Quantifying uncertainties in the input–output identification of Flame Transfer Functions
The Finite Impulse Response model of a flame subject to acoustic forcing can be identified from numerical simulations. It is often subsequently used to obtain the frequency domain Flame Transfer Function (FTF). Its estimation from a finite time series introduces uncertainty in the model coefficients...
Saved in:
Published in | Combustion and flame Vol. 281; p. 114398 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-2180 |
DOI | 10.1016/j.combustflame.2025.114398 |
Cover
Abstract | The Finite Impulse Response model of a flame subject to acoustic forcing can be identified from numerical simulations. It is often subsequently used to obtain the frequency domain Flame Transfer Function (FTF). Its estimation from a finite time series introduces uncertainty in the model coefficients, affecting the prediction of the system response when implemented in a thermoacoustic network model. Quantifying how this uncertainty affects the identified FTF is commonly achieved by repeatedly sampling from the distribution of the model coefficients to obtain numerous model realizations and computing their Fourier transform. In the present work, we instead provide the exact mathematical connection between the uncertainty in the time and frequency domain, and give the sampling distributions for the gain and phase of the transfer function. Confidence intervals can then be associated with each predicted FTF value from a single time series. Moreover, by setting a permissible range in the gain and phase of the FTF, the appropriate time series length of the simulation can be determined on the fly.
Novelty and Significance Statement
In this paper, a novel approach to quantify uncertainties in Flame Transfer Functions (FTFs), which are crucial for predicting thermoacoustic instabilities in combustion systems, is introduced. This research provides an exact mathematical connection between uncertainties in the time domain impulse response and their impact on FTF gain and phase in the frequency domain. We derive sampling distributions for the gain and phase of the FTF, which enables the assignment of confidence intervals to the Bode representation of the FTF. This advancement helps determine the necessary simulation duration to achieve a desired uncertainty level, improving the reliability and efficiency of thermoacoustic predictions. |
---|---|
AbstractList | The Finite Impulse Response model of a flame subject to acoustic forcing can be identified from numerical simulations. It is often subsequently used to obtain the frequency domain Flame Transfer Function (FTF). Its estimation from a finite time series introduces uncertainty in the model coefficients, affecting the prediction of the system response when implemented in a thermoacoustic network model. Quantifying how this uncertainty affects the identified FTF is commonly achieved by repeatedly sampling from the distribution of the model coefficients to obtain numerous model realizations and computing their Fourier transform. In the present work, we instead provide the exact mathematical connection between the uncertainty in the time and frequency domain, and give the sampling distributions for the gain and phase of the transfer function. Confidence intervals can then be associated with each predicted FTF value from a single time series. Moreover, by setting a permissible range in the gain and phase of the FTF, the appropriate time series length of the simulation can be determined on the fly.
Novelty and Significance Statement
In this paper, a novel approach to quantify uncertainties in Flame Transfer Functions (FTFs), which are crucial for predicting thermoacoustic instabilities in combustion systems, is introduced. This research provides an exact mathematical connection between uncertainties in the time domain impulse response and their impact on FTF gain and phase in the frequency domain. We derive sampling distributions for the gain and phase of the FTF, which enables the assignment of confidence intervals to the Bode representation of the FTF. This advancement helps determine the necessary simulation duration to achieve a desired uncertainty level, improving the reliability and efficiency of thermoacoustic predictions. |
ArticleNumber | 114398 |
Author | Dharmaputra, Bayu Radack, Justus Florian Schuermans, Bruno Noiray, Nicolas |
Author_xml | – sequence: 1 givenname: Justus Florian orcidid: 0009-0003-4455-3811 surname: Radack fullname: Radack, Justus Florian email: jradack@ethz.ch – sequence: 2 givenname: Bayu orcidid: 0000-0002-2657-8981 surname: Dharmaputra fullname: Dharmaputra, Bayu – sequence: 3 givenname: Bruno surname: Schuermans fullname: Schuermans, Bruno – sequence: 4 givenname: Nicolas orcidid: 0000-0003-3362-9721 surname: Noiray fullname: Noiray, Nicolas email: noirayn@ethz.ch |
BookMark | eNqNkLFOwzAQhj0UibbwDhZ7wjlxnYQNFUqRKiGksrBYrnMGV61d2Q5SN96BN-RJSFQGRqb_dHf_f6dvQkbOOyTkikHOgInrba79ftPFZHZqj3kBxSxnjJdNPSJjAAZZwWo4J5MYtwBQ8bIck9fnTrlkzdG6N9o5jSEp2zcwUutoesdeDl36_vzyXeoLalsc9q1WyXpHvaGL4RxdB-WiwUAXfcowihfkzKhdxMtfnZKXxf16vsxWTw-P89tVpgvepKxqFDJTKuR1U4NgvGqEqKBhBQihQbcIbIOz1nBRACvqGS_NpqwFqyveag3llNyccnXwMQY08hDsXoWjZCAHMnIr_5KRAxl5ItOb705m7D_8sBhk1BZ7Dq0NqJNsvf1PzA_axnnE |
Cites_doi | 10.1016/j.combustflame.2015.06.020 10.1243/09576509JPE384 10.1111/j.1467-9574.2012.00530.x 10.1016/j.proci.2010.06.018 10.1016/S1540-7489(02)80007-4 10.2307/1912934 10.1109/78.539051 10.1016/j.combustflame.2017.04.015 10.1115/1.4045256 10.1002/j.1538-7305.1948.tb01334.x 10.1016/j.combustflame.2018.01.046 10.1017/jfm.2015.730 10.1016/j.jsv.2020.115423 10.1016/j.combustflame.2020.12.034 10.1016/j.combustflame.2025.114246 10.1016/j.ymssp.2016.10.029 10.1016/j.jsv.2018.02.040 10.1007/s11071-015-2134-x 10.1109/JRPROC.1956.275124 10.3813/AAA.918997 10.1016/j.anucene.2013.10.037 10.1115/1.4044197 10.1109/TIT.1960.1057560 10.2514/1.24933 10.1016/j.combustflame.2009.07.017 10.1103/PhysRevE.95.062217 10.1016/j.proci.2018.07.020 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.combustflame.2025.114398 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_combustflame_2025_114398 S0010218025004353 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABDMP ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- ~HD AAYXX AGCQF CITATION |
ID | FETCH-LOGICAL-c249t-79ae1f3ae48980614796670912066c0cde01be5df4620128543fb3861874dcc03 |
IEDL.DBID | AIKHN |
ISSN | 0010-2180 |
IngestDate | Thu Sep 11 00:34:30 EDT 2025 Sat Sep 27 17:14:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flame Transfer Function Uncertainty quantification System identification |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c249t-79ae1f3ae48980614796670912066c0cde01be5df4620128543fb3861874dcc03 |
ORCID | 0000-0003-3362-9721 0000-0002-2657-8981 0009-0003-4455-3811 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0010218025004353 |
ParticipantIDs | crossref_primary_10_1016_j_combustflame_2025_114398 elsevier_sciencedirect_doi_10_1016_j_combustflame_2025_114398 |
PublicationCentury | 2000 |
PublicationDate | November 2025 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
PublicationDecade | 2020 |
PublicationTitle | Combustion and flame |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Merk, Jaensch, Silva, Polifke (b32) 2018; 422 Kornilov, Rook, ten Thije Boonkkamp, de Goey (b23) 2009; 156 Marcum (b22) 1948; 6 Greene (b35) 2018 Bennett (b19) 1956; 44 Gallager (b36) 2008 Ghirardo, Ćosić, Juniper, Moeck (b33) 2015; 82 Artin (b38) 2018 Guo, Silva, Bauerheim, Ghani, Polifke (b13) 2019; 37 Bauerheim, Ndiaye, Constantine, Moreau, Nicoud (b14) 2016; 789 White (b29) 1980; 48 Candel (b1) 2002; 29 Picinbono (b17) 1996; 44 Wit, van den Heuvel, Romeijn (b25) 2012; 66 Polifke (b11) 2014; 67 Li, Wang, Wang, Zhao (b28) 2020; 480 Bothien, Ciani, Wood, Fruechtel (b2) 2019; 141 Bonciolini, Boujo, Noiray (b27) 2017; 95 White (b30) 2001 Han, Li, Morgans (b7) 2015; 162 Silva, Merk, Komarek, Polifke (b12) 2017; 182 Emmert, Meindl, Jaensch, Polifke (b6) 2016; 102 Schulz, Noiray (b8) 2018; 192 Davidson, MacKinnon (b31) 2006 Nicoud, Benoit, Sensiau, Poinsot (b3) 2007; 45 Radack, Schuermans, Noiray (b24) 2025; 279 Waugh, Geuß, Juniper (b26) 2011; 33 Ljung (b10) 1999 Bothien, Moeck, Lacarelle, Paschereit (b5) 2007; 221 Luo, Zhan, Jonckheere (b21) 2020 Rice (b18) 1948; 27 Cheng, Peng, Zhang, Meng (b34) 2017; 87 Horn, Johnson (b37) 1985 Guo, Silva, Ghani, Polifke (b15) 2018; 141 Bonciolini, Faure-Beaulieu, Bourquard, Noiray (b9) 2021; 226 Guo, Silva, Polifke (b16) 2020; 142 Schuermans, Valter, Paschereit (b4) 2003 Miller, Childers (b20) 2012 Luo (10.1016/j.combustflame.2025.114398_b21) 2020 Wit (10.1016/j.combustflame.2025.114398_b25) 2012; 66 Radack (10.1016/j.combustflame.2025.114398_b24) 2025; 279 Emmert (10.1016/j.combustflame.2025.114398_b6) 2016; 102 Merk (10.1016/j.combustflame.2025.114398_b32) 2018; 422 Bothien (10.1016/j.combustflame.2025.114398_b2) 2019; 141 Waugh (10.1016/j.combustflame.2025.114398_b26) 2011; 33 Li (10.1016/j.combustflame.2025.114398_b28) 2020; 480 Greene (10.1016/j.combustflame.2025.114398_b35) 2018 Nicoud (10.1016/j.combustflame.2025.114398_b3) 2007; 45 Schulz (10.1016/j.combustflame.2025.114398_b8) 2018; 192 Bauerheim (10.1016/j.combustflame.2025.114398_b14) 2016; 789 Bonciolini (10.1016/j.combustflame.2025.114398_b9) 2021; 226 Polifke (10.1016/j.combustflame.2025.114398_b11) 2014; 67 Gallager (10.1016/j.combustflame.2025.114398_b36) 2008 Marcum (10.1016/j.combustflame.2025.114398_b22) 1948; 6 White (10.1016/j.combustflame.2025.114398_b29) 1980; 48 Schuermans (10.1016/j.combustflame.2025.114398_b4) 2003 Guo (10.1016/j.combustflame.2025.114398_b13) 2019; 37 Artin (10.1016/j.combustflame.2025.114398_b38) 2018 Han (10.1016/j.combustflame.2025.114398_b7) 2015; 162 Candel (10.1016/j.combustflame.2025.114398_b1) 2002; 29 Picinbono (10.1016/j.combustflame.2025.114398_b17) 1996; 44 Ljung (10.1016/j.combustflame.2025.114398_b10) 1999 Guo (10.1016/j.combustflame.2025.114398_b15) 2018; 141 Bennett (10.1016/j.combustflame.2025.114398_b19) 1956; 44 Silva (10.1016/j.combustflame.2025.114398_b12) 2017; 182 Cheng (10.1016/j.combustflame.2025.114398_b34) 2017; 87 Bothien (10.1016/j.combustflame.2025.114398_b5) 2007; 221 Rice (10.1016/j.combustflame.2025.114398_b18) 1948; 27 Davidson (10.1016/j.combustflame.2025.114398_b31) 2006 White (10.1016/j.combustflame.2025.114398_b30) 2001 Bonciolini (10.1016/j.combustflame.2025.114398_b27) 2017; 95 Kornilov (10.1016/j.combustflame.2025.114398_b23) 2009; 156 Miller (10.1016/j.combustflame.2025.114398_b20) 2012 Horn (10.1016/j.combustflame.2025.114398_b37) 1985 Guo (10.1016/j.combustflame.2025.114398_b16) 2020; 142 Ghirardo (10.1016/j.combustflame.2025.114398_b33) 2015; 82 |
References_xml | – volume: 221 start-page: 657 year: 2007 end-page: 668 ident: b5 article-title: Time domain modelling and stability analysis of complex thermoacoustic systems publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy – volume: 141 start-page: 21 year: 2018 end-page: 32 ident: b15 article-title: Quantification and propagation of uncertainties in identification of flame impulse response for thermoacoustic stability analysis publication-title: J. Eng. Gas Turbines Power – volume: 27 start-page: 109 year: 1948 end-page: 157 ident: b18 article-title: Statistical properties of a sine wave plus random noise publication-title: Bell Syst. Tech. J. – volume: 279 year: 2025 ident: b24 article-title: Identification of instantaneous flame transfer functions publication-title: Combust. Flame – volume: 29 start-page: 1 year: 2002 end-page: 28 ident: b1 article-title: Combustion dynamics and control: Progress and challenges publication-title: Proc. Combust. Inst. – volume: 102 start-page: 824 year: 2016 end-page: 833 ident: b6 article-title: Linear state space interconnect modeling of acoustic systems publication-title: Acta Acust. United Acust. – volume: 48 start-page: 817 year: 1980 end-page: 838 ident: b29 article-title: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity publication-title: Econometrica – volume: 66 start-page: 217 year: 2012 end-page: 236 ident: b25 article-title: ‘All models are wrong...’: an introduction to model uncertainty publication-title: Stat. Neerl. – volume: 33 start-page: 2945 year: 2011 end-page: 2952 ident: b26 article-title: Triggering, bypass transition and the effect of noise on a linearly stable thermoacoustic system publication-title: Proc. Combust. Inst. – year: 2018 ident: b38 article-title: Algebra – volume: 480 year: 2020 ident: b28 article-title: Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise publication-title: J. Sound Vib. – year: 2018 ident: b35 article-title: Econometric Analysis – year: 1985 ident: b37 article-title: Matrix Analysis – volume: 44 start-page: 609 year: 1956 end-page: 638 ident: b19 article-title: Methods of solving noise problems publication-title: Proc. IRE – volume: 226 start-page: 396 year: 2021 end-page: 411 ident: b9 article-title: Low order modelling of thermoacoustic instabilities and intermittency: Flame response delay and nonlinearity publication-title: Combust. Flame – start-page: 63 year: 2012 end-page: 110 ident: b20 article-title: Probability and Random Processes – volume: 82 start-page: 9 year: 2015 end-page: 28 ident: b33 article-title: State-space realization of a describing function publication-title: Nonlinear Dynam. – volume: 141 year: 2019 ident: b2 article-title: Toward decarbonized power generation with gas turbines by using sequential combustion for burning hydrogen publication-title: J. Eng. Gas Turbines Power – volume: 162 start-page: 3632 year: 2015 end-page: 3647 ident: b7 article-title: Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model publication-title: Combust. Flame – start-page: 306 year: 2020 end-page: 311 ident: b21 article-title: Analysis on functions and characteristics of the rician phase distribution publication-title: 2020 IEEE/CIC International Conference on Communications in China – volume: 142 year: 2020 ident: b16 article-title: Efficient robust design for thermoacoustic instability analysis: A Gaussian process approach publication-title: J. Eng. Gas Turbines Power – year: 2008 ident: b36 article-title: Principles of Digital Communication – volume: 67 start-page: 109 year: 2014 end-page: 128 ident: b11 article-title: Black-box system identification for reduced order model construction publication-title: Ann. Nucl. Energy – volume: 182 start-page: 269 year: 2017 end-page: 278 ident: b12 article-title: The contribution of intrinsic thermoacoustic feedback to combustion noise and resonances of a confined turbulent premixed flame publication-title: Combust. Flame – year: 2001 ident: b30 article-title: Asymptotic Theory for Econometricians – volume: 87 start-page: 340 year: 2017 end-page: 364 ident: b34 article-title: Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review publication-title: Mech. Syst. Signal Process. – year: 1999 ident: b10 article-title: System identification: Theory for the user publication-title: Prentice Hall Information and System Sciences Series – volume: 156 start-page: 1957 year: 2009 end-page: 1970 ident: b23 article-title: Experimental and numerical investigation of the acoustic response of multi-slit bunsen burners publication-title: Combust. Flame – volume: 192 start-page: 86 year: 2018 end-page: 100 ident: b8 article-title: Autoignition flame dynamics in sequential combustors publication-title: Combust. Flame – volume: 37 start-page: 5299 year: 2019 end-page: 5306 ident: b13 article-title: Evaluating the impact of uncertainty in flame impulse response model on thermoacoustic instability prediction: A dimensionality reduction approach publication-title: Proc. Combust. Inst. Inst. – volume: 422 start-page: 432 year: 2018 end-page: 452 ident: b32 article-title: Simultaneous identification of transfer functions and combustion noise of a turbulent flame publication-title: J. Sound Vib. – volume: 44 start-page: 2637 year: 1996 end-page: 2640 ident: b17 article-title: Second-order complex random vectors and normal distributions publication-title: IEEE Trans. Signal Process. – start-page: 509 year: 2003 end-page: 519 ident: b4 article-title: Thermoacoustic modeling and control of multi burner combustion systems publication-title: Proceedings of ASME Turbo Expo—Power for Land Sea and Air – start-page: 812 year: 2006 end-page: 838 ident: b31 article-title: Bootstrap methods in econometrics publication-title: Palgrave Handbook of Econometrics, Volume 1: Econometric Theory – volume: 789 start-page: 534 year: 2016 end-page: –566 ident: b14 article-title: Symmetry breaking of azimuthal thermoacoustic modes: the UQ perspective publication-title: J. Fluid Mech. – volume: 45 start-page: 426 year: 2007 end-page: 441 ident: b3 article-title: Acoustic modes in combustors with complex impedances and multidimensional active flames publication-title: AIAA J. – volume: 6 start-page: 59 year: 1948 end-page: 267 ident: b22 article-title: A statistical theory of target detection by pulsed radar publication-title: IRE Trans. Inf. Theory – volume: 95 year: 2017 ident: b27 article-title: Output-only parameter identification of a colored-noise-driven van-der-pol oscillator: Thermoacoustic instabilities as an example publication-title: Phys. Rev. E – start-page: 509 year: 2003 ident: 10.1016/j.combustflame.2025.114398_b4 article-title: Thermoacoustic modeling and control of multi burner combustion systems – volume: 162 start-page: 3632 issue: 10 year: 2015 ident: 10.1016/j.combustflame.2025.114398_b7 article-title: Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model publication-title: Combust. Flame doi: 10.1016/j.combustflame.2015.06.020 – volume: 221 start-page: 657 issue: 5 year: 2007 ident: 10.1016/j.combustflame.2025.114398_b5 article-title: Time domain modelling and stability analysis of complex thermoacoustic systems publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy doi: 10.1243/09576509JPE384 – volume: 66 start-page: 217 issue: 3 year: 2012 ident: 10.1016/j.combustflame.2025.114398_b25 article-title: ‘All models are wrong...’: an introduction to model uncertainty publication-title: Stat. Neerl. doi: 10.1111/j.1467-9574.2012.00530.x – start-page: 812 year: 2006 ident: 10.1016/j.combustflame.2025.114398_b31 article-title: Bootstrap methods in econometrics – volume: 33 start-page: 2945 issue: 2 year: 2011 ident: 10.1016/j.combustflame.2025.114398_b26 article-title: Triggering, bypass transition and the effect of noise on a linearly stable thermoacoustic system publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.06.018 – volume: 29 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.combustflame.2025.114398_b1 article-title: Combustion dynamics and control: Progress and challenges publication-title: Proc. Combust. Inst. doi: 10.1016/S1540-7489(02)80007-4 – volume: 48 start-page: 817 issue: 4 year: 1980 ident: 10.1016/j.combustflame.2025.114398_b29 article-title: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity publication-title: Econometrica doi: 10.2307/1912934 – volume: 44 start-page: 2637 issue: 10 year: 1996 ident: 10.1016/j.combustflame.2025.114398_b17 article-title: Second-order complex random vectors and normal distributions publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.539051 – volume: 182 start-page: 269 year: 2017 ident: 10.1016/j.combustflame.2025.114398_b12 article-title: The contribution of intrinsic thermoacoustic feedback to combustion noise and resonances of a confined turbulent premixed flame publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.04.015 – volume: 141 issue: 12 year: 2019 ident: 10.1016/j.combustflame.2025.114398_b2 article-title: Toward decarbonized power generation with gas turbines by using sequential combustion for burning hydrogen publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4045256 – year: 1999 ident: 10.1016/j.combustflame.2025.114398_b10 article-title: System identification: Theory for the user – volume: 27 start-page: 109 issue: 1 year: 1948 ident: 10.1016/j.combustflame.2025.114398_b18 article-title: Statistical properties of a sine wave plus random noise publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01334.x – volume: 192 start-page: 86 year: 2018 ident: 10.1016/j.combustflame.2025.114398_b8 article-title: Autoignition flame dynamics in sequential combustors publication-title: Combust. Flame doi: 10.1016/j.combustflame.2018.01.046 – volume: 789 start-page: 534 year: 2016 ident: 10.1016/j.combustflame.2025.114398_b14 article-title: Symmetry breaking of azimuthal thermoacoustic modes: the UQ perspective publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.730 – volume: 480 year: 2020 ident: 10.1016/j.combustflame.2025.114398_b28 article-title: Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115423 – volume: 226 start-page: 396 year: 2021 ident: 10.1016/j.combustflame.2025.114398_b9 article-title: Low order modelling of thermoacoustic instabilities and intermittency: Flame response delay and nonlinearity publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.12.034 – start-page: 306 year: 2020 ident: 10.1016/j.combustflame.2025.114398_b21 article-title: Analysis on functions and characteristics of the rician phase distribution – start-page: 63 year: 2012 ident: 10.1016/j.combustflame.2025.114398_b20 – volume: 279 year: 2025 ident: 10.1016/j.combustflame.2025.114398_b24 article-title: Identification of instantaneous flame transfer functions publication-title: Combust. Flame doi: 10.1016/j.combustflame.2025.114246 – volume: 87 start-page: 340 year: 2017 ident: 10.1016/j.combustflame.2025.114398_b34 article-title: Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.10.029 – year: 2018 ident: 10.1016/j.combustflame.2025.114398_b35 – volume: 422 start-page: 432 year: 2018 ident: 10.1016/j.combustflame.2025.114398_b32 article-title: Simultaneous identification of transfer functions and combustion noise of a turbulent flame publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.02.040 – year: 2001 ident: 10.1016/j.combustflame.2025.114398_b30 – volume: 82 start-page: 9 year: 2015 ident: 10.1016/j.combustflame.2025.114398_b33 article-title: State-space realization of a describing function publication-title: Nonlinear Dynam. doi: 10.1007/s11071-015-2134-x – year: 2018 ident: 10.1016/j.combustflame.2025.114398_b38 – volume: 44 start-page: 609 issue: 5 year: 1956 ident: 10.1016/j.combustflame.2025.114398_b19 article-title: Methods of solving noise problems publication-title: Proc. IRE doi: 10.1109/JRPROC.1956.275124 – year: 1985 ident: 10.1016/j.combustflame.2025.114398_b37 – volume: 102 start-page: 824 issue: 5 year: 2016 ident: 10.1016/j.combustflame.2025.114398_b6 article-title: Linear state space interconnect modeling of acoustic systems publication-title: Acta Acust. United Acust. doi: 10.3813/AAA.918997 – volume: 67 start-page: 109 year: 2014 ident: 10.1016/j.combustflame.2025.114398_b11 article-title: Black-box system identification for reduced order model construction publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2013.10.037 – volume: 142 issue: 3 year: 2020 ident: 10.1016/j.combustflame.2025.114398_b16 article-title: Efficient robust design for thermoacoustic instability analysis: A Gaussian process approach publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4044197 – volume: 6 start-page: 59 year: 1948 ident: 10.1016/j.combustflame.2025.114398_b22 article-title: A statistical theory of target detection by pulsed radar publication-title: IRE Trans. Inf. Theory doi: 10.1109/TIT.1960.1057560 – volume: 45 start-page: 426 issue: 2 year: 2007 ident: 10.1016/j.combustflame.2025.114398_b3 article-title: Acoustic modes in combustors with complex impedances and multidimensional active flames publication-title: AIAA J. doi: 10.2514/1.24933 – volume: 141 start-page: 21 issue: 2 year: 2018 ident: 10.1016/j.combustflame.2025.114398_b15 article-title: Quantification and propagation of uncertainties in identification of flame impulse response for thermoacoustic stability analysis publication-title: J. Eng. Gas Turbines Power – volume: 156 start-page: 1957 issue: 10 year: 2009 ident: 10.1016/j.combustflame.2025.114398_b23 article-title: Experimental and numerical investigation of the acoustic response of multi-slit bunsen burners publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.07.017 – volume: 95 year: 2017 ident: 10.1016/j.combustflame.2025.114398_b27 article-title: Output-only parameter identification of a colored-noise-driven van-der-pol oscillator: Thermoacoustic instabilities as an example publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.062217 – volume: 37 start-page: 5299 issue: 4 year: 2019 ident: 10.1016/j.combustflame.2025.114398_b13 article-title: Evaluating the impact of uncertainty in flame impulse response model on thermoacoustic instability prediction: A dimensionality reduction approach publication-title: Proc. Combust. Inst. Inst. doi: 10.1016/j.proci.2018.07.020 – year: 2008 ident: 10.1016/j.combustflame.2025.114398_b36 |
SSID | ssj0007433 |
Score | 2.4805233 |
Snippet | The Finite Impulse Response model of a flame subject to acoustic forcing can be identified from numerical simulations. It is often subsequently used to obtain... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114398 |
SubjectTerms | Flame Transfer Function System identification Uncertainty quantification |
Title | Quantifying uncertainties in the input–output identification of Flame Transfer Functions |
URI | https://dx.doi.org/10.1016/j.combustflame.2025.114398 |
Volume | 281 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB76OKgH0apYH2UPXmOT7OZ18FCKoSoUBAvFS8huNhAPaanJVfwP_kN_iTN5SAUPgqc8YJfw7Wa-GXbmG4ArkVrKF4kyAs_0DSF0YgTo2BtWIjn3agEQyraYu7OFuF86yw5M21oYSqtsbH9t0ytr3bwZN2iO11lGNb7UltonEjeR9HkX-jayPUZg_cndw2z-bZCRJOuDZjQ5NKDVHq3SvHB6Wb4WKeJPqpm2Q-q5PPB_56kt7gkPYL9xGtmk_q5D6Oh8ADvTtlfbAPa2ZAWP4PmxjCkHiCqYGPJWfepPyqksyxl6fHhZl8Xn-8eqLPCGZUmTM1QtE1ulLKQPZRWRpXrDQpyl2qDHsAhvn6Yzo-mhYCgMrArDC2JtpTzWwg98iv48jG88dBJIxl2ZKtGmJbWTpMK1iascwVPJfZda9SVKmfwEevkq16fAXO4qJbw0ptPUwFXSjumHl4LLgEtuDYG3iEXrWiojanPIXqJtnCPCOapxHsJNC270Y-EjtOl_GH_2z_HnsEtPdXnhBfSKTakv0c8o5Ai612_WqNlNX2ds1DA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe6geRKtife7Ba2jS3bwOHkoxtLYWhBaKl5DdbKAe0lKTu__Bf-gvcSYPqeBB8JSQZZfl2818s-zMNwB3IrGUJ2Jl-K7pGULo2PDRsTesWHLulgIgFG0xc0YL8bi0lw0Y1rkwFFZZ2f7SphfWuvrSq9DsbVYryvGlstQekbiJpM_3oCVstMlNaA3Gk9Hs2yAjSZYXzWhyqEOtPVqEeeHwMn_LEsSfVDP7Nqnnct_7nad2uCc4gsPKaWSDcl7H0NBpB9rDulZbBw52ZAVP4OU5jygGiDKYGPJWeetPyqlslTL0-PCxybPP9491nuELW8VVzFCxTGydsIAmygoiS_SWBThKsUFPYRE8zIcjo6qhYCg8WGWG60faSnikhed7dPpz8XzjopNAMu7KVLE2LantOBFOn7jKFjyR3HOoVF-slMnPoJmuU30OzOGOUsJNIrpN9R0l-xH98FJw6XPJrS7wGrFwU0plhHUM2Wu4i3NIOIclzl24r8ENfyx8iDb9D_0v_tn_Ftqj-dM0nI5nk0vYp5Yy1fAKmtk219foc2TyptpTX2uv1hY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+uncertainties+in+the+input%E2%80%93output+identification+of+Flame+Transfer+Functions&rft.jtitle=Combustion+and+flame&rft.au=Radack%2C+Justus+Florian&rft.au=Dharmaputra%2C+Bayu&rft.au=Schuermans%2C+Bruno&rft.au=Noiray%2C+Nicolas&rft.date=2025-11-01&rft.pub=Elsevier+Inc&rft.issn=0010-2180&rft.volume=281&rft_id=info:doi/10.1016%2Fj.combustflame.2025.114398&rft.externalDocID=S0010218025004353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |