Classifying Lung Cancer as Benign and Malignant Nodule Using ANN of Back-Propagation Algorithm and GLCM Feature Extraction on Chest X-Ray Images

Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more malignant, the lung cancer is similar like other cancers such as breast cancer, colorectal cancer, brain tumour etc. Now-a-days, there are lot of tec...

Full description

Saved in:
Bibliographic Details
Published inWireless personal communications Vol. 126; no. 1; pp. 167 - 195
Main Authors Napoleon, D., Kalaiarasi, I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0929-6212
1572-834X
DOI10.1007/s11277-022-09594-1

Cover

Abstract Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more malignant, the lung cancer is similar like other cancers such as breast cancer, colorectal cancer, brain tumour etc. Now-a-days, there are lot of technologies are developed to predict and treating the diseases, but still have some trouble in detecting the cancer nodule more accurately. Due to increasing in number of patients admitted in clinic, hospitals, etc., doctors cannot able to monitor every patient with high care and they failed to guide their patients with greater attention. Accordingly, the radiologists require a technology named Computer Aided Design (CAD) system for precise recognition and classification of lung nodule where the detected node is cancerous or non-cancerous. In the proposed research, the Chest X-Ray (CXR) images are used as an input image for experimenting the research and image processing techniques has been used to classify the nodule as benign or malignant and executed with greater accuracy in prediction and classification level. In this proposed research work, features were extracted from hasil segmentation image by using Grey Level Co- occurrence Matrix (GLCM) method. The extracted features from image are taken as input data and processed with Artificial Neural Network (ANN) Classifier. The classification and training has been done by Artificial Neural Network with back propagation (ANN-BP) method; therefore, the Artificial Neural Network has competitive and greater in executing the results by comparing with the existing methods of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). Therefore, the performance evaluation of Artificial Neural Network has less training time with better accuracy of 87.5%, sensitivity of 97.75% and specificity of 89.75% by classifying the detected nodule as benign or malignant.
AbstractList Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more malignant, the lung cancer is similar like other cancers such as breast cancer, colorectal cancer, brain tumour etc. Now-a-days, there are lot of technologies are developed to predict and treating the diseases, but still have some trouble in detecting the cancer nodule more accurately. Due to increasing in number of patients admitted in clinic, hospitals, etc., doctors cannot able to monitor every patient with high care and they failed to guide their patients with greater attention. Accordingly, the radiologists require a technology named Computer Aided Design (CAD) system for precise recognition and classification of lung nodule where the detected node is cancerous or non-cancerous. In the proposed research, the Chest X-Ray (CXR) images are used as an input image for experimenting the research and image processing techniques has been used to classify the nodule as benign or malignant and executed with greater accuracy in prediction and classification level. In this proposed research work, features were extracted from hasil segmentation image by using Grey Level Co- occurrence Matrix (GLCM) method. The extracted features from image are taken as input data and processed with Artificial Neural Network (ANN) Classifier. The classification and training has been done by Artificial Neural Network with back propagation (ANN-BP) method; therefore, the Artificial Neural Network has competitive and greater in executing the results by comparing with the existing methods of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). Therefore, the performance evaluation of Artificial Neural Network has less training time with better accuracy of 87.5%, sensitivity of 97.75% and specificity of 89.75% by classifying the detected nodule as benign or malignant.
Author Napoleon, D.
Kalaiarasi, I.
Author_xml – sequence: 1
  givenname: D.
  surname: Napoleon
  fullname: Napoleon, D.
  email: mekaranapoleon@yahoo.com
  organization: Department of Computer Science, Bharathiar University
– sequence: 2
  givenname: I.
  surname: Kalaiarasi
  fullname: Kalaiarasi, I.
  organization: Department of Computer Science, Bharathiar University
BookMark eNp9kMFqGzEQhkVJoU6aF-hJ0LOaGe3Kso7OkqQBxy0lgdzERKvdbLrWutIu1G-RR65sFwo9BIQ0h-_TzPyn7CQMwTP2CeELAuiLhCi1FiClAKNMKfAdm6HSUiyK8vGEzcBII-YS5Qd2mtILQNaMnLHXqqeUumbXhZavpnxVFJyPnBK_9KFrA6dQ8zvqc0lh5OuhnnrPH9JeWK7XfGj4Jbmf4nscttTS2A2BL_t2iN34vDnIN6vqjl97Gqfo-dXvMZI7UPlUzz6N_FH8oB2_3VDr00f2vqE--fO_7xl7uL66r76K1beb22q5Ek6WZhS6brzDBgoonWqcfipqVSLUpBZ-LiVqVaA0igCeAJU3hAYVeO0z1Sw0FGfs8_HfbRx-TXkK-zJMMeSWVmosyjlKwEwtjpSLQ0rRN9Z142HHvEXXWwS7z98e87c5f3vI3-5V-Z-6jd2G4u5tqThKKcOh9fHfVG9YfwAKiZkA
CitedBy_id crossref_primary_10_37391_IJEER_120139
crossref_primary_10_3390_diagnostics15030377
crossref_primary_10_1016_j_chemosphere_2023_139987
crossref_primary_10_3233_JIFS_222564
crossref_primary_10_1007_s42979_022_01606_y
crossref_primary_10_1016_j_asoc_2024_111462
Cites_doi 10.1109/ICCSCE.2014.7072687
10.1038/s41598-019-41510-9
10.1109/ICCWAMTIP.2017.8301470
10.1007/s11548-019-01917-1
10.1007/s11548-017-1626-1
10.1120/jacmp.v4i3.2522
10.3390/app10020559
10.1016/j.procs.2019.09.314
10.1118/1.1580485,PMID:12906178
10.1109/CCAA.2015.7148560
10.1109/DICTA.2016.7797020
10.1109/TMI.2018.2876510
10.1118/1.3694096.PMID:22482621
10.1109/ISBI.2010.5490130
10.1109/ICOIACT46704.2019.8938584
10.1109/TNN.2010.2045657
10.7763/IJBBB.2013.V3.289
10.1118/1.597539
10.2214/AJR.17.18718
10.1109/MSMW.2016.7537995
10.1259/bjr.20160313
10.1109/ISCID.2016.1053
10.5120/14949-3082
10.1109/42.974918
10.1109/ICACCI.7275773
10.1109/TMI.2002.803121
10.3348/kjr.2011.12.2.145
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11277-022-09594-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 195
ExternalDocumentID 10_1007_s11277_022_09594_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c249t-7dfec1f0304c5fc7b3d5410da58e62217531295a00b015e9a19150e7e541f8703
IEDL.DBID U2A
ISSN 0929-6212
IngestDate Thu Sep 25 01:06:12 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Wed Oct 01 03:57:45 EDT 2025
Fri Feb 21 02:44:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chest X-ray imaging
K-means hasil image segmentation
Artificial neural network
Grey level co-occurrence matrix
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c249t-7dfec1f0304c5fc7b3d5410da58e62217531295a00b015e9a19150e7e541f8703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2713461201
PQPubID 2043826
PageCount 29
ParticipantIDs proquest_journals_2713461201
crossref_citationtrail_10_1007_s11277_022_09594_1
crossref_primary_10_1007_s11277_022_09594_1
springer_journals_10_1007_s11277_022_09594_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Wireless personal communications
PublicationTitleAbbrev Wireless Pers Commun
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cancer Statistics. (2020). Report from the National cancer registry programme, India.
NasserIMLung cancer detection using artificial neural networkInternational Journal of Engineering and Information Systems (IJEAIS)201931723
Chen, L., et al. (2017). Visual saliency- based method automatic lung regions extraction in chest radiographs. In IEEE 14th international computer conference on wavelet active media technology and information processing (ICCWAMTIP), pp. 162–165. doi:https://doi.org/10.1109/ICCWAMTIP.2017.8301470
Kain, N. K. (2018). Understanding of Multilayer perceptron (MLP). http://www.medium.com.
Roy, T., et al. (2015). Classification of lung image and nodule detection using fuzzy inference system. In International conference on computing, communication & automation. doi:https://doi.org/10.1109/CCAA.2015.7148560.
Rendon-Gonzalez, E., et al. (2016). Automatic Lung nodule segmentation and classification in CT images based on SVM. In 9th International Kharkiv symposium on physics and engineering of microwaves, millimetre and sub-millimetre waves (MSMW). doi:https://doi.org/10.1109/MSMW.2016.7537995
NitinSA computer based feature extraction of lung nodule in chest x-ray imageInternational Journal of Bioscience, Biochemistry and Bioinformatics201310.7763/IJBBB.2013.V3.289
Zotina, A. et al. (2016). Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks. In 23rd International conference on knowledge-based and intelligent information & engineering systems. Procedia Computer Science,159, 1439–1448.
BogdanMImproved computation for Levenberg– Marquardt trainingIEEE Transactions on Neural Networks201021693093710.1109/TNN.2010.2045657
BhatGArtificial neural network based cancer cell classification (ANN-C3)Computer Engineering and Intelligent Systems2012327
GinnekenBVComputer-aided diagnosis in chest radiography: A surveyIEEE, Transactions on Medical Imaging200110.1109/42.974918
GooJMComputer-aided diagnosis for evaluating lung nodules on chest CT: The current status and perspectiveKorean Journal of Radiology2011122145155215066910.3348/kjr.2011.12.2.145
Yametkar, A. M. (2014). Lung cancer detection and classification by using bayesian classifier. In Proceedings of IRF international conference, pp. 7–13.
Abdul Hamid, H. (2014). Image segmentation for lung region in chest X-ray images using edge detection and morphology. In IEEE international conference on control system, computing and engineering (ICCSCE 2014), pp. 46–51. doi:https://doi.org/10.1109/ICCSCE.2014.7072687
Jin. X., et al. (2016). Pulmonary nodule detection based on CT images using convolution neural network. In 9th International symposium on computational intelligence and design (ISCID). doi:https://doi.org/10.1109/ISCID.2016.1053
ZhaoBAutomatic detection of small lung nodules on CT utilizing a local density maximum algorithmJournal of Applied Clinical Medical Physics20034324826010.1120/jacmp.v4i3.2522
DuryeaJBooneJMA fully automated algorithm for the segmentation of lung fields on digital chest radiographic imagesMedical Physics199522218319110.1118/1.597539
GinnekenBVActive shape model segmentation with optimal featuresIEEE Transactions on Medical Imaging200221892493310.1109/TMI.2002.803121
SuzukiKMassive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomographyMedical Physics20033071602161710.1118/1.1580485,PMID:12906178
KhanSAEffective and reliable framework for lung nodules detection from CT scan imagesScientific Reports201991498910.1038/s41598-019-41510-9
BrindhaAALung cancer detection using SVM algorithm and optimization techniquesJournal of Chemical and Pharmaceutical Sciences2016942016
KobayashiHA method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and densityThe British Journal of Radiology20179010702016031310.1259/bjr.20160313
ChouhanVA novel transfer learning based approach for pneumonia detection in chest X-ray imagesApplied Sciences202010255910.3390/app10020559
CandemirSA review on lung boundary detection in chest X-raysInternational Journal of Computer Assisted Radiology and Surgery201914456357610.1007/s11548-019-01917-1
Annangi, P., et al. (2010). A region based active contour method for X-ray lung segmentation using prior shape and low-level features. In IEEE International symposium on biomedical imaging: From nano to macro, pp. 892–895.
SankarKGray coefficient mass estimation based image segmentation technique for lung cancer detection using gabor filtersJournal of Theoretical and Applied Information Technology2014662638644
XieYKnowledge based method with deep learning for classification of benign, malignant nodule on chest CT imageIEEE Transaction on Medical Imaging201910.1109/TMI.2018.2876510
A Gentle Introduction to Cross-Entropy for Machine Learning. http://www.Machinelearningmastery.com.
GuptaBLung cancer detection using curvelet transform and neural networkInternational Journal of Computer Applications2014861151710.5120/14949-3082
FaragAFeature fusion for lung nodule classificationInternational Journal of Computer Assisted Radiology and Surgery201712101809181810.1007/s11548-017-1626-1
JunaediITuberculosis detection in chest x-ray images using optimized gray level co-occurrence matrix featuresInternational Conference on Information and Communications Technology (ICOIACT)201910.1109/ICOIACT46704.2019.8938584
Ahmad, W., et al. (2016). Classification of infection and fluid regions using CXR images. In IEEE international conference on DIC: Techniques and applications, pp. 1–5. doi:https://doi.org/10.1109/DICTA.2016.7797020.
GuoWA computerized scheme for lung nodule detection in multiprotection chest radiographyMedical Physics20123942001201210.1118/1.3694096.PMID:22482621
LoSBComputer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed functionAmerican Journal of Roentgenology2018210348048810.2214/AJR.17.18718
Aggarwal, T., et al. (2015). Feature extraction and LDA based classification of lung nodules in chest CT scan images. In International conference on advances in computing, communications and informatics (ICACCI). doi:https://doi.org/10.1109/ICACCI.7275773.
9594_CR1
9594_CR2
Y Xie (9594_CR28) 2019
9594_CR5
9594_CR3
J Duryea (9594_CR6) 1995; 22
SB Lo (9594_CR26) 2018; 210
9594_CR4
V Chouhan (9594_CR29) 2020; 10
AA Brindha (9594_CR19) 2016; 9
BV Ginneken (9594_CR15) 2001
SA Khan (9594_CR12) 2019; 9
H Kobayashi (9594_CR24) 2017; 90
B Gupta (9594_CR16) 2014; 86
IM Nasser (9594_CR14) 2019; 3
W Guo (9594_CR20) 2012; 39
JM Goo (9594_CR25) 2011; 12
S Nitin (9594_CR32) 2013
9594_CR30
9594_CR10
9594_CR11
9594_CR33
G Bhat (9594_CR13) 2012; 3
K Sankar (9594_CR17) 2014; 66
9594_CR18
I Junaedi (9594_CR31) 2019
9594_CR35
A Farag (9594_CR22) 2017; 12
M Bogdan (9594_CR34) 2010; 21
B Zhao (9594_CR23) 2003; 4
9594_CR9
BV Ginneken (9594_CR7) 2002; 21
9594_CR8
K Suzuki (9594_CR21) 2003; 30
S Candemir (9594_CR27) 2019; 14
References_xml – reference: GinnekenBVComputer-aided diagnosis in chest radiography: A surveyIEEE, Transactions on Medical Imaging200110.1109/42.974918
– reference: Ahmad, W., et al. (2016). Classification of infection and fluid regions using CXR images. In IEEE international conference on DIC: Techniques and applications, pp. 1–5. doi:https://doi.org/10.1109/DICTA.2016.7797020.
– reference: Jin. X., et al. (2016). Pulmonary nodule detection based on CT images using convolution neural network. In 9th International symposium on computational intelligence and design (ISCID). doi:https://doi.org/10.1109/ISCID.2016.1053
– reference: BrindhaAALung cancer detection using SVM algorithm and optimization techniquesJournal of Chemical and Pharmaceutical Sciences2016942016
– reference: LoSBComputer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed functionAmerican Journal of Roentgenology2018210348048810.2214/AJR.17.18718
– reference: XieYKnowledge based method with deep learning for classification of benign, malignant nodule on chest CT imageIEEE Transaction on Medical Imaging201910.1109/TMI.2018.2876510
– reference: Abdul Hamid, H. (2014). Image segmentation for lung region in chest X-ray images using edge detection and morphology. In IEEE international conference on control system, computing and engineering (ICCSCE 2014), pp. 46–51. doi:https://doi.org/10.1109/ICCSCE.2014.7072687
– reference: SankarKGray coefficient mass estimation based image segmentation technique for lung cancer detection using gabor filtersJournal of Theoretical and Applied Information Technology2014662638644
– reference: A Gentle Introduction to Cross-Entropy for Machine Learning. http://www.Machinelearningmastery.com.
– reference: Kain, N. K. (2018). Understanding of Multilayer perceptron (MLP). http://www.medium.com.
– reference: DuryeaJBooneJMA fully automated algorithm for the segmentation of lung fields on digital chest radiographic imagesMedical Physics199522218319110.1118/1.597539
– reference: FaragAFeature fusion for lung nodule classificationInternational Journal of Computer Assisted Radiology and Surgery201712101809181810.1007/s11548-017-1626-1
– reference: ChouhanVA novel transfer learning based approach for pneumonia detection in chest X-ray imagesApplied Sciences202010255910.3390/app10020559
– reference: KhanSAEffective and reliable framework for lung nodules detection from CT scan imagesScientific Reports201991498910.1038/s41598-019-41510-9
– reference: GooJMComputer-aided diagnosis for evaluating lung nodules on chest CT: The current status and perspectiveKorean Journal of Radiology2011122145155215066910.3348/kjr.2011.12.2.145
– reference: SuzukiKMassive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomographyMedical Physics20033071602161710.1118/1.1580485,PMID:12906178
– reference: NitinSA computer based feature extraction of lung nodule in chest x-ray imageInternational Journal of Bioscience, Biochemistry and Bioinformatics201310.7763/IJBBB.2013.V3.289
– reference: Roy, T., et al. (2015). Classification of lung image and nodule detection using fuzzy inference system. In International conference on computing, communication & automation. doi:https://doi.org/10.1109/CCAA.2015.7148560.
– reference: KobayashiHA method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and densityThe British Journal of Radiology20179010702016031310.1259/bjr.20160313
– reference: JunaediITuberculosis detection in chest x-ray images using optimized gray level co-occurrence matrix featuresInternational Conference on Information and Communications Technology (ICOIACT)201910.1109/ICOIACT46704.2019.8938584
– reference: GuoWA computerized scheme for lung nodule detection in multiprotection chest radiographyMedical Physics20123942001201210.1118/1.3694096.PMID:22482621
– reference: Zotina, A. et al. (2016). Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks. In 23rd International conference on knowledge-based and intelligent information & engineering systems. Procedia Computer Science,159, 1439–1448.
– reference: BogdanMImproved computation for Levenberg– Marquardt trainingIEEE Transactions on Neural Networks201021693093710.1109/TNN.2010.2045657
– reference: GuptaBLung cancer detection using curvelet transform and neural networkInternational Journal of Computer Applications2014861151710.5120/14949-3082
– reference: ZhaoBAutomatic detection of small lung nodules on CT utilizing a local density maximum algorithmJournal of Applied Clinical Medical Physics20034324826010.1120/jacmp.v4i3.2522
– reference: Cancer Statistics. (2020). Report from the National cancer registry programme, India.
– reference: Rendon-Gonzalez, E., et al. (2016). Automatic Lung nodule segmentation and classification in CT images based on SVM. In 9th International Kharkiv symposium on physics and engineering of microwaves, millimetre and sub-millimetre waves (MSMW). doi:https://doi.org/10.1109/MSMW.2016.7537995
– reference: Annangi, P., et al. (2010). A region based active contour method for X-ray lung segmentation using prior shape and low-level features. In IEEE International symposium on biomedical imaging: From nano to macro, pp. 892–895.
– reference: NasserIMLung cancer detection using artificial neural networkInternational Journal of Engineering and Information Systems (IJEAIS)201931723
– reference: Aggarwal, T., et al. (2015). Feature extraction and LDA based classification of lung nodules in chest CT scan images. In International conference on advances in computing, communications and informatics (ICACCI). doi:https://doi.org/10.1109/ICACCI.7275773.
– reference: CandemirSA review on lung boundary detection in chest X-raysInternational Journal of Computer Assisted Radiology and Surgery201914456357610.1007/s11548-019-01917-1
– reference: Yametkar, A. M. (2014). Lung cancer detection and classification by using bayesian classifier. In Proceedings of IRF international conference, pp. 7–13.
– reference: Chen, L., et al. (2017). Visual saliency- based method automatic lung regions extraction in chest radiographs. In IEEE 14th international computer conference on wavelet active media technology and information processing (ICCWAMTIP), pp. 162–165. doi:https://doi.org/10.1109/ICCWAMTIP.2017.8301470
– reference: BhatGArtificial neural network based cancer cell classification (ANN-C3)Computer Engineering and Intelligent Systems2012327
– reference: GinnekenBVActive shape model segmentation with optimal featuresIEEE Transactions on Medical Imaging200221892493310.1109/TMI.2002.803121
– ident: 9594_CR5
  doi: 10.1109/ICCSCE.2014.7072687
– volume: 9
  start-page: 4989
  issue: 1
  year: 2019
  ident: 9594_CR12
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-41510-9
– volume: 3
  start-page: 17
  year: 2019
  ident: 9594_CR14
  publication-title: International Journal of Engineering and Information Systems (IJEAIS)
– ident: 9594_CR3
  doi: 10.1109/ICCWAMTIP.2017.8301470
– volume: 66
  start-page: 638
  issue: 2
  year: 2014
  ident: 9594_CR17
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 14
  start-page: 563
  issue: 4
  year: 2019
  ident: 9594_CR27
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-019-01917-1
– volume: 12
  start-page: 1809
  issue: 10
  year: 2017
  ident: 9594_CR22
  publication-title: International Journal of Computer Assisted Radiology and Surgery
  doi: 10.1007/s11548-017-1626-1
– ident: 9594_CR1
– volume: 4
  start-page: 248
  issue: 3
  year: 2003
  ident: 9594_CR23
  publication-title: Journal of Applied Clinical Medical Physics
  doi: 10.1120/jacmp.v4i3.2522
– volume: 9
  start-page: 2016
  issue: 4
  year: 2016
  ident: 9594_CR19
  publication-title: Journal of Chemical and Pharmaceutical Sciences
– volume: 10
  start-page: 559
  issue: 2
  year: 2020
  ident: 9594_CR29
  publication-title: Applied Sciences
  doi: 10.3390/app10020559
– ident: 9594_CR30
  doi: 10.1016/j.procs.2019.09.314
– volume: 30
  start-page: 1602
  issue: 7
  year: 2003
  ident: 9594_CR21
  publication-title: Medical Physics
  doi: 10.1118/1.1580485,PMID:12906178
– ident: 9594_CR10
  doi: 10.1109/CCAA.2015.7148560
– ident: 9594_CR2
  doi: 10.1109/DICTA.2016.7797020
– year: 2019
  ident: 9594_CR28
  publication-title: IEEE Transaction on Medical Imaging
  doi: 10.1109/TMI.2018.2876510
– ident: 9594_CR18
– volume: 39
  start-page: 2001
  issue: 4
  year: 2012
  ident: 9594_CR20
  publication-title: Medical Physics
  doi: 10.1118/1.3694096.PMID:22482621
– ident: 9594_CR4
  doi: 10.1109/ISBI.2010.5490130
– year: 2019
  ident: 9594_CR31
  publication-title: International Conference on Information and Communications Technology (ICOIACT)
  doi: 10.1109/ICOIACT46704.2019.8938584
– volume: 21
  start-page: 930
  issue: 6
  year: 2010
  ident: 9594_CR34
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2045657
– year: 2013
  ident: 9594_CR32
  publication-title: International Journal of Bioscience, Biochemistry and Bioinformatics
  doi: 10.7763/IJBBB.2013.V3.289
– volume: 22
  start-page: 183
  issue: 2
  year: 1995
  ident: 9594_CR6
  publication-title: Medical Physics
  doi: 10.1118/1.597539
– volume: 210
  start-page: 480
  issue: 3
  year: 2018
  ident: 9594_CR26
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.17.18718
– ident: 9594_CR11
  doi: 10.1109/MSMW.2016.7537995
– volume: 3
  start-page: 7
  issue: 2
  year: 2012
  ident: 9594_CR13
  publication-title: Computer Engineering and Intelligent Systems
– ident: 9594_CR35
– ident: 9594_CR33
– volume: 90
  start-page: 20160313
  issue: 1070
  year: 2017
  ident: 9594_CR24
  publication-title: The British Journal of Radiology
  doi: 10.1259/bjr.20160313
– ident: 9594_CR9
  doi: 10.1109/ISCID.2016.1053
– volume: 86
  start-page: 15
  issue: 1
  year: 2014
  ident: 9594_CR16
  publication-title: International Journal of Computer Applications
  doi: 10.5120/14949-3082
– year: 2001
  ident: 9594_CR15
  publication-title: IEEE, Transactions on Medical Imaging
  doi: 10.1109/42.974918
– ident: 9594_CR8
  doi: 10.1109/ICACCI.7275773
– volume: 21
  start-page: 924
  issue: 8
  year: 2002
  ident: 9594_CR7
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2002.803121
– volume: 12
  start-page: 145
  issue: 2
  year: 2011
  ident: 9594_CR25
  publication-title: Korean Journal of Radiology
  doi: 10.3348/kjr.2011.12.2.145
SSID ssj0010092
Score 2.3194637
Snippet Lung cancer is the most suffering disease which is very difficult to identify in advance and it is not easily cure if the stage of cancer becomes more...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167
SubjectTerms Algorithms
Artificial neural networks
Back propagation networks
Brain cancer
CAD
Chest
Classification
Communications Engineering
Computer aided design
Computer Communication Networks
Discriminant analysis
Engineering
Feature extraction
Image classification
Image processing
Image segmentation
Lung cancer
Medical imaging
Networks
Neural networks
Patients
Performance evaluation
Signal,Image and Speech Processing
Support vector machines
Training
Title Classifying Lung Cancer as Benign and Malignant Nodule Using ANN of Back-Propagation Algorithm and GLCM Feature Extraction on Chest X-Ray Images
URI https://link.springer.com/article/10.1007/s11277-022-09594-1
https://www.proquest.com/docview/2713461201
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQ7gUOCBYQyy6rOSAuYCkPO49jWrW7wDZCiErlFNmxUyraFCWpBP-Cn8yMm2xZBEhIkXLw2JdvPB57Zr5h7EVoYl0KWXGtYsVFpRKuUyu4MaGv00QEnqJq5FkeXc3F24Vc9EVh7ZDtPoQknaU-FLv5FG6k7HN6uxIc7zzHkui8UIvnQXYTOyAaIcewR4kdaJn7Upk_r3H7ODr4mL-FRd1pM33A7vduImR7XB-yO7Y-Yfd-IQ88YWe90KrdwEu4VejRPmI_XLfLlatigmvc0TAmfBtQLYxsvVrWoGoDM5y_pFwYyLdmt7bgUgggy3PYVjBS5Rf-vsF79dKtC9l6uW1W3eeNm3x5PZ4B-ZC7xsLkW9fsiyQAvzG14YIF_6C-w5sN2qz2MZtPJx_HV7zvvsBLvJJ1PDaVLf2KQqelrMpYh0YK3zNKJjYKAmL4RF9BKo-eUqVNFd78pGdji1IVWoHwCTuqt7V9ykAJVISoCokLX9jIJKmUlZY6EqlOlLWnzB9AKMqempw6ZKyLA6kyAVcgcIUDrvBP2aubOV_3xBz_lD4fsC36TdoWAdXRoofn4fDrAe_D8N9Xe_Z_4mfsbrBXOe755-yoa3b2Oboynb5gx9l0NMrpf_np3eTCafJPm3fsAg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqcgAOFS0g-mQOiEuxtA97H8c0aklpsqqqRsptZa_tEJFsqt2NVP4FP7keZ7ehqCAh7c1jXz57PLMz32dCPoUqlgXjhkoRC8qMSKhMNaNKhb5MExZ4AtnIoywajNm3CZ-0pLC663bvSpLOU2_Ibj6WG7H7HP9dMWpznhcoYIWK-eOg91g7QBkhp7CHjR3WM7dUmefXeHodbWLMP8qi7ra5eEN22jARemtcd8mWLvfI69_EA_fIYWs0qxfwGZ4QPeq35Jd77XLmWEwwtCca-ohvBaKGM13OpiWIUsHIzp9iLwxkS7Waa3AtBNDLMlgaOBPFD3pd2bx66taF3ny6rGbN94Wb_HXYHwHGkKtKw_l9U61JEmC_Pj7DBRN6I37C5cL6rPodGV-c3_YHtH19gRY2JWtorIwufIOl04KbIpah4sz3lOCJjoIAFT5trMCFh79SuU6Fzfy4p2NtrYz1AuF7sl0uS_2BgGB2I0QmRC18piOVpJwbyWXEUpkIrfeJ34GQF600Ob6QMc83osoIXG6Byx1wub9PTh_n3K2FOf5pfdRhm7eHtM4D5NHaCM-zw186vDfDf1_t4P_MP5KXg9vRMB9eZleH5FWw3n7U84_IdlOt9LENaxp54nbxAwTN694
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELVQkRAcEBQQpQXmgLiA1f2w9-OYhoYWklWFiJTbyru204hkU-1uJPgX_GRmvJumRYCEtDePfXlje2Zn3jNjb0IdF6WQlhcqVlxYlfAiNYJrHfpFmojAU8RGnmTR2VR8msnZDRa_63bfliQ7TgOpNFXt8ZW2xzvim0-lR-pEp_9YgmP-c1eQUAJ69DQYXNcRSFLIqe1Rkwee0j1t5s9r3L6advHmbyVSd_OMHrGHfcgIgw7jx-yOqfbZgxtCgvvssDdaNCt4C7dIH80T9tO9fLlwjCYY4-6GIWFdg2rgxFSLeQWq0jDB-XPqi4FsrTdLA66dAAZZBmsLJ6r8xi9qzLHnbl0YLOfretFertzkj-PhBCie3NQGTr-3dUeYAPyG9CQXzPgX9QPOV3h-NU_ZdHT6dXjG-5cYeInpWctjbU3pWyqjltKWcRFqKXxPK5mYKAhI7RPjBqk8-q0qTaowC5SeiQ1aWTwRwmdsr1pX5jkDJdApIhuSLr4wkU5SKW0hi0ikRaKMOWD-FoS87GXK6bWMZb4TWCbgcgQud8Dl_gF7dz3nqhPp-Kf10RbbvN-wTR4QpxajPQ-H32_x3g3_fbUX_2f-mt27-DDKx-fZ50N2P-i8j3v-Edtr6415iRFOW7xyTvwLu_nwGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Lung+Cancer+as+Benign+and+Malignant+Nodule+Using+ANN+of+Back-Propagation+Algorithm+and+GLCM+Feature+Extraction+on+Chest+X-Ray+Images&rft.jtitle=Wireless+personal+communications&rft.au=Napoleon%2C+D.&rft.au=Kalaiarasi%2C+I.&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=126&rft.issue=1&rft.spage=167&rft.epage=195&rft_id=info:doi/10.1007%2Fs11277-022-09594-1&rft.externalDocID=10_1007_s11277_022_09594_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon