
| Snippet | Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 167 | 
    
| SubjectTerms | Algorithms Artificial neural networks Back propagation networks Brain cancer CAD Chest Classification Communications Engineering Computer aided design Computer Communication Networks Discriminant analysis Engineering Feature extraction Image classification Image processing Image segmentation Lung cancer Medical imaging Networks Neural networks Patients Performance evaluation Signal,Image and Speech Processing Support vector machines Training  | 
    
| Title | Classifying Lung Cancer as Benign and Malignant Nodule Using ANN of Back-Propagation Algorithm and GLCM Feature Extraction on Chest X-Ray Images | 
    
| URI | https://link.springer.com/article/10.1007/s11277-022-09594-1 https://www.proquest.com/docview/2713461201  | 
    
| Volume | 126 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-834X dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-834X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-834X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-834X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQ7gUOCBYQyy6rOSAuYCkPO49jWrW7wDZCiErlFNmxUyraFCWpBP-Cn8yMm2xZBEhIkXLw2JdvPB57Zr5h7EVoYl0KWXGtYsVFpRKuUyu4MaGv00QEnqJq5FkeXc3F24Vc9EVh7ZDtPoQknaU-FLv5FG6k7HN6uxIc7zzHkui8UIvnQXYTOyAaIcewR4kdaJn7Upk_r3H7ODr4mL-FRd1pM33A7vduImR7XB-yO7Y-Yfd-IQ88YWe90KrdwEu4VejRPmI_XLfLlatigmvc0TAmfBtQLYxsvVrWoGoDM5y_pFwYyLdmt7bgUgggy3PYVjBS5Rf-vsF79dKtC9l6uW1W3eeNm3x5PZ4B-ZC7xsLkW9fsiyQAvzG14YIF_6C-w5sN2qz2MZtPJx_HV7zvvsBLvJJ1PDaVLf2KQqelrMpYh0YK3zNKJjYKAmL4RF9BKo-eUqVNFd78pGdji1IVWoHwCTuqt7V9ykAJVISoCokLX9jIJKmUlZY6EqlOlLWnzB9AKMqempw6ZKyLA6kyAVcgcIUDrvBP2aubOV_3xBz_lD4fsC36TdoWAdXRoofn4fDrAe_D8N9Xe_Z_4mfsbrBXOe755-yoa3b2Oboynb5gx9l0NMrpf_np3eTCafJPm3fsAg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqcgAOFS0g-mQOiEuxtA97H8c0aklpsqqqRsptZa_tEJFsqt2NVP4FP7keZ7ehqCAh7c1jXz57PLMz32dCPoUqlgXjhkoRC8qMSKhMNaNKhb5MExZ4AtnIoywajNm3CZ-0pLC663bvSpLOU2_Ibj6WG7H7HP9dMWpznhcoYIWK-eOg91g7QBkhp7CHjR3WM7dUmefXeHodbWLMP8qi7ra5eEN22jARemtcd8mWLvfI69_EA_fIYWs0qxfwGZ4QPeq35Jd77XLmWEwwtCca-ohvBaKGM13OpiWIUsHIzp9iLwxkS7Waa3AtBNDLMlgaOBPFD3pd2bx66taF3ny6rGbN94Wb_HXYHwHGkKtKw_l9U61JEmC_Pj7DBRN6I37C5cL6rPodGV-c3_YHtH19gRY2JWtorIwufIOl04KbIpah4sz3lOCJjoIAFT5trMCFh79SuU6Fzfy4p2NtrYz1AuF7sl0uS_2BgGB2I0QmRC18piOVpJwbyWXEUpkIrfeJ34GQF600Ob6QMc83osoIXG6Byx1wub9PTh_n3K2FOf5pfdRhm7eHtM4D5NHaCM-zw186vDfDf1_t4P_MP5KXg9vRMB9eZleH5FWw3n7U84_IdlOt9LENaxp54nbxAwTN694 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELVQkRAcEBQQpQXmgLiA1f2w9-OYhoYWklWFiJTbyru204hkU-1uJPgX_GRmvJumRYCEtDePfXlje2Zn3jNjb0IdF6WQlhcqVlxYlfAiNYJrHfpFmojAU8RGnmTR2VR8msnZDRa_63bfliQ7TgOpNFXt8ZW2xzvim0-lR-pEp_9YgmP-c1eQUAJ69DQYXNcRSFLIqe1Rkwee0j1t5s9r3L6advHmbyVSd_OMHrGHfcgIgw7jx-yOqfbZgxtCgvvssDdaNCt4C7dIH80T9tO9fLlwjCYY4-6GIWFdg2rgxFSLeQWq0jDB-XPqi4FsrTdLA66dAAZZBmsLJ6r8xi9qzLHnbl0YLOfretFertzkj-PhBCie3NQGTr-3dUeYAPyG9CQXzPgX9QPOV3h-NU_ZdHT6dXjG-5cYeInpWctjbU3pWyqjltKWcRFqKXxPK5mYKAhI7RPjBqk8-q0qTaowC5SeiQ1aWTwRwmdsr1pX5jkDJdApIhuSLr4wkU5SKW0hi0ikRaKMOWD-FoS87GXK6bWMZb4TWCbgcgQud8Dl_gF7dz3nqhPp-Kf10RbbvN-wTR4QpxajPQ-H32_x3g3_fbUX_2f-mt27-DDKx-fZ50N2P-i8j3v-Edtr6415iRFOW7xyTvwLu_nwGg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Lung+Cancer+as+Benign+and+Malignant+Nodule+Using+ANN+of+Back-Propagation+Algorithm+and+GLCM+Feature+Extraction+on+Chest+X-Ray+Images&rft.jtitle=Wireless+personal+communications&rft.au=Napoleon%2C+D.&rft.au=Kalaiarasi%2C+I.&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=126&rft.issue=1&rft.spage=167&rft.epage=195&rft_id=info:doi/10.1007%2Fs11277-022-09594-1&rft.externalDocID=10_1007_s11277_022_09594_1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon |